Practical applications of unilateral models to Masonry Equilibrium

  • Maurizio Angelillo
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 551)


This Chapter is devoted to the application of unilateral models to the stress analysis of masonry structures. Some 2d applications of what we call the simplified models for masonry, are discussed and studied. Though the essentially unilateral behaviour of masonry is largely recognized, some prejudices still persist on the possibility of making the No-Tension (NT) assumption a practical model for designing engineers. The results here presented demonstrate that the unilateral model for masonry can be a useful tool for modeling real masonry structures. In the exposition the critical points are emphasized and strategies to handle them are suggested, both for the most primitive model (namely the Rigid NT material), and for the more accurate Normal Elastic NT and Masonry-Like (ML)materials. The first tool here introduced for applying the No-Tension model to structures is the systematic use of singular stress and strain fields. Next a number of closed form solutions for NENT and ML materials is discussed. Finally a numerical approach based on descent is proposed for handling the zero-energy modes typical of unilateral materials. Some numerical solutions and comparisons with analytical solutions and test results are also presented.

This Chapter is dedicated to Giovanni Castellano who inspired most of my work on masonry since my early steps.


Stress Function Horizontal Force Masonry Wall Collapse Load Complementary Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dassault Systemes Abaqus, ver. 6.12 Scholar
  2. G. Alfano, L. Rosati and N. Valoroso. A numerical strategy for finite element analysis of no-tension materials. Int. J. Numer. Methods Eng., 48 (3): 317–350, 2000.Google Scholar
  3. L. Ambrosio, N. Fusco and D. Pallara . Functions of bounded variation and free discontinuity problems, Clarendon Press. 2000.Google Scholar
  4. M. Angelillo and A. Fortunato. Compatibility of loads and distortions for unilateral materials. In preparation.Google Scholar
  5. M. Angelillo and L. Giliberti. Statica delle strutture murarie. Giornale del genio Civile, 1988 (in Italian).Google Scholar
  6. M. Angelillo and R.S. Olivito. Experimental analysis of masonry walls loaded horizontally in plane. Masonry International, 8 (3):91–100, 1995.Google Scholar
  7. M. Angelillo and F. Rosso. On statically admissible stress fields for a plane masonry-like structure. Quarterly Of Applied Mathematics, 53 (4):731–751, 1995.Google Scholar
  8. M. Angelillo, L. Cardamone, and A. Fortunato. A numerical model for masonry-like structures. Journal of Mechanics of Materials and Structures, 5:583–615, 2010.Google Scholar
  9. M. Angelillo, E. Babilio, and A. Fortunato. Singular stress fields for masonry-like vaults. Continuum Mechanics And Thermodynamics, 2012.Google Scholar
  10. M. Angelillo, A. Fortunato, M. Lippiello, and A. Montanino. Singular stress fields and the equilibrium of masonry walls. Meccanica, under revision, 2013.Google Scholar
  11. A. Benedetti and E. Steli. Analytical models for shear-displacement curves of unreinforced and frp reinforced masonry panels. Constr. Build. Mater., 22 (3):175–185, 2008.Google Scholar
  12. E. Benvenuto. An Introduction on the History of Structural Mechanics Part II: Vaulted Structures and Elastic Systems, Springer-Verlag. Springer Verlag, 1991.Google Scholar
  13. G. Dal Maso, A. De Simone, and M.G. Mora. Quasistatic evolution problems for linearly elastic perfectly plastic materials. Arch. Rat. Mech. Anal., 2004.Google Scholar
  14. E. De Giorgi. Congetture riguardanti alcuni problemi di evoluzione. Duke Math. J., 81(2):255–268, 1996.Google Scholar
  15. G. Del Piero. Constitutive equation and compatibility of the external loads for linear elastic masonry–like materials. Meccanica, 24:150–162, 1989.Google Scholar
  16. G. Del Piero. Limit analysis and no–tension materials. Int. J. Plasticity, 14:259–271, 1998.Google Scholar
  17. F. Derand. L’architecture des voutes, Cramoisy. 1643.Google Scholar
  18. C. L. Dym and I. H. Shames. Solid Mechanics: a variational approach, Mc Graw Hill. 1973.Google Scholar
  19. M. Epstein. On the wrinkling of anisotropic elastic membranes. J. Elast., 55:99–108, 1999.Google Scholar
  20. Eucentre. Prove murature. 2010. URL Scholar
  21. A. Fortunato. Elastic solutions for masonry-like panels. J. Elas., 98:87–110, 2010.Google Scholar
  22. M. Giaquinta and E. Giusti. Researches on the equilibrium of masonry structures. Arch. Rational Mech. Analysis, 88:359–392, 1985. ISSN 0950-2289.Google Scholar
  23. E. M. Gurtin. The linear theory of elasticity, in Handbuch der Physik, band VIa/2, Springer-Verlag. 1972.Google Scholar
  24. J. Heyman. The stone skeleton: structural engineering of masonry architecture. Cambridge University Press, 1995.Google Scholar
  25. S. Huerta. Arcos, bovedas y cupulas. geometria y equilibrio en el calculo tradicional de estructuras de fabrica. Report: Instituto Juan de Herrera, 2004 (in Spanish).Google Scholar
  26. S. Huerta. The analysis of masonry architecture: a historical approach. Arch. Sc. Review, 51(4):297–328, 2008.Google Scholar
  27. C. T. Kelley. Iterative Methods for Optimization”, Frontiers in Applied Mathematics 18, SIAM. 1999.Google Scholar
  28. E. Kreyszig. Introductory Functional Analysis with Applications, John Wiley. 1989.Google Scholar
  29. C. Padovani M. Lucchesi and N. Zani. Masonry-like solids with bounded compressive stress. Int. J. Solids Struct., 33 (14):1961–1964, 1996.Google Scholar
  30. M. Šilhavý, M. Lucchesi and N. Zani. Singular equilibrated stress fields for no-tension panels. In Lecture Notes in Applied and Computational Mechanics, 23, Springer, pages 255–265, 2005.Google Scholar
  31. G. Pasquinelli M. Lucchesi, C. Padovani and N. Zani. Masonry constructions: mechanical models and numerical applications, Lecture Notes in Applied and Computational Mechanics 39, Springer. 2008.Google Scholar
  32. E. H. Mansfield. Tension field theory. In Proc. 12th Int. Cong. App. Mech., M. Hetenyi and W. G. Vincenti (eds.), Springer, 1969.Google Scholar
  33. E. H. Mansfield. The bending and stretching of plates, Cambridge University Press. 1989.Google Scholar
  34. E. Mery. Memoire sur l’equilibre des voutes en berceau. Annales des pontes et chausees, 1 (2):50–57, 1840.Google Scholar
  35. A. Mielke and M. Ortiz. A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM Control Optim. Calc. Var., 14 (3):494–516, 2008.Google Scholar
  36. M. Ortiz and J. C. Simo. An analysis of a new class of integration algorithms for elastoplastic constitutive relations. Int. J. Numer. Methods Eng., 23 (3):353–366, 1986.Google Scholar
  37. D. J. Steigmann. Tension–field theory. Proc. R. Soc. Lond. A, 429:141–173, 1990.Google Scholar
  38. R. Temam and G. Strang. Functions of bounded deformation. Arch. Rat. Mech. Anal., 75 (1):57–73, 1994. ISSN 1980.Google Scholar
  39. S. Timoshenko and J. N. Goodier. Theory of elasticity, Mc Graw Hill. 1951.Google Scholar
  40. Y. W. Wong and S. Pellegrino. Wrinkled membranes ii: analytical models. J. Mech. Mater. Struct., 1:27–60, 2006.Google Scholar

Copyright information

© CISM, Udine 2014

Authors and Affiliations

  • Maurizio Angelillo
    • 1
  1. 1.Dipartimento di Ingegneria CivileUniversity of SalernoFiscianoItaly

Personalised recommendations