Modeling the interfaces in masonry structures

  • Frédéric Lebon
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 551)


This chapter deals with some models for interfaces in the case of masonry structures. Some experimental studies are recalled in the first part. In the second part, four interface models are presented.


Masonry Structure Imperfect Interface Unilateral Contact Mortar Joint Frictional Contact Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. P. Alart and A. Curnier. A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering, 92:353–375, 1991.Google Scholar
  2. P. Alart and F. Lebon. Solution of frictional contact problems using ILU and coarse/fine preconditioners. Computational Mechanics, 16:98–105, 1995.Google Scholar
  3. E. Bonetti and M. Frémond. Analytical results on a model for damaging in domains and interfaces. ESAIM-Control Optimisation and calculus of Variations, 17:955–974, 2011.Google Scholar
  4. P. Chabrand, F. Dubois, and M. Raous. Various numerical methods for solving unilateral contact problems with friction. Mathematical Computer and Modeling, 28(4-8):97–108, 1998.Google Scholar
  5. M. Cocu. Existence of solutions of Signorini problems with friction. International Journal of Engineering Science, 22:567–575, 1984.Google Scholar
  6. M. Cocu, E. Pratt, and M. Raous. Formulation and approximation of quasistatic frictional contact. Comptes Rendus Académie des Sciences, Paris, Série I, 320:1413–1420, 1995.Google Scholar
  7. M. Como. Statica delle costruzioni storiche in muratura. Aracne, 2010.Google Scholar
  8. G. Duvaut and J. L Lions. Inequalities in mechanics and physics. Springer Verlag, 1976.Google Scholar
  9. W. Eckhaus. Asymptotic analysis of singular perturbations. North-Holland, 1979.Google Scholar
  10. J. Fortin, M. Hjiaj, and G. De Saxcé. An improved discrete element method based on a variational formulation of the frictional contact law. Computers and Geotechnics, 29:609–640, 2002.Google Scholar
  11. F. Fouchal. Contribution à la modélisation numérique des interfaces dans les structures ma¸connées. PhD thesis, Université de Reims Champagne Ardennes, 2006.Google Scholar
  12. F. Fouchal, F. Lebon, and I. Titeux. Contribution to the modeling of interfaces in masonry construction. Construction and Building Materials, 23:2428–2441, 2009.Google Scholar
  13. F. Freddi and M. Frémond. Damage in domains and interfaces: A coupled predictive theory. Journal of Mechanics of Materials and Structures, 1: 1205–1233, 2006.Google Scholar
  14. M. Frémond. Adhesion of solids. Journal de Mécanique Théorique et Appliquée, 6:383–407, 1987.Google Scholar
  15. A. Gabor. Contribution à la caractérisation et à la modélisation des ma¸conneries non renforcées et renforcées par materiaux composites. PhD thesis, Université Claude-Bernard Lyon I, 2002.Google Scholar
  16. A. Gabor, A. Bennani, E. Jacquelin, and F. Lebon. Modelling approaches of the in-plane shear behaviour of unreinforced and frp strengthened masonry panels. Composites Structures, 74:277–288, 2006.Google Scholar
  17. L. Gambarotta and S. Lagomarsino. Damage models for the seismic response of brick masonry walls. part i : The continuum model and its application. Earthquake Engineering and Structural Dynamics, 26:441–462, 1997.Google Scholar
  18. G. Geymonat and F. Krasucki. Analyse asymptotique du comportement en flexion de deux plaques collées. Compte Rendu Académie des Sciences Série I, 325:307–314, 1997.Google Scholar
  19. P. Hild. An example of nonuniqueness for the continuous static unilateral contact model with coulomb friction. Comptes Rendus Académie des Sciences, Paris, Série I, 337:685–688, 2003.Google Scholar
  20. M. Jean. The non-smooth contact dynamics method. Computer Methods in Applied Mechanics and Engineering, 177:235–257, 1999.Google Scholar
  21. M. Jean and J. J. Moreau. Monuments under seismic action. Technical report, Commission of the European Communities, November 1994. Environment Programme, Contract n◦ EV5V CT93 0300.Google Scholar
  22. A. Klarbring. Derivation of the adhesively bonded joints by the asymptotic expansion method. International Journal of Engineering Science, 29: 493–512, 1991.Google Scholar
  23. F. Lebon. Two-grid method for regularized frictional elastostatics problems. Engineering Computations, 12:657–664, 1995.Google Scholar
  24. F. Lebon. Contact problems with friction: Models and simulations. Simulation, Modelling, Practice and Theory, 11:449–464, 2003.Google Scholar
  25. F. Lebon and M. Raous. Friction modelling of a bolted junction under internal pressure loading. Computers and Structures, 43:925–933, 1992.Google Scholar
  26. F. Lebon and R. Rizzoni. Asymptotic study of soft thin layer: the non convex case. Mechanics of Advanced Materials and Structures, 15:12–20, 2008.Google Scholar
  27. F. Lebon and S. Ronel. First order numerical analysis of linear thin layers. ASME Journal of Applied Mechanics, 74:824–828, 2007.Google Scholar
  28. F. Lebon and S. Ronel-Idrissi. Asymptotical analysis of Mohr-Coulomb and Drucker-Prager soft thin layers. Steel and Composite Structures, 4: 133–147, 2004.Google Scholar
  29. F. Lebon, A. Ould-Khaoua, and C. Licht. Numerical study of soft adhesively bonded joints in finite elasticity. Computational Mechanics, 21:134–140, 1997.Google Scholar
  30. F. Lebon, R. Rizzoni, and S. Ronel. Analysis of non-linear soft thin interfaces. Computers and Structures, 82:1929–1938, 2004.Google Scholar
  31. C. Licht and G. Michaille. A modeling of elastic adhesive bonded joints. Advances in Mathematical Sciences and Applications, 7:711–740, 1997.Google Scholar
  32. M. Lucchesi, C. Padovani, G. Pasquinelli, and N. Zani. Masonry constructions: mechanical models and numerical applications. Springer, 2008.Google Scholar
  33. Y. Monerie and M. Raous. A model coupling adhesion to friction for the intercation between a crack and a fiber/matrix interface. ZAMM, 80: 205–209, 2000.Google Scholar
  34. J. J. Moreau. Unilateral contact and dry friction in finite freedom dynamics, volume 302 of CISM - Courses and Lectures, pages 1–82. Springer, 1988.Google Scholar
  35. C. Pelissou and F. Lebon. Asymptotic modeling of quasi-brittle interfaces. Computers and Structures, 87:1216–1223, 2009.Google Scholar
  36. N. Point and E. Sacco. A delamination model for laminated composite. International Journal of Solids and Structures, 33:483–509, 1996.Google Scholar
  37. M. Raous. Interface models coupling adhesion and friction. Comptes Rendus Mécanique, 339:491–501, 2011.Google Scholar
  38. M. Raous, P. Chabrand, and F. Lebon. Numerical methods for solving unilateral contact problem with friction. Journal of Theoretical and Applied Mechanics, 7:111–128, 1988.Google Scholar
  39. M. Raous, L. Cangémi, and M. Cocou. A consistent model coupling adhesion, friction and unilateral contact. Compututer Methods in Applied Mechanics and Engineering, 177:383–399, 1999.Google Scholar
  40. A. Rekik and F. Lebon. Identification of the representative crack length evolution in a multi-level interface model for quasi-brittle masonry. International Journal of Solids and Structures, 47:3011–3021, 2010.Google Scholar
  41. A. Rekik and F. Lebon. Homogenization methods for interface modeling in damaged masonry. Advances in Engineering Software, 46:35–42, 2012.Google Scholar
  42. J. Sanchez-Hubert and E. Sanchez-Palencia. Introduction aux méthodes asymptotiques et à l’homogénisation. Masson, 1992.Google Scholar
  43. P. Wriggers. Computational Contact Mechanics. Springer, 2006.Google Scholar

Copyright information

© CISM, Udine 2014

Authors and Affiliations

  • Frédéric Lebon
    • 1
  1. 1.LMA, UPR7051, CNRS, Centrale MarseilleAix-Marseille UniversityMarseilleFrance

Personalised recommendations