Skip to main content

Analysis of high-speed impact problems in the aircraft industry

  • Chapter
Book cover Constitutive Relations under Impact Loadings

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 552))

Abstract

The high cost of the energy needed to propel aircraft and ground vehicles has meant that reducing the weight in these systems is vital in order to reduce operational costs. This factor has a significant influence on the design of structures in the aeronautical industry and more recently in others such as high-speed rail networks and road haulage. This is a particularly sensitive issue for the civil aviation industry, given that the cost of fuel is one of the main expenses incurred by passenger airlines. Bearing in mind that fuel represents up to 40% of the total weight of an aircraft, a reduction of its weight results in a concurrent reduction in the amount of fuel needed as well as a significant reduction of the gross weight taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • F.L. Addessio, M.W. Schraad, and M.W. Lewis. Physics-based damage predictions for simulating testing and evaluation experiments. Technical report, Los Alamos National Laboratory, 1997. LA-UR-97-4877.

    Google Scholar 

  • A. Airoldi and B. Cacchione. Modelling of impact forces and pressures in lagrangian bird strike analyses. International Journal of Impact Engineering, 32:1651–1677, 2006.

    Google Scholar 

  • M. Anghileri, L.M.L. Castelletti, F. Invernizz, and M. Mascheroni. A survey of numerical models for hail impact analysis using explicit finite element codes. International Journal of Impact Engineering, 31:929–944, 2005a.

    Google Scholar 

  • M. Anghileri, L.M.L. Castelletti, F. Invernizzi, and M. Mascheroni. Birdstrike onto the composite intake of a turbofan engine. In 5th European LS-DYNA User’s Conference, Birmingham, UK, May 2005b.

    Google Scholar 

  • M. Anghileri, L.M.L. Castelletti, and V. Mazza. Birdstrike: approaches to the analysis of impacts with penetration. In M. Alves and N. Jones, editors, Impact loading of lightweight structures, pages 63–74. WIT Press, 2005c.

    Google Scholar 

  • M. Anghileri, L.M.L. Castelletti, and M. Tirelli. Fluid-structure interaction of water filled tanks during the impact with the ground. International Journal of Impact Engineering, 31:235–254, 2005d.

    Google Scholar 

  • G.J. Appleby-Thomas, P.J. Hazell, and G. Dahini. On the response of two commercially-important CFRP structures to multiple ice impacts. Composite Structures, 93:2619–2627, 2011.

    Google Scholar 

  • J.A. Artero-Guerrero, J. Pernas-Sánchez, D. Varas, and J. López-Puente. Numerical analysis of CFRP fluid-filled tubes subjected to high-velocity impact. Composite Structures, 96:286–297, 2013.

    Google Scholar 

  • J.G. Avery. Design Manual for Impact Damage Tolerant Aircraft Structure. AGARD, 1981.

    Google Scholar 

  • V.D. Azzi and S.W. Tsai. Anisotropic strength of composites. Experimental Mechanics, 5:283–288, 1965.

    Google Scholar 

  • M.A. Badie, E. Mahdi, and A.M.S. Hamouda. An investigation into hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft. Materials & Design, 32:1485–1500, 2011.

    Google Scholar 

  • R.E. Ball. A computer program for the geometrically nonlinear static and dynamic analysis of arbitrarily loaded shells of revolution: theory and user’s manual. NASA, 1972.

    Google Scholar 

  • R.E. Ball. Aircraft fuel tank vulnerability to hydraulic ram: Modification of the northrup finite element computer code BR-1 to include fluidstructure interaction. theory and user’s manual for BR-1HR. Technical Report 57B p74071, Naval Postgraduate School, Monterey, CA, 1974.

    Google Scholar 

  • R.B. Banks and D.V. Chandrasekhara. Experimental investigation of the penetration of a high-velocity gas jet through a liquid surface. Journal of Fluid Mechanics, 15:13–34, 1963.

    Google Scholar 

  • K.S. Bates Jr. Aircraft fuel tank entry wall-projectile interaction studies. Master’s thesis, Naval Postgraduate School, Monterey, CA, 1973.

    Google Scholar 

  • T.V. Baughn and L.W. Graham. Simulation of a birdstrike impact on aircraft canopy material. Journal of Aircraft, 25:659–664, 1988.

    Google Scholar 

  • P.J. Blatz and W.L. Ko. Application of finite elasticity to the deformation of rubbery materials. Trans Soc Rheol, 6:223–251, 1962.

    Google Scholar 

  • S.J. Bless, J.P. Barber, P.F. Fry, and R.K. Newman. Studies of hydrodynamic ram induced by high velocity spherical fragment simulators. Technical Report AFML-TR-77-11, Dayton Univ OH Research Institute, 1977.

    Google Scholar 

  • T. Børvik, A.G. Hanssen, M. Langseth, and L. Olovsson. Response of structures to planar blast loads. A finite element engineering approach. Computers and Structures, 87:507–520, 2009.

    Google Scholar 

  • J.C. Brew and P.A. Lagace. Quadratic stress criterion for initiation of delamination. Journal of Composite Materials, 22:1141–1155, 1988.

    Google Scholar 

  • R. Budgey. The development of a substitute artificial bird by the international birdstrike research group for use in aircraft component testing. In International Bird Strike Committee ISBC25/WP-IE3, Amsterdam, The Netherlands, 2000.

    Google Scholar 

  • W.J. Cantwell. The influence of target geometry on the high-velocity impact response of CFRP. Composite Structures, 10:247–265, 1988a.

    Google Scholar 

  • W.J. Cantwell. The influence of fiber stacking-sequence on the high-velocity impact response of CFRP. Journal of Material Science Letters, 7:756– 758, 1988b.

    Google Scholar 

  • W.J. Cantwell and J. Morton. Comparison of the low and high velocity impact response of CFRP. Composites, 20:545–551, 1989.

    Google Scholar 

  • W.J. Cantwell and J. Morton. Impact perforation of carbon fibre reinforced plastic. Composites Science and Technology, 38:545–551, 1990.

    Google Scholar 

  • W.J. Cantwell, P.T. Curtis, and J. Morton. An assessment of the impact performance of CFRP reinforced with high-strain carbon fibres. Composites Science and Technology, 25:133–148, 1986.

    Google Scholar 

  • G. Caprino, I. Crivelli Visconti, and A. Di Ilio. Composite materials response under low-velocity impact. Composite Structures, 2:261–271, 1984.

    Google Scholar 

  • G. Caprino, V. Lopresto, C. Scarponi, and G. Briotti. Influence of material thickness on the response of carbon-fabric/epoxy panels to low velocity impact. Composites Science and Technology, 59:2279–2286, 1999.

    Google Scholar 

  • G. Caprino, A. Langella, and V. Lopresto. Indentation and penetration of carbon fibre reinforced plastic laminates. Composites Part B: Engineering, 34:319–325, 2003.

    Google Scholar 

  • K. Carney, D. Benson, P. Dubois, and R. Lee. A phenomenological high strain rate model with failure for ice. International Journal of Solids and Structures, 43:7820–7839, 2006.

    Google Scholar 

  • L.M.L. Castelletti and M. Anghileri. Multiple birdstrike analysis - a survey of feasible techniques. In 30th European Rotorcraft Forum, pages 495– 505, Marseille, France, 2003.

    Google Scholar 

  • F. Chang and K.A. Chang. A progressive damage model for laminated composites containing stress concentrations. Journal of Composite Materials, 21:834–855, 1987.

    Google Scholar 

  • J.K. Chen and D.F. Medina. The effects of projectile shape on laminated composite perforation. Composite Science and Technology, 58: 1629–1639, 1998.

    Google Scholar 

  • J.K. Chen, F.A. Allahdadi, and T.C. Carney. High-velocity impact of graphite/epoxi composite laminates. Composite Science and Technology, 57:1369–1379, 1997.

    Google Scholar 

  • Y. Chuzel. Caractérisation expérimentale et simulation numérique d’impacts de glace a haute vitesse. PhD thesis, INSA, Lyon, 2009.

    Google Scholar 

  • Y. Chuzel, A. Combescure, M. Nucci, R. Ortiz, and Y. Perrin. Development of hail material model for high speed. In 11th International LS-DYNA User’s Conference, pages 17–26, 2010.

    Google Scholar 

  • V.N. Cogolev, V.G. Mirkin, and G.J. Yablokova. Approximate equation of state for solids. Zhurnal Prikladnoi Mekhaniki i Teknickeskoi Fiziki, 5: 93–98, 1963.

    Google Scholar 

  • D. Cole. Crack nucleation in polycrystalline ice. Cold Regions Science and Technology, 15:79 – 87, 1988.

    Google Scholar 

  • A. Combescure, Y. Chuzel-Marmot, and J. Fabis. Experimental study of high-velocity impact and fracture of ice. International Journal of Solids and Structures, 48:2779–2790, 2011.

    Google Scholar 

  • M.F.S.F. de Moura and A.T. Marques. Prediction of low velocity impact damage in carbon-epoxy laminates. Composites Part A: Applied Science and Manufacturing, 33:361–368, 2002.

    Google Scholar 

  • T. Gómez del Río, R. Zaera, E. Barbero, and C. Navarro. Damage in CFRPs due to low velocity impact at low temperature. Composites Part B: Engineering, 36:41–50, 2005.

    Google Scholar 

  • P.J. Disimile, L.A. Swanson, and N. Toy. The hydrodynamic ram pressure generated by spherical projectiles. International Journal of Impact Engineering, 36:821–829, 2009.

    Google Scholar 

  • D.C. Drucker and W. Prager. Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 10:157–165, 1952.

    Google Scholar 

  • P.K. Dutta, D.M. Cole, E.M. Schulson, and D.S. Sodhi. A Fracture Study of Ice Under High Strain Rate Loading. In International Offshore and Polar Engineering Conference, pages 465–472, 2003.

    Google Scholar 

  • P. Eschenfedler. Wildlife hazards to aviation. In ICAO/ACI Airports Conference, Miami, 2001.

    Google Scholar 

  • E.L. Fasanella and R.L. Boitnott. Dynamic Crush Characterization of Ice. Technical report, NASA, February 2006.

    Google Scholar 

  • E.L. Fasanella, R.L. Boinott, and S. Kellas. Test and analysis correlation of high speed impacts of ice cylinders. In 9th International LS-DYNA User’s Conference, Dearborn, Michigan, June 2006.

    Google Scholar 

  • Z.Q. Feng, B. Magnain, and J.M. Cros. Solution of large deformation impact problems with friction between Blatz-Ko hyperelastic bodies. International Journal of Engineering Science, 44:113–126, 2006.

    Google Scholar 

  • C.J. Freitas, C.E. Anderson Jr, J.D. Walker, and D.L. Littlefield. Hydrodynamic ram: A benchmark suite. In ASME Pressure Vessel Piping Conference and Symposium on Structures Under Extreme Loading Conditions, pages 63–74, 1996.

    Google Scholar 

  • A.E. Fuhs and R.E. Ball. FY 73 hydraulic ram studies. Technical Report AD0776536, Monterey, CA, 1974.

    Google Scholar 

  • K. Fujii, M. Aoki, N. Kiuchi, and E. Tasuda. Impact perforation behavior of CFRPs using high-velocity steel sphere. International Journal of Impact Engineering, 27:497–508, 2002.

    Google Scholar 

  • S. Georgiadis, A.J. Gunnion, R.S. Thomson, and B.K. Cartwright. Birdstrike simulation for certification of the Boeing 787 composite moveable trailing edge. Composite Structures, 86:258–268, 2008.

    Google Scholar 

  • R.A. Gingold and J.J. Monaghan. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mothly Notices of the Royal Astronomical Society, 181:375–389, 1977.

    Google Scholar 

  • L.W. Gold. On the elasticity of the ice plates. Canadian Journal of Civil Engineering, 15:1080–1084, 1988.

    Google Scholar 

  • A.E. Green and J.E. Adkins. Large elastic deformations and nonlinear continuum mechanics. Oxford Clarendon Press, 1960.

    Google Scholar 

  • A. Grimaldi, A. Solloa, M. Gudab, and F. Marulob. Parametric study of a SPH high velocity impact analysis. A bird strike windshield application. Composite Structures, 96:263–275, 2013.

    Google Scholar 

  • P. Guégan, R. Othman, D. LeBreton, F. Pasco, N. Swiergiel, and P. Thevenet. Experimental investigation of rubber ball impacts on aluminium plates. International Journal of Crashworthiness, 15:391–399, 2010.

    Google Scholar 

  • P. Guégan, R. Othman, D. LeBreton, F. Pasco, P. Villedieu, J. Meyssonnier, and S. Wintenberger. Experimental investigation of the kinematics of post-impact ice fragments. International Journal of Impact Engineering, 38:786–795, 2011.

    Google Scholar 

  • A.G. Hanssen, Y. Girard, L. Olovsson, T. Berstad, and M. Langseth. A numerical model for bird strike of aluminium foam-based sandwich panels. International Journal of Impact Engineering, 32:1127–1144, 2006.

    Google Scholar 

  • F.D. Haynes. Effect of Temperature on the Strength of Snow-ice. Technical Report 78:27, Cold Regions Research and Engineering Laboratory, U.S. Army, 1978.

    Google Scholar 

  • S. Heimbs. Computational methods for bird strike simulations: A review. Computers and Structures, 89:2093–2112, 2011a.

    Google Scholar 

  • S. Heimbs. Computational methods for bird strike simulations: A review. Computers and Structures, 89:2093–2112, 2011b.

    Google Scholar 

  • W.M. Herlin and J.G. Avery. Hydraulic ram structural response computer program (HRSR). Technical report, Boeing Co., 1981. Prepared under Contract N60530-80-C-0242 for Naval Weapons Center, China Lake, California.

    Google Scholar 

  • C.M. Holm. Hydraulic ram presure measurements. Master’s thesis, Naval Postgraduate School, Monterey, CA, 1974.

    Google Scholar 

  • D.P. Holm. Hydraulic ram shock wave and cavitation effects on aircraft fuell cell survivability. Master’s thesis, Naval Postgraduate School, Monterey, CA, 1973.

    Google Scholar 

  • M.V. Hosur, M. Adbullah, and S. Jeelani. Studies on the low-velocity impact response of woven hybrid composites. Composite Structures, 67:253–262, 2005.

    Google Scholar 

  • J.P. Hou, N. Petrinic, C. Ruiz, and S.R. Hallett. Prediction of impact damage in composite plates. Composites Science and Technology, 60: 273–281, 1997.

    Google Scholar 

  • C.A. Huertas. Robust bird-strike modeling using LS-DYNA. Master’s thesis, University of Puerto Rico at Mayagüez, 2006.

    Google Scholar 

  • L. Iannucci. Bird strike on composite panels. In DYNA3D User’s Conference, Manchester, UK, 1992.

    Google Scholar 

  • L. Iannucci. Foreign Object Impact and Energy Absorbing Structure, chapter Bird-strike impact modeling. John Wiley & Sons, London, England, 1998.

    Google Scholar 

  • ICAO. In Proposed Amendment to Annex 14. Unpublished. 2001.

    Google Scholar 

  • W.W. Jarzab, R. Chwalinski, W.E. Pfrang, and G. Tokar. Fluid-structure interaction effects in tank structures due to sloshing and hydrodynamic ram coupled lagrangian-eulerian simulations. In International Conference: Spacecraft Structures and Mechanical Testing, 1988.

    Google Scholar 

  • S.T. Jenq, F.B. Hsiao, I.C. Lin, D.G. Zimcik, and M. Nejad Ensan. Simulation of a rigid plate hit by a cylindrical hemi-spherical tip-ended soft impactor. Computational Materials Science, 39:518–526, 2007.

    Google Scholar 

  • M. Jirásek and Z.P. Baz˘ant. Inelastic Analysis of Structures. John Wiley & Sons, England, 2002.

    Google Scholar 

  • A. Johnson, M. Holzapfel, H. Kraft, and A. Reiter. Measurement of Ice Mechanical Properties. Technical Report IB 435 2006/55, DLR, 2006.

    Google Scholar 

  • A.F. Johnson, N. Toso-Pentecôte, and D. Schwinn. Modelling damage in composite aircraft panels under tyre rubber impact. In Proceeding of 17th International Conference on Composite Materials, 2009.

    Google Scholar 

  • G.R. Johnson and W.H. Cook. A constitutive model and data for metals subjected to large strains, high strain rates, and temperatures. In Proceedings of 7th International Symposium on Ballistics, pages 1–7, The Hague, The Nederlands, 1983.

    Google Scholar 

  • W. Johnson, A.K. Sengupta, and S.K. Ghosh. High velocity oblique and ricochet mainly of long rod projectiles: an overview. International Journal Mechanical Sciences, 24:425–436, 1982.

    Google Scholar 

  • W. Johnson, A.K. Sengupta, and S.K. Ghosh. Plasticine modelled high velocity oblique impact and ricochet of long rods. International Journal Mechanical Sciences, 24:437–455, 1982b.

    Google Scholar 

  • S.J. Jones. The confined compressive strength of polycrystalline ice. Journal of Glaciology, 28:171–177, 1982.

    Google Scholar 

  • S.J. Jones. High Strain-Rate Compression Tests on Ice. The Journal of Physical Chemistry B, 101:6099–6101, 1997.

    Google Scholar 

  • R. Juntikka and R. Olsson. Experimental and modelling study of hail impact on composite structures. In 11th International Conference on Composite Materials, 2009.

    Google Scholar 

  • L.C. Kappel. Hydraulic ram shock phase effects on fuel cell survivability. Master’s thesis, Naval Postgraduate School, Monterey, CA, 1974.

    Google Scholar 

  • D. Karagiozova and R.A.W. Mines. Impact of aircraft rubber tyre fragments on aluminium alloy plates: II - Numerical simulation using LS-DYNA. International Journal Impact Engineering, 34:647–667, 2007.

    Google Scholar 

  • A.S. Khan and S. Huang. Continuum Theory of Plasticity. John Wiley & Sons, N.Y., 1995.

    Google Scholar 

  • H. Kim and K.T. Kedward. Experimental and numerical analysis correlation of hail ice impacting composite structures. Composite Structures, 68:1– 11, 1999.

    Google Scholar 

  • H. Kim and J.N. Keune. Modeling Hail Ice Impacts and Predicting Impact Damage Initiation in Composite Structures. AIAA Journal, 38:1278– 1288, 2000.

    Google Scholar 

  • H. Kim and J.N. Keune. Compressive strength of ice at impact strain rates. Journal of Materials Science, 42:2802–2806, 2007.

    Google Scholar 

  • H. Kim, D.A. Welch, and K.T. Kedward. Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels. Composites Part A: Applied Science and Manufacturing, 34:25–41, 2003.

    Google Scholar 

  • J.H. Kim and H.C. Shin. Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank. Ocean Engineering, 35:812–822, 2008.

    Google Scholar 

  • J.K. Kim, L.M. Leung, W.R. Lee, and Y. Hirai. Impact performance of a woven fabric CFRP laminate. Polymers & Polymer Composites, 4: 549–561, 1996.

    Google Scholar 

  • K.D. Kimsey. Numerical simulation of hydrodynamic ram. Technical Report ARBRL-TR-02217, US Army Ballistic Research Laboratory, 1980.

    Google Scholar 

  • N.F. Knight, N. Jaunky, R.E. Lawson, and D.R. Ambur. Penetration simulation for uncontained engine debris impact on fuselage-like panels using ls-dyna. Finite Elements in Analysis and Design, 36:99–133, 2000.

    Google Scholar 

  • M. Koishi, T. Okano, L. Olovsson, H. Saito, and M. Makino. Hydroplaning simulation using fluid-structure interaction in ls-dyna. In 9th International LS-DYNA User’s Conference, Dearborn, Michigan, June 2006.

    Google Scholar 

  • J.L. Lacome. Smoothed particle hydrodynamics method in LS-DYNA. In 3rd German LS-DYNA forum, Bamberg, Germany, October 2004.

    Google Scholar 

  • F. Larsson. Damage tolerance of a stitched carbon/epoxy laminate. Composites Part A: Applied Science and Manufacturing, 28:923–934, 1997.

    Google Scholar 

  • M.A. Lavoie, A. Gakwaya, M. Nejad-Ensan, and D.G. Zimcik. Validation of available approaches for numerical bird strike modeling tools. International Review of Mechanical Engineering, 1:380–389, 2007.

    Google Scholar 

  • C.M. Lewis. Engine bird ingestion. Airliner, 1:17–19, 1995.

    Google Scholar 

  • J. Liu, Y.L. Li, and F. Xu. The numerical simulation of a bird-impact on an aircraft windshield by using the SPH method. Advanced Materials Research, 33-37:851–856, 2008.

    Google Scholar 

  • J. López-Puente, R. Zaera, and C. Navarro. The effect of low temperatures on the intermediate and high velocity impact response of CFRPs. Composites Part B: Engineering, 33:559–566, 2002.

    Google Scholar 

  • J. López-Puente, R. Zaera, and C. Navarro. High energy impact on woven laminates. Journal de Physique IV, 110:639–644, 2003.

    Google Scholar 

  • J. López-Puente, R. Zaera, and C. Navarro. Experimental and numerical analysis of normal and oblique ballistic impacts on thin carbon/epoxy woven laminates. Composites Part A: Applied Science and Manufacturing, 39:374–387, 2008.

    Google Scholar 

  • LSTC. LS-DYNA Keyword User’s Manual V.971. Livermore, California, 2007.

    Google Scholar 

  • LSTC. LS-DYNA User’s Manual. Livermore, California, 2010.

    Google Scholar 

  • Y. Lu and Z. Wang. Characterization of structural effects from aboveground explosion using coupled numerical simulation. Computers and Structures, 84:1729–1742, 2006.

    Google Scholar 

  • L.B. Lucy. A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82:1013–1024, 1977.

    Google Scholar 

  • E.A. Lundstrom. Fluid/structure interaction in hydraulic ram. In Proceedings of the Hydrodynamic Ram Seminar, pages 223–230, 1977.

    Google Scholar 

  • E.A. Lundstrom and T. Anderson. Hydraulic ram model for high explosive ammunition. In Symposium on Shock and Wave Propagation, Fluid- Structure Interaction and Structural Responses. ASME Pressure Vessels and Piping Conference, 1989.

    Google Scholar 

  • E.A. Lundstrom and E. Stull. Fluid dynamic analysis of hydraulic ram II (results of experiments). Technical Report JTCG/AS 73-T-291, Joint Technical Coordinating Group/Aircraft Survivability, 1973.

    Google Scholar 

  • B. MacKinnon. Sharing the skies: an aviation industry guide to the management of wildlife hazards. Civil Aviation, Transport Canada, 2004.

    Google Scholar 

  • P.O. Marklund and L. Nilsson. Simulation of airbag deployment using a coupled fluid-structure approach. In 7th International LS-DYNA User’s Conference, Dearborn, Michigan, May 2002.

    Google Scholar 

  • J. Mazars. Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure. PhD thesis, Université Pierre et Marie Curie - Paris 6, 1984.

    Google Scholar 

  • S.C. McCallum and C. Constantinou. The influence of bird-shape in birdstrike analysis. 5th European LS-DYNA users conference, Birmingham, UK, 2005.

    Google Scholar 

  • D.F. Medina and J.K. Chen. Three-dimensional simulations of impact induced damage in composite structures using the parallelized SPH method. Composites Part A: Applied Science and Manufacturing, 31: 853–860, 2000.

    Google Scholar 

  • S.A. Meguid, R.H. Mao, and T.Y. Ng. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade. International Journal of Impact Engineering, 35:487–498, 2008.

    Google Scholar 

  • R.A.W. Mines, S. McKown, and R.S. Birch. Impact of aircraft rubber tyre fragments on aluminium alloy plates: I-experimental. International Journal of Impact Engineering, 34:627–646, 2007.

    Google Scholar 

  • M. Mooney. A theory of large elastic deformation. J Applied Physics, 11: 582–592, 1940.

    Google Scholar 

  • L.S. Mueller. Experiments in hydraulic ram. Master’s thesis, Naval Postgraduate School, Monterey, CA, 1974.

    Google Scholar 

  • F.D. Murnaghan. The compressibility of media under extreme pressures. Proceedings of the National Academy of Sciences of the United States of America, 30:244–247, 1944.

    Google Scholar 

  • S. Nemat-Nasser. On finite deformation elastoplasticity. International Journal of Solids and Structures, 18:857–872, 1982.

    Google Scholar 

  • R.R.V. Neves, G.B. Micheli, and M. Alves. An experimental and numerical investigation on tyre impact. International Journal of Impact Engineering, 37:685–693, 2010.

    Google Scholar 

  • L.S. Nizampatnam. Models and methods for bird strike load predictions. PhD thesis, Wichita State University, 2007.

    Google Scholar 

  • A.K. Noor and J.A. Tanner. Advances and trends in the development of computational models for tires. Composite Structures, 20:517–533, 1985.

    Google Scholar 

  • R.W. Ogden. Nonlinear Elastic Deformations. Dover, 1998.

    Google Scholar 

  • B. Page. Entry wall strain measurements during hydraulic ram. Master’s thesis, Naval Postgraduate School, Monterey, CA, 1975.

    Google Scholar 

  • H. Park and H. Kim. Damage resistance of single lap adhesive composite joints by transverse ice impact. International Journal of Impact Engineering, 37:177–184, 2010.

    Google Scholar 

  • J.W. Patterson. Fuel cell pressure loading during hydraulic ram. Master’s thesis, Naval Postgraduate School, Monterey, CA, 1975.

    Google Scholar 

  • M.J. Pavier and M.P. Clarke. Experimental techniques for the investigation of the effects of impact damage on carbon-fibre composites. Composites Science and Technology, 55:545–551, 1995.

    Google Scholar 

  • N. Pentecôte and D. Kohlgrueber. Crash on water: a highly multi-physics problem. In EUROPAM2004, 14th European Conference and Exhibition on Digital Simulation for Virtual Engineering, Paris, October 2004.

    Google Scholar 

  • J.M. Pereira, S.A. Padula, D.M. Revilock, and M.E. Melis. Forces generated by high velocity impact of ice on a rigid structure. Technical Report TM- 2066-214263, NASA, 2006.

    Google Scholar 

  • J. Pérnas-Sánchez, D.A. Pedroche, D. Varas, J. López-Puente, and R. Zaera. Numerical modeling of ice behavior under high velocity impacts. International Journal of Solids and Strutures, 49:1919–1927, 2012.

    Google Scholar 

  • J.J. Petrovic. Mechanical properties of ice and snow. Journal of Material Science, 38:1–6, 2003.

    Google Scholar 

  • F. Peyraut. Loading restrictions for the Blatz-Ko hyperelastic model: application to a finite element analysis. International Journal of Non-Linear Mechanics, 39:969–976, 2004.

    Google Scholar 

  • F. Poehlmann-Martins, J. Gabrys, and M. Souli. Hydrodynamic ram analysis of non-exploding projectile impacting water. In Proceedings of the 2005 ASME Pressure Vessels and Piping Division Conference, 2005.

    Google Scholar 

  • S. Reese, T. Raible, and P. Wriggers. Finite element modelling of orthotropic material behaviour in pneumatic members. International Journal Solids Structures, 38:9525–9544, 2001.

    Google Scholar 

  • M.H. Rice, R.G. McQueen, and J.M. Walsh. Solid State Physics, chapter Compression of Solids by Strong Shock Waves, pages 1–63. Academic Press, New York, 1958.

    Google Scholar 

  • R.S. Rivlin. Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philosophical Transactions of the Royal Society, 241:379–397, 1948.

    Google Scholar 

  • A.L. Ruoff. Linear shock-velocity-particle-velocity relationship. Journal Applied Physics, 38:4976–4980, 1967.

    Google Scholar 

  • G. Sala. Post-impact behaviour of aerospace composites for hightemperature applications: experiments and simulations. Composites Part B: Engineering, 28:651–665, 1997.

    Google Scholar 

  • H. Salehi, S. Ziaei-Rad, and M.A. Vaziri-Zanjani. Bird impact effects on different types of aircraft bubble windows using numerical and experimental methods. International Journal of Crashworthiness, 15:93–106, 2010.

    Google Scholar 

  • P. Santini, D. Palmieri, and M. Marchetti. Numerical simulation of fluidstructure interaction in aircraft fuel tanks subjected to hydrodynamic ram penetration. In Proceedings of the 21st ICAS Congress, 1998.

    Google Scholar 

  • M. Sayer, N.B. Bektas, and H. Callioglu. Impact behavior of hybrid composite plates. Journal of Applied Polymer Science, 118:580–587, 2010a.

    Google Scholar 

  • M. Sayer, N.B. Bektas, and O. Sayman. An experimental investigation on the impact behavior of hybrid composite plates. Composite Structures, 92:1256–1262, 2010b.

    Google Scholar 

  • E. Schulson. The brittle compressive fracture of ice. Acta Metallurgica et Materialia, 38:1963–1976, 1990.

    Google Scholar 

  • E. Schulson. Brittle failure of ice. Engineering Fracture Mechanics, 68: 1839–1887, 2001.

    Google Scholar 

  • L.E. Schwer. Preliminary assesment of non-lagrangian methods for penetration simulation. In 8th International LS-DYNA User’s Conference, Dearborn, Michigan, May 2004.

    Google Scholar 

  • C.M. Seddon, K. Moodie, A.M. Thyer, and M. Moatamedi. Preliminary analysis of fuel tank impact. International Journal of Crashworthiness, 9:237–244, 2004.

    Google Scholar 

  • M. Shazly, V. Prakash, and B.A. Lerch. High strain-rate compression testing of ice. Technical report, NASA Glenn Research Center, 2006.

    Google Scholar 

  • M. Shazly, V. Prakash, and B.A. Lerch. High strain-rate behavior of ice under uniaxial compression. International Journal of Solids and Structures, 46:1499–1515, 2009.

    Google Scholar 

  • J.A. Sherburn and M.F. Horstemeyer. Hydrodynamic modeling of impact craters in ice. International Journal of Impact Engineering, 37:27–36, 2010.

    Google Scholar 

  • K. Shintate and H. Sekine. Numerical simulation of hypervelocity impacts of a projectile on laminated composite plate targets by means of improved SPH method. Composites Part A: Applied Science and Manufacturing, 35:683–692, 2004.

    Google Scholar 

  • J.J. Short, M.E. Kelley, R.J. Speelman, and R.E. McCarty. Birdstrike prevention: applying aeroscience and bio-science. In International Bird Strike Committee, IBSC25/WP-RS4, Amsterdam, April 2000.

    Google Scholar 

  • Y.P. Siow and V.P.W. Shim. An experimental study of low velocity impact damage in woven fiber composites. Journal of Composite Materials, 32: 1178–1202, 1998.

    Google Scholar 

  • W.R. Soper. Hydraulic ram studies. Master’s thesis, Naval Postgraduate School, Monterey, CA, 1973.

    Google Scholar 

  • M. Souli, L. Olovsson, and I. Do. ALE and fluid-structure interaction capabilities in LS-DYNA. In 7th International LS-DYNA User’s Conference, Dearborn, Michigan, May 2002.

    Google Scholar 

  • C.E. Sparks, R.L. Hinrichsen, and D. Friedmann. Comparisson and validation of smooth particle hydrodynamic (SPH) and coupled euler lagrange (CEL) techniques for modeling hydrodynamic ram. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2005.

    Google Scholar 

  • F. Stoll and R.A. Brockman. Finite element simulation of high-speed soft-body impacts. In Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, pages 334–344, Kissimmee, FL, April 1997.

    Google Scholar 

  • C.T. Sun and V. Potti. A simple model to predict residual velocities of thick composite laminates subjected to high velocity impact. International Journal of Impact Engineering, 18:339–353, 1996.

    Google Scholar 

  • F. Tabaddor and J.R. Stafford. Some aspects of the rubber composite finite element analysis. Composite Structures, 21:327–339, 1985.

    Google Scholar 

  • P. Tambunan and A. Vlot. Ice ball impact on aircraft fuselage protection plates. Technical report, TU Delft, 1995.

    Google Scholar 

  • Y. Tanabe, M. Aoki, K. Fujii, H. Kasano, and E. Yasuda. Fracture behavior of CFRPs impacted by relatively high-velocity steel sphere. International Journal of Impact Engineering, 28:627–642, 2003.

    Google Scholar 

  • P.J. Torvik. A simple theory for shock propagation in homogeneous mixtures. Technical Report AFIT-TR-70-3, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, 1970.

    Google Scholar 

  • D. Townsend, N. Park, and PM. Devall. Failure of fluid filled structures due to high velocity fragment impactl. International Journal of Impact Engineering, 29:723–733, 2003.

    Google Scholar 

  • L.R.G. Treloar. The physics of rubber elasticity. Oxford Clarendon Press, 1975.

    Google Scholar 

  • S.W. Tsai and E.M. Wu. A general theory of strength for anisotropic materials. Journal of Composite Materials, 5:58–80, 1971.

    Google Scholar 

  • D. Varas, J. López-Puente, and R. Zaera. Experimental analysis of fluid filled aluminium tubes subjected to high velocity impact. International Journal of Impact Engineering, 36:81–91, 2009a.

    Google Scholar 

  • D. Varas, R. Zaera, and J. López-Puente. Numerical modelling of the hydrodynamic ram phenomenon. International Journal of Impact Engineering, 36:363–374, 2009b.

    Google Scholar 

  • D. Varas, R. Zaera, and J. López-Puente. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact. Composite Structures, 93:2598–2609, 2011.

    Google Scholar 

  • D. Varas, J. López-Puente, and R. Zaera. Numerical analysis of the hydrodynamic ram phenomenon in aircraft fuel tanks. American Institute of Aeronautics and Astronautics Journal, 50:1621–1630, 2012.

    Google Scholar 

  • M. Vesenjak, M. Matthae, H. Mullerschon, and Z. Ren. Fluid models in LS- DYNA and their interaction with a structure in dynamic simulations. In Proceedings of PVP2005. ASME Pressure Vessels and Piping Division Conference, Denver, 2005.

    Google Scholar 

  • R. Vignjevic, T. De Vuyst, J. Campbell, and L. Libersky. Modelling of hydrodynamic ram using smoothed particle hydrodynamics. In Proceedings of the 5th International Conference on Dynamics and Control of Systems and Structures in Space, Cambridge, UK, 2002.

    Google Scholar 

  • H. Wang and T. Vukhanh. Damage extension in carbon fiber/peek crossply laminates under low velocity impact. Journal of Composite Material, 28: 545–551, 1994.

    Google Scholar 

  • H. Wang and T. Vukhanh. Low-velocity impact damage in laminated composites materials. Key Engineering Materials, 141-1:277–304, 1998.

    Google Scholar 

  • Y. Watanabe and M.J. Kaldjian. Modelling and analysis of bias-ply motorcycle tires. Mathematical Modelling, 6:80, 1985.

    Google Scholar 

  • B. Whittingham, I.H. Marshall, T. Mitrevski, and R. Jones. The response of composite structures with pre-stress subject to low velocity impact damage. Composite Structures, 66:685–698, 2004.

    Google Scholar 

  • J.S. Wilbeck. Impact behavior of low strength projectiles. Technical Report AFML-TR-77-134, Air Force Materials Laboratory, 1978.

    Google Scholar 

  • L. Wu, Y.N. Guo, and Y.L. Li. Bird strike simulation on sandwich composite structure of aircraft radome. Explosion and Shock Waves, 29:642–647, 2009.

    Google Scholar 

  • A. Zammit, M. Kim, and J. Bayandor. Bird-strike damage tolerance analysis of composite turbofan engines. In ICAS 2010, 27th international Congress of the Aeronautical Sciences, Nice, France, September 2010.

    Google Scholar 

  • A. Zhang and K. Suzuki. A comparative study of numerical simulations for fluid-structure interaction of liquid-filled tank during ship collision. Ocean Engineering, 34:645–652, 2007.

    Google Scholar 

  • G. Zhou, J.C. Lloyd, and J.J. McGuirk. Experimental evaluation of geometric factors affecting damage mechanisms in carbon/epoxy plates. Composites Part A: Applied Science and Manufacturing, 32:2279–2286, 2001.

    Google Scholar 

  • S. Zhu and M. Tong. Study on bird shape sensitivity to dynamic response of bird strike on aircraft windshield. J Nanjing Univ Aeron Astronaut, 40:551–555, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 CISM, Udine

About this chapter

Cite this chapter

Arias, Á., López-Puente, J., Loya, J.A., Varas, D., Zaera, R. (2014). Analysis of high-speed impact problems in the aircraft industry. In: Łodygowski, T., Rusinek, A. (eds) Constitutive Relations under Impact Loadings. CISM International Centre for Mechanical Sciences, vol 552. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1768-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1768-2_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1767-5

  • Online ISBN: 978-3-7091-1768-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics