Skip to main content

Micro, Multiscale and Macro Models for Masonry Structures

  • Chapter
Mechanics of Masonry Structures

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 551))

Abstract

The development of adequate stress analyses for masonry structures represents an important task not only for verifying the stability of masonry constructions, as old buildings, historical town and monumental structures, but also to properly design effective strengthening and repairing interventions. The analysis of masonry structures is not simple at least for two reasons: the masonry material presents a strong nonlinear behavior, so that linear elastic analyses generally cannot be considered as adequate; the structural schemes, which can be adopted for the masonry structural analyses, are more complex than the ones adopted for concrete or steel framed structures, as masonry elements require often to be modeled by two- or three-dimensional elements. As a consequence, the behavior and the analysis of masonry structures still represents one of the most important research field in civil engineering, receiving great attention from the scientific and professional community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. D. Addessi, S. Marfia, and E. Sacco. A plastic nonlocal damage model. Computer Methods in Applied Mechanics and Engineering, 191:1291–1310, 2002.

    Google Scholar 

  2. D. Addessi and E. Sacco. A multi-scale enriched model for the analysis of masonry panels. International Journal of Solids and Structures, 49:865–880, 2012.

    Google Scholar 

  3. D. Addessi, E. Sacco, and A. Paolone. Cosserat model for periodic masonry deduced by nonlinear homogenization. European Journal of Mechanics - A/Solids, 29:724–737, 2010.

    Google Scholar 

  4. G. Alfano, S. Marfia, and E. Sacco. A cohesive damage-friction interface model accounting for water pressure on crack propagation. Computer Methods in Applied Mechanics and Engineering, 196:192–209, 2006.

    Google Scholar 

  5. G. Alfano and E. Sacco. Combining interface damage and friction in a cohesive-zone model. International Journal for Numerical Methods in Engineering, 68(5):542–582, 2006.

    Google Scholar 

  6. A. Anthoine. Derivation of the in-plane elastic characteristics of masonry through homogenization theory. International Journal of Solids and Structures, 32(2):137–163, 1995.

    Google Scholar 

  7. G. I. Barenblatt. The mathematical theory of equilibrium cracks in the brittle fracture. Advances in Applied Mechanics, 7:55–129, 1962.

    Google Scholar 

  8. L. Berto, A. Saetta, R. Scotta, and R. Vitaliani. An orthotropic damage model for masonry structures. International Journal for Numerical Methods in Engineering, 55:127–157, 2002.

    Google Scholar 

  9. S. Brasile, R. Casciaro, and G. Formica. Multilevel approach for brick masonry walls part i: A numerical strategy for the nonlinear analysis. Computer Methods in Applied Mechanics and Engineering, 196:4934–4951, 2007.

    Google Scholar 

  10. S. Brasile, R. Casciaro, and G. Formica. Multilevel approach for brick masonry walls part ii: On the use of equivalent continua. Computer Methods in Applied Mechanics and Engineering, 196:4801–4810, 2007.

    Google Scholar 

  11. I. Cancelliere, M. Imbimbo, and E. Sacco. Numerical and experimental study of masonry arches. Engineering Structures, 32:776–792, 2010.

    Google Scholar 

  12. S. Casolo. Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements. International Journal of Solids and Structures, 43(3-4):475–496, 2006.

    Google Scholar 

  13. N. Cavalagli, F. Cluni, and V. Gusella. Strength domain of non-periodic masonry by homogenization in generalized plane state. European Journal of Mechanics A/Solids, 30:113–126, 2011.

    Google Scholar 

  14. Antonella Cecchi and Karam Sab. Discrete and continuous models for in plane loaded random elastic brickwork. European Journal of Mechanics - A/Solids, 28:610–625, 2009.

    Google Scholar 

  15. J.L. Chaboche, S. Kruch, J.F. Maire, and T. Pottier. Towards a micromechanics based inelastic and damage modeling of composites. International Journal of Plasticity, 17:411–439, 2001.

    Google Scholar 

  16. C. Comi. Computational modelling of gradient-enhanced damage in quasi-brittle materials. Mech Coh.-Frictional Mater., 4:17–36, 1999.

    Google Scholar 

  17. M.L. De Bellis and D. Addessi. A Cosserat based multi-scale model for masonry structures. International Journal of Computational Engineering, 9:543–563, 2011.

    Google Scholar 

  18. Francesco Marotti de Sciarra. A nonlocal model with strain-based damage. International Journal of Solids and Structures, 46(22-23):4107 – 4122, 2009.

    Google Scholar 

  19. M. Dhanasekar and W. Haider. Explicit finite element analysis of lightly reinforced masonry shear walls. Computers and Structures, 86:15–26, 2008.

    Google Scholar 

  20. D.S. Dugdale. Yielding of steel sheets containing slits. J. Mech. Phys. Solids, 8:100–104, 1960.

    Google Scholar 

  21. G.J. Dvorak. Transformation field analysis of inelastic composite materials. Proceedings of the Royal Society of London A, 437:311–327, 1992.

    Google Scholar 

  22. G.J. Dvorak and A. Bahei-El-Din. Inelastic composite materials: transformation field analysis and experiments. In P. Sequet, editor, Continuum Micromechanics, CISM Course and Lecture 377, pages 1 – 59. Springer, Berlin, 2005.

    Google Scholar 

  23. J. Fish and K. Shek. Multiscale analysis of composite materials and structures. Composites Science and Technology, 60:2547–2556, 2000.

    Google Scholar 

  24. S. Forest and K. Sab. Cosserat overall modelling of heterogeneous materials. Mechanics Research Communications in Numerical Methods in Engineering, 4:449–454, 1998.

    Google Scholar 

  25. F. Fouchal, F. Lebon, and I. Titeux. Contribution to the modelling of interfaces in masonry construction. Construction and Building Materials, 23:2428–2441, 2009.

    Google Scholar 

  26. F. Fritzen and T. Bhlke. Nonuniform transformation field analysis of materials with morphological anisotropy. Composites Science and Technology, 71:433–442, 2011.

    Google Scholar 

  27. L. Gambarotta and S. Lagomarsino. Damage models for the seismic response of brick masonry shear walls part i: the mortar joint model and its application. Earthquake Engineering and Structural Dynamics, 26:423–439, 1997.

    Google Scholar 

  28. L. Gambarotta and S. Lagomarsino. Damage models for the seismic response of brick masonry shear walls part ii: the continuum model and its application. Earthquake Engineering and Structural Dynamics, 26:441–462., 1997.

    Google Scholar 

  29. G. Giambanco and L. Di Gati. A cohesive interface model for the structural mechanics of block masonry. Mechanics Research Communications, 24(5):503–512, 1997.

    Google Scholar 

  30. G. Giambanco, G. Fileccia Scimemi, and A. Spada. The interphase finite element. Computational Mechanics, 50:353–366, 2012.

    Google Scholar 

  31. G. Giambanco and Z. Mroz. The interphase model for the analysis of joints in rock masses and masonry structures. Meccanica, 36:111–130, 2001.

    Google Scholar 

  32. E. Grande, M. Imbimbo, and E. Sacco. A beam finite element for nonlinear analysis of masonry elements with or without fiber-reinforced plastic (frp) reinforcements. International Journal of Architectural Heritage, 5:693–716, 2011.

    Google Scholar 

  33. B. Kralj, G.K. Pande, and J. Middleton. On the mechanics of frost damage to brick masonry. Computers and Structures, 41:53–66, 1991.

    Google Scholar 

  34. J. Lemaitre and J.L. Chaboche. Mechanics of Solid Materials. Cambridge University Press, 1990.

    Google Scholar 

  35. H.R Lofti and B.P. Shing. An appraisal of smeared crack models for masonry shear wall analysis. Computers and Structures, 41:413–425, 1991.

    Google Scholar 

  36. H.R Lofti and B.P. Shing. Interface model applied to fracture of masonry structures. Journal of Structural Engineering, 120:63–80, 1994.

    Google Scholar 

  37. P. B. Louren¸co. Computational Strategies for Masonry Structures. PhD thesis, Delft University of Technology, 1996.

    Google Scholar 

  38. P. B. Louren¸co and J. G. Rots. Multisurface interface model for analysis of masonry structures. Journal of Engineering Mechanics, 123(7):660–668, 1997.

    Google Scholar 

  39. J. Lubliner. Plasticity Theory. Macmillan Publishing Company, New York, 1990.

    Google Scholar 

  40. R. Luciano and E. Sacco. Homogenization technique and damage model for old masonry material. International Journal of Solids and Structures, 32(24):3191–3208, 1997.

    Google Scholar 

  41. R. Luciano and E. Sacco. Variational methods for the homogenization of periodic heterogeneous media. European Journal of Mechanics - A/Solids, 17(4):599–617, 1998.

    Google Scholar 

  42. S. Marfia and E. Sacco. Multiscale damage contact-friction model for periodic masonry walls. Computer Methods in Applied Mechanics and Engineering, 205-208:189–203, 2012.

    Google Scholar 

  43. R. Marques and P.B. Louren¸co. Possibilities and comparison of structural component models for the seismic assessment of modern unreinforced masonry buildings. Computers and Structures, 89:2079–2091, 2011.

    Google Scholar 

  44. R. Masiani, R. Rizzi, and P. Trovalusci. Masonry as structured continuum. Meccanica, 30(6):673–683, 1995.

    Google Scholar 

  45. R. Masiani and P. Trovalusci. Cauchy and Cosserat materials as continuum models of brick masonry. Meccanica, 31(4):421432., 1996.

    Google Scholar 

  46. T. J. Massart, R. H. J. Peerlings, and M. G. D. Geers. An enhanced multi-scale approach for masonry wall computations with localization of damage. International Journal for Numerical Methods in Engineering, 69(5):1022–1059, 2007.

    Google Scholar 

  47. B.C.N. Mercatoris and T.J. Massart. A coupled two-scale computational scheme for the failure of periodic quasi-brittle thin planar shells and its application to masonry. International Journal for Numerical Methods in Engineering, 85:1177–1206, 2011.

    Google Scholar 

  48. J.C. Michel and P. Suquet. Nonuniform transformation field analysis. International Journal for Solids and Structures, 40:6937–6955, 2003.

    Google Scholar 

  49. G. Milani, P. B. Louren¸co, and Tralli. Homogenization approach for the limit analysis of out-of-plane loaded masonry walls. Journal of Structural engineering, 132:1650–1663, 2006.

    Google Scholar 

  50. T. Mura. Micromechanics of defects in solid. Martinus, 1987.

    Google Scholar 

  51. D.V. Oliveira and Louren¸co P.B. Implementation and validation of a constitutive model for the cyclic behaviour of interface elements. Computers & Structures, 82:1451–1461, 2004.

    Google Scholar 

  52. P. Pegon and A. Anthoine. Numerical strategies for solving continuum damage problems with softening: application to the homogenization of masonry. Computers & Structures, 64:623–642, 1997.

    Google Scholar 

  53. L. Pel, M. Cervera, and P. Roca. An embedded cohesive crack model for finite element analysis of brickwork masonry fracture. Construction and Building Materials, http://dx.doi.org/10.1016/j.conbuildmat.2012.07.014, 2012.

    Google Scholar 

  54. S. Pietruszczak and X. Niu. A mathematical description of macroscopic behaviour of brick masonry. International Journal of Solids and Structures, 29(5):531–546, 1992.

    Google Scholar 

  55. T. M. J. Raijmakers and A. T. Vermeltfoort. Deformation controlled tests in masonry shear walls, In: Report B-92-1156. TNO-Bouw, Delft, The Netherlands, 1992.

    Google Scholar 

  56. M.A Ramalho, A. Taliercio, A. Anzani, L. Binda, and E. Papa. A numerical model for the description of the nonlinear behaviour of multileaf masonry walls. Advances in Engineering Software, 39:249–257, 2008.

    Google Scholar 

  57. E. Reyes, J.C. Galvez, M.J. Casati, D.A. Cendon, J.M. Sancho, and J. Planas. An embedded cohesive crack model for finite element analysis of brickwork masonry fracture. Engineering Fracture Mechanics, 76:1930–1944, 2009.

    Google Scholar 

  58. E. Sacco and F. Lebon. A damage-friction interface model derived from micromechanical approach. International Journal of Solids and Structures, 49:3666–3680, 2012.

    Google Scholar 

  59. E. Sacco and J. Toti. Interface elements for the analysis of masonry structures. International Journal for Computational Methods in Engineering Science and Mechanics, 11:354–373, 2010.

    Google Scholar 

  60. Elio Sacco. A nonlinear homogenization procedure for periodic masonry. European Journal of Mechanics - A/Solids, 28(2):209–222, 2009.

    Google Scholar 

  61. G. Salerno and G. de Felice. Continuum modeling of periodic brickwork. International Journal of Solids and Structures, 46(5):1251–1267, 2009.

    Google Scholar 

  62. V. Sepe, S. Marfia, and E. Sacco. A nonuniform tfa homogenization technique based on piecewise interpolation functions of the inelastic field. International Journal of Solids and Structures, 50:725–742, 2013.

    Google Scholar 

  63. F. Sideroff. Description of anisotropic damage application to elasticity. In Proceeding of IUTAM Colloquium on Physical Nonlinearrities in Structural Analysis, pages 237–244. Springer. Berlin, 1981.

    Google Scholar 

  64. J.C. Simo and T. J. R. Hughes. Computational Inelasticity. New Yok: Springer, 1998.

    Google Scholar 

  65. P. Suquet. Elements of homogenization for inelastic solid mechanics. In Homogenization Techniques for Composite Media. Springer-Verlag, Berlin., 1987.

    Google Scholar 

  66. R.L. Taylor. FEAP-A finite element analysis program, Version 8.3. Department of Civil and Environmental Engineering, University of California at Berkeley, California, 2011.

    Google Scholar 

  67. G. Uva and G. Salerno. Towards a multiscale analysis of periodic masonry brickwork: A fem algorithm with damage and friction. International Journal of Solids and Structures, 43:3739–3769, 2006.

    Google Scholar 

  68. X. Wei and H. Hao. Numerical derivation of homogenized dynamic masonry material properties with strain rate effects. International Journal of Impact Engineering, 36:522–536, 2009.

    Google Scholar 

  69. O. C. Zienkiewicz and R. L. Taylor. The finite element method. Fourth edition, volume 1. McGraw-Hill Publ., New York, 1991.

    Google Scholar 

  70. A. Zucchini and P.B. Louren¸co. A micromechanical homogenisation model for masonry: Application to shear walls. International Journal of Solids and Structures, 46(3-4):871 – 886, 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 CISM, Udine

About this chapter

Cite this chapter

Sacco, E. (2014). Micro, Multiscale and Macro Models for Masonry Structures. In: Angelillo, M. (eds) Mechanics of Masonry Structures. CISM International Centre for Mechanical Sciences, vol 551. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1774-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1774-3_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1773-6

  • Online ISBN: 978-3-7091-1774-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics