Masonry behaviour and modelling

  • Maurizio Angelillo
  • Paulo B. Lourenço
  • Gabriele Milani
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 551)


In this Chapter we present the basic experimental facts on masonry materials and introduce simple and refined models for masonry. The simple models are essentially macroscopic and based on the assumption that the material is incapable of sustaining tensile loads (No-Tension assumption). The refined models account for the microscopic structure of masonry, modeling the interaction between the blocks and the interfaces.


Compressive Strength Fracture Energy Masonry Wall Masonry Building Dilatancy Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Angelillo. Constitutive relations for no-tension materials. Meccanica, 28:195–202. 1993.Google Scholar
  2. A. Baratta and R. Toscano. Stati tensionali in pannelli di materiale non resistente a trazione. In Atti del VII Congresso Nazionale AIMETA, 1982 (in Italian).Google Scholar
  3. E. Benvenuto. An Introduction on the History of Structural Mechanics Part II: Vaulted Structures and Elastic Systems, Springer-Verlag. Springer Verlag, 1991.Google Scholar
  4. G. Castellano. Un modello cinematico per i materiali non resistente a trazione. In Cinquantenario della Facoltà di Architettura di Napoli: Franco Jossa e la sua opera, pages 241–256, 1988 (in Italian).Google Scholar
  5. CEB-FIP. Model Code 90. Thomas Telford Ltd., UK, 1993.Google Scholar
  6. CEN. Eurocode 6: Design of masonry structures, Part 1–1: General rules for reinforced and unreinforced masonry structures. European Committee for Standardization, Belgium, 2005.Google Scholar
  7. M. Como. Statica delle costruzioni storiche in muratura, Aracne. Aracne, 2010 (in Italian).Google Scholar
  8. M. Como and A. Grimaldi. A unilateral model for the limit analysis of masonry walls. In Unilateral problems in structural analysis, edited by G. Del Piero and F. Maceri, CISM Courses and Lectures 288, Springer., pages 25–45, 1985.Google Scholar
  9. G. Del Piero. Constitutive equation and compatibility of the external loads for linear elastic masonry–like materials. Meccanica, 24:150–162, 1989.Google Scholar
  10. S. Di Pasquale. Statica dei solidi murari: teorie ed esperienze. Reports Dipartimento di Costruzioni, Univ. Firenze, 27, 1984 (in Italian).Google Scholar
  11. M. Giaquinta and E. Giusti. Researches on the equilibrium of masonry structures. Arch. Rational Mech. Analysis, 88:359–392, 1985. ISSN 0950-2289.Google Scholar
  12. J. Heyman. The stone skeleton. Int.J.Solids,Struct., 2:249–279, 1966.Google Scholar
  13. J. Heyman. The stone skeleton: structural engineering of masonry architecture, Cambridge University Press. Cambridge University Press, 1995.Google Scholar
  14. H.K. Hilsdorf. Investigation into the failure mechanism of brick masonry loaded in axial compression. In F.H. Johnson, editor, Designing, engineering and constructing with masonry products, pages 34–41. Gulf Publishing Company, Houston, Texas, 1969.Google Scholar
  15. G. Hoffman and P. Schubert. Compressive strength of masonry parallel to the bed joints. In N.G. Shrive and A. Huizer, editors, Proc. 10th Int. Brick and Block Masonry Conf., pages 1453–1462, Calgary, Alberta, 1994.Google Scholar
  16. S. Huerta. Galileo was wrong: the geometrical design of arches. Nexus Network Journal, 8 (2):25–52, 2006.Google Scholar
  17. P.B. Lourenço. Experimental and numerical issues in the modelling of the mechanical behaviour of masonry. In P. Roca and et al., editors, Proc. Structural analysis of historical constructions II, CIMNE, pages 57–91, Barcelona, 1998a.Google Scholar
  18. P.B. Lourenço. Sensitivity analysis of masonry structures. In Proc. 8th Canadian Masonry Symp., pages 563–574, Jasper, Canada, 1998b.Google Scholar
  19. P.B. Lourenço. Computations on historic masonry structures. Progress in Structural Engineering and Materials, 4(3):301–319, 2002.Google Scholar
  20. P.B. Lourenço and J.L. Pina-Henriques. Validation of analytical and continuum numerical methods for estimating the compressive strength of masonry. Computers & structures, 84(29):1977–1989, 2006.Google Scholar
  21. P.B. Lourenço and L.F. Ramos. Characterization of cyclic behavior of dry masonry joints. Journal of Structural Engineering, 130(5):779–786, 2004.Google Scholar
  22. P.B. Lourenço, J.O. Barros, and J.T. Oliveira. Shear testing of stack bonded masonry. Construction and Building Materials, 18(2):125–132, 2004.Google Scholar
  23. P.B. Lourenço, J.C. Almeida, and J.A. Barros. Experimental investigation of bricks under uniaxial tensile testing. Masonry International, 18(1): 11–20, 2005.Google Scholar
  24. P.B. Lourenço, G. Milani, A. Tralli, and A. Zucchini. Analysis of masonry structures: review of and recent trends in homogenization techniques this article is one of a selection of papers published in this special issue on masonry. Canadian Journal of Civil Engineering, 34(11):1443–1457, 2007.Google Scholar
  25. P.B. Lourenço, N. Mendes, L.F. Ramos, and D.V. Oliveira. Analysis of masonry structures without box behavior. International Journal of Architectural Heritage, 5(4-5):369–382, 2011.Google Scholar
  26. R. Marques and P.B. Lourenço. Possibilities and comparison of structural component models for the seismic assessment of modern unreinforced masonry buildings. Computers & Structures, 89(21):2079–2091, 2011.Google Scholar
  27. N. Mendes. Seismic assessment of ancient masonry buildings: Shaking table tests and numerical analysis. PhD thesis, University of Minho, Portugal, 2012.Google Scholar
  28. OPCM 3431 . Technical regulations for the design, assessment and seismic adaptation of buildings. Gazzetta Ufficiale Serie Generale n.107 del 10/05/2005, Italy, 2005.Google Scholar
  29. M. Paulo-Pereira. Assessment of the seismic performance of building enclosures (in Portuguese). PhD thesis, University of Minho, Portugal, 2012.Google Scholar
  30. PIET-70. P.I.E.T. 70 Masonry work. Prescriptions from Instituto Eduardo Torroja. Consejo Superior de Investigaciones CientÃŋficas, Madrid (in Spanish), 1971.Google Scholar
  31. A. Prota, G. Manfredi, F. Nardone. Assessment of formulas for in plane FRP strengthening of masonry walls. ASCE J. of Composite for Constr. 12, 6, 643-649, 2008.Google Scholar
  32. G. Romano and M. Romano Sulla soluzione di problemi strutturali in presenza di legami costitutivi unilaterali. Rend. Accad. Naz. Lincei, 67: 104–113, 1979 (in Italian).Google Scholar
  33. G. Romano and E. Sacco. Sul calcolo di strutture non resistenti a trazione. In Atti del VII Congresso Nazionale AIMETA ., pages 221–233, 1985 (in Italian).Google Scholar
  34. J.G. Rots, editor. Structural masonry: An experimental/numerical basis for practical design rules. Balkema, Rotterdam, the Netherlands, 1997.Google Scholar
  35. P. Schubert. The influence of mortar on the strength of masonry. In J.W. de Courcy, editor, Proc. 8th Int. Brick and Block Masonry Conf., pages 162–174, London, 1988. Elsevier Applied Science.Google Scholar
  36. M. Tomazevic. Earthquake-resistant design of masonry buildings. Imperial College Press, London, 1999.Google Scholar
  37. R. van der Pluijm. Out-of-plane bending of masonry: Behavior and Strenght. PhD thesis, Eindhoven University of Technology, The Netherlands, 1999.Google Scholar
  38. G. Vasconcelos and P.B. Lourenço. In-plane experimental behavior of stone masonry walls under cyclic loading. Journal of structural engineering, 135(10):1269–1277, 2009.Google Scholar
  39. G. Vasconcelos, P.B. Lourenço, C.A.S. Alves, and J. Pamplona. Experimental characterization of the tensile behaviour of granites. International journal of rock mechanics and mining sciences, 45(2):268–277, 2008.Google Scholar

Copyright information

© CISM, Udine 2014

Authors and Affiliations

  • Maurizio Angelillo
    • 1
  • Paulo B. Lourenço
    • 2
  • Gabriele Milani
    • 3
  1. 1.Department of Civil Eng.University of SalernoFiscianoItaly
  2. 2.Institute for Sustainability and Innovation in Structural Engineering (ISISE), Department of Civil EngineeringUniversity of MinhoGuimaraesPortugal
  3. 3.Department of Architecture, Built environment and Construction engineering (A.B.C.)Politecnico di MilanoMilanoItaly

Personalised recommendations