Skip to main content

Interactions of Immune Cells and Lymphatic Vessels

  • Chapter
  • First Online:
Developmental Aspects of the Lymphatic Vascular System

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 214))

Abstract

In addition to fluid and lipid absorption, immune cell trafficking has now become recognized as one of the major functions of the lymphatic system. Recently, several critical roles of the lymphatic vessels (LVs) in modulating immune reactions during both physiological and pathological conditions have been emerging. As LVs serve as conduits for immune cells, they come to closely interact with macrophages/monocytes, dendritic cells, and T and B lymphocytes. Accumulating evidences indicate that reciprocal interactions between the LVs and immune cells exist which cause considerable influence over the process of immune cell migration, LV growth, and ultimately certain immune reactions. This chapter discusses on the interactions of macrophages/monocytes and dendritic cells with peripheral LVs and on those of sinusoidal macrophages and T and B lymphocytes with lymph node LVs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alitalo, K. (2011). The lymphatic vasculature in disease. Nature Medicine, 17, 1371–1380.

    Article  PubMed  CAS  Google Scholar 

  • Alitalo, K., Tammela, T., & Petrova, T. V. (2005). Lymphangiogenesis in development and human disease. Nature, 438, 946–953.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez, D., Vollmann, E. H., & von Andrian, U. H. (2008). Mechanisms and consequences of dendritic cell migration. Immunity, 29, 325–342.

    Article  PubMed  CAS  Google Scholar 

  • Angeli, V., Ginhoux, F., Llodra, J., Quemeneur, L., Frenette, P. S., Skobe, M., et al. (2006). B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity, 24, 203–215.

    Article  PubMed  CAS  Google Scholar 

  • Avraham, T., Zampell, J. C., Yan, A., Elhadad, S., Weitman, E. S., Rockson, S. G., et al. (2013). Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema. FASEB Journal, 27, 1114–1126.

    Article  PubMed  CAS  Google Scholar 

  • Baluk, P., Fuxe, J., Hashizume, H., Romano, T., Lashnits, E., Butz, S., et al. (2007). Functionally specialized junctions between endothelial cells of lymphatic vessels. Journal of Experimental Medicine, 204, 2349–2362.

    Article  PubMed  CAS  Google Scholar 

  • Baluk, P., Tammela, T., Ator, E., Lyubynska, N., Achen, M. G., Hicklin, D. J., et al. (2005). Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. Journal of Clinical Investigation, 115, 247–257.

    PubMed  CAS  Google Scholar 

  • Bohmer, R., Neuhaus, B., Buhren, S., Zhang, D., Stehling, M., Bock, B., et al. (2010). Regulation of developmental lymphangiogenesis by Syk(+) leukocytes. Developmental Cell, 18, 437–449.

    Article  PubMed  Google Scholar 

  • Buttler, K., Kreysing, A., von Kaisenberg, C. S., Schweigerer, L., Gale, N., Papoutsi, M., et al. (2006). Mesenchymal cells with leukocyte and lymphendothelial characteristics in murine embryos. Developmental Dynamics, 235, 1554–1562.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Hamrah, P., Cursiefen, C., Zhang, Q., Pytowski, B., Streilein, J. W., et al. (2004). Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nature Medicine, 10, 813–815.

    Article  PubMed  CAS  Google Scholar 

  • Cursiefen, C., Chen, L., Borges, L. P., Jackson, D., Cao, J., Radziejewski, C., et al. (2004). VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. Journal of Clinical Investigation, 113, 1040–1050.

    PubMed  CAS  Google Scholar 

  • Forster, R., Schubel, A., Breitfeld, D., Kremmer, E., Renner-Muller, I., Wolf, E., et al. (1999). CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell, 99, 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, S. F., Lukacs-Kornek, V., Kuligowski, M. P., Pitcher, L. A., Degn, S. E., Kim, Y. A., et al. (2010). Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nature Immunology, 11, 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, E. J., Rao, S., Pollard, J. W., Nutt, S. L., Lang, R. A., & Harvey, N. L. (2010). Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development, 137, 3899–3910.

    Article  PubMed  CAS  Google Scholar 

  • Gray, E. E., & Cyster, J. G. (2012). Lymph node macrophages. Journal of Innate Immunity, 4, 424–436.

    Article  PubMed  CAS  Google Scholar 

  • Hall, K. L., Volk-Draper, L. D., Flister, M. J., & Ran, S. (2012). New model of macrophage acquisition of the lymphatic endothelial phenotype. PLoS One, 7, e31794.

    Article  PubMed  CAS  Google Scholar 

  • Iannacone, M., Moseman, E. A., Tonti, E., Bosurgi, L., Junt, T., Henrickson, S. E., et al. (2010). Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature, 465, 1079–1083.

    Article  PubMed  CAS  Google Scholar 

  • Ji, R. C. (2012). Macrophages are important mediators of either tumor- or inflammation-induced lymphangiogenesis. Cellular and Molecular Life Sciences, 69, 897–914.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, L. A., Clasper, S., Holt, A. P., Lalor, P. F., Baban, D., & Jackson, D. G. (2006). An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. Journal of Experimental Medicine, 203, 2763–2777.

    Article  PubMed  CAS  Google Scholar 

  • Junt, T., Moseman, E. A., Iannacone, M., Massberg, S., Lang, P. A., Boes, M., et al. (2007). Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature, 450, 110–114.

    Article  PubMed  CAS  Google Scholar 

  • Kabashima, K., Shiraishi, N., Sugita, K., Mori, T., Onoue, A., Kobayashi, M., et al. (2007). CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. American Journal of Pathology, 171, 1249–1257.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S., Lee, S. P., Kim, K. E., Kim, H. Z., Memet, S., & Koh, G. Y. (2009). Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood, 113, 2605–2613.

    Article  PubMed  CAS  Google Scholar 

  • Kastenmuller, W., Torabi-Parizi, P., Subramanian, N., Lammermann, T., & Germain, R. N. (2012). A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell, 150, 1235–1248.

    Article  PubMed  CAS  Google Scholar 

  • Kataru, R. P., Jung, K., Jang, C., Yang, H., Schwendener, R. A., Baik, J. E., et al. (2009). Critical role of CD11b + macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood, 113, 5650–5659.

    Article  PubMed  CAS  Google Scholar 

  • Kataru, R. P., Kim, H., Jang, C., Choi, D. K., Koh, B. I., Kim, M., et al. (2011). T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity, 34, 96–107.

    Article  PubMed  CAS  Google Scholar 

  • Kerjaschki, D. (2005). The crucial role of macrophages in lymphangiogenesis. Journal of Clinical Investigation, 115, 2316–2319.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H., Kataru, R. P., & Koh, G. Y. (2012). Regulation and implications of inflammatory lymphangiogenesis. Trends in Immunology, 33, 350–356.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. E., Koh, Y. J., Jeon, B. H., Jang, C., Han, J., Kataru, R. P., et al. (2009). Role of CD11b + macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. American Journal of Pathology, 175, 1733–1745.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. E., Sung, H. K., & Koh, G. Y. (2007). Lymphatic development in mouse small intestine. Developmental Dynamics, 236, 2020–2025.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y., Takubo, K., Shimizu, T., Ohno, H., Kishi, K., Shibuya, M., et al. (2009). M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. Journal of Experimental Medicine, 206, 1089–1102.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Fontecha, A., Sebastiani, S., Hopken, U. E., Uguccioni, M., Lipp, M., Lanzavecchia, A., et al. (2003). Regulation of dendritic cell migration to the draining lymph node: Impact on T lymphocyte traffic and priming. Journal of Experimental Medicine, 198, 615–621.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, K., Asai, J., Ii, M., Thorne, T., Losordo, D. W., & D’Amore, P. A. (2007). Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. American Journal of Pathology, 170, 1178–1191.

    Article  PubMed  Google Scholar 

  • Maruyama, K., Ii, M., Cursiefen, C., Jackson, D. G., Keino, H., Tomita, M., et al. (2005). Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. Journal of Clinical Investigation, 115, 2363–2372.

    Article  PubMed  CAS  Google Scholar 

  • Miteva, D. O., Rutkowski, J. M., Dixon, J. B., Kilarski, W., Shields, J. D., & Swartz, M. A. (2010). Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circulation Research, 106, 920–931.

    Article  PubMed  CAS  Google Scholar 

  • Nitschke, M., Aebischer, D., Abadier, M., Haener, S., Lucic, M., Vigl, B., et al. (2012). Differential requirement for ROCK in dendritic cell migration within lymphatic capillaries in steady-state and inflammation. Blood, 120, 2249–2258.

    Article  PubMed  CAS  Google Scholar 

  • Nykanen, A. I., Sandelin, H., Krebs, R., Keranen, M. A., Tuuminen, R., Karpanen, T., et al. (2010). Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation, 121, 1413–1422.

    Article  PubMed  Google Scholar 

  • Oliver, G. (2004). Lymphatic vasculature development. Nature Reviews Immunology, 4, 35–45.

    Article  PubMed  CAS  Google Scholar 

  • Pflicke, H., & Sixt, M. (2009). Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. Journal of Experimental Medicine, 206, 2925–2935.

    Article  PubMed  CAS  Google Scholar 

  • Phan, T. G., Green, J. A., Gray, E. E., Xu, Y., & Cyster, J. G. (2009). Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nature Immunology, 10, 786–793.

    Article  PubMed  CAS  Google Scholar 

  • Randolph, G. J., Angeli, V., & Swartz, M. A. (2005). Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nature Reviews Immunology, 5, 617–628.

    Article  PubMed  CAS  Google Scholar 

  • Saeki, H., Moore, A. M., Brown, M. J., & Hwang, S. T. (1999). Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. Journal of Immunology, 162, 2472–2475.

    CAS  Google Scholar 

  • Serhan, C. N., & Savill, J. (2005). Resolution of inflammation: The beginning programs the end. Nature Immunology, 6, 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  • Shrestha, B., Hashiguchi, T., Ito, T., Miura, N., Takenouchi, K., Oyama, Y., et al. (2010). B cell-derived vascular endothelial growth factor A promotes lymphangiogenesis and high endothelial venule expansion in lymph nodes. Journal of Immunology, 184, 4819–4826.

    Article  CAS  Google Scholar 

  • Tal, O., Lim, H. Y., Gurevich, I., Milo, I., Shipony, Z., Ng, L. G., et al. (2011). DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. Journal of Experimental Medicine, 208, 2141–2153.

    Article  PubMed  CAS  Google Scholar 

  • Tammela, T., & Alitalo, K. (2010). Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 140, 460–476.

    Article  PubMed  CAS  Google Scholar 

  • Vigl, B., Aebischer, D., Nitschke, M., Iolyeva, M., Rothlin, T., Antsiferova, O., et al. (2011). Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood, 118, 205–215.

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara, S., Komura, E., Nagafune, J., Watarai, H., & Yamaguchi, Y. (1998). EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. Journal of Immunology, 161, 3096–3102.

    CAS  Google Scholar 

  • Yin, N., Zhang, N., Lal, G., Xu, J., Yan, M., Ding, Y., et al. (2011). Lymphangiogenesis is required for pancreatic islet inflammation and diabetes. PLoS One, 6, e28023.

    Article  PubMed  CAS  Google Scholar 

  • Zampell, J. C., Avraham, T., Yoder, N., Fort, N., Yan, A., Weitman, E. S., et al. (2012a). Lymphatic function is regulated by a coordinated expression of lymphangiogenic and anti-lymphangiogenic cytokines. American Journal of Physiology Cellular Physiology, 302, C392–C404.

    Article  CAS  Google Scholar 

  • Zampell, J. C., Yan, A., Elhadad, S., Avraham, T., Weitman, E., & Mehrara, B. J. (2012b). CD4(+) cells regulate fibrosis and lymphangiogenesis in response to lymphatic fluid stasis. PLoS One, 7, e49940.

    Article  PubMed  CAS  Google Scholar 

  • Zumsteg, A., & Christofori, G. (2012). Myeloid cells and lymphangiogenesis. Cold Spring Harbor Perspect Medicine, 2, a006494.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the grant (R2009-0079390 and 2011-0019268, GYK) of the National Research Foundation (NRF) funded by the MEST, Korea. We apologize to the many authors whose important work could not be cited because of space restrictions. The author has no conflicting financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gou Young Koh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Kataru, R.P., Lee, Y.G., Koh, G.Y. (2014). Interactions of Immune Cells and Lymphatic Vessels. In: Kiefer, F., Schulte-Merker, S. (eds) Developmental Aspects of the Lymphatic Vascular System. Advances in Anatomy, Embryology and Cell Biology, vol 214. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1646-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1646-3_9

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1645-6

  • Online ISBN: 978-3-7091-1646-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics