Skip to main content

Platelets in Lymph Vessel Development and Integrity

  • Chapter
  • First Online:
Developmental Aspects of the Lymphatic Vascular System

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 214))

Abstract

Blood platelets have recently been proposed to play a critical role in the development and repair of the lymphatic system. The platelet C-type lectin receptor CLEC-2 and its ligand, the transmembrane protein Podoplanin, which is expressed at high levels on lymphatic endothelial cells (LECs), are required to prevent mixing of the blood and lymphatic vasculatures during mid-gestation. A similar defect is seen in mice deficient in the tyrosine kinase Syk, which plays a vital role in mediating platelet activation by CLEC-2. Furthermore, blood-lymphatic mixing is also present in mice with platelet-/megakaryocyte-specific deletions of CLEC-2 and Syk, suggesting that the phenotype is platelet in origin. The molecular basis of this effect is not known, but it is independent of the major platelet receptors that support hemostasis, including integrin αIIbβ3 (GPIIb-IIIa). Radiation chimeric mice reconstituted with CLEC-2-deficient or Syk-deficient bone marrow exhibit blood-lymphatic mixing in the intestines, illustrating a role for platelets in repair and growth of the lymphatic system. In this review, we describe the events that led to the identification of this novel role of platelets and discuss possible molecular mechanisms and the physiological and pathophysiological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abtahian, F., Guerriero, A., Sebzda, E., Lu, M. M., Zhou, R., Mocsai, A., et al. (2003). Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science, 299, 247–251.

    Article  PubMed  CAS  Google Scholar 

  • Astarita, J. L., Acton, S. E., & Turley, S. J. (2012). Podoplanin: Emerging functions in development, the immune system, and cancer. Frontiers in Immunology, 3, 283.

    Article  PubMed  Google Scholar 

  • Bertozzi, C. C., Schmaier, A. A., Mericko, P., Hess, P. R., Zou, Z., Chen, M., et al. (2010). Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood, 116, 661–670.

    Article  PubMed  CAS  Google Scholar 

  • Böhmer, R., Neuhaus, B., Bühren, S., Zhang, D., Stehling, M., Böck, B., et al. (2010). Regulation of developmental lymphangiogenesis by Syk + leukocytes. Developmental Cell, 18, 437–449.

    Article  PubMed  Google Scholar 

  • Boulaftali, Y., Hess, P. R., Getz, T. M., Cholka, A., Stolla, M., Mackman, N., et al. (2013). Platelet ITAM signaling is critical for vascular integrity in inflammation. Journal of Clinical Investigation, 123(2), 908–916.

    PubMed  CAS  Google Scholar 

  • Calaminus, S. D., Guitart, A., Sinclair, A., Schachtner, H., Watson, S. P., Holyoake, T. L., et al. (2012). Lineage tracing of Pf4-Cre marks hematopoietic stem cells and their progeny. PLoS One, 7, e51361.

    Article  PubMed  CAS  Google Scholar 

  • Carramolino, L., Fuentes, J., Garcia-Andres, C., Azcoitia, V., Riethmacher, D., & Torres, M. (2010). Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. Circulation Research, 106, 1197–1201.

    Article  PubMed  CAS  Google Scholar 

  • Chaipan, C., Soilleux, E. J., Simpson, P., Hofmann, H., Gramberg, T., Marzi, A., et al. (2006). DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. Journal of Virology, 80, 8951–8960.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. Y., Bertozzi, C., Zou, Z., Yuan, L., Lee, J. S., Lu, M., et al. (2012). Blood flow reprograms lymphatic vessels to blood vessels. Journal of Clinical Investigation, 122, 2006–2017.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, A. M., Rowley, B., Pao, W., Hayday, A., Bolen, J. B., & Pawson, T. (1995). Syk tyrosine kinase required for mouse viability and B-cell development. Nature, 378, 303–306.

    Article  PubMed  CAS  Google Scholar 

  • Christou, C. M., Pearce, A. C., Watson, A. A., Mistry, A. R., Pollitt, A. Y., Fenton-May, A. E., et al. (2008). Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochemical Journal, 411, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Colonna, M., Samaridis, J., & Angman, L. (2000). Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. European Journal of Immunology, 30, 697–704.

    Article  PubMed  CAS  Google Scholar 

  • Deppermann, C., Cherpokova, D., Nurden, P., Schulz, J. -N., Thielmann, I., Kraft, P., Vögtle, T., Kleinschnitz, C., Dütting, S., Krohne, G., Eming, S. A., Nurden, A. T., Eckes, B., Stoll, G., Stegner, D., & Bernhard Nieswandt, B. (2013). Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. Journal of Clinical Investigation, 123, 3331–3342.

    Google Scholar 

  • Finney, B. A., Schweighoffer, E., Navarro-Nunez, L., Benezech, C., Barone, F., Hughes, C. E., et al. (2012). CLEC-2 and Syk in the megakaryocytic/platelet lineage are essential for development. Blood, 119, 1747–1756.

    Article  PubMed  CAS  Google Scholar 

  • Fu, J., Gerhardt, H., McDaniel, J. M., Xia, B., Liu, X., Ivanciu, L., et al. (2008). Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. Journal of Clinical Investigation, 118, 3725–3737.

    Article  PubMed  CAS  Google Scholar 

  • Hagerling, R., Pollmann, C., Andreas, M., Schmidt, C., Nurmi, H., Adams, R. H., et al. (2013). A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO Journal, 32, 629–644.

    Article  PubMed  Google Scholar 

  • Hughes, C. E., Navarro-Nunez, L., Finney, B. A., Mourao-Sa, D., Pollitt, A. Y., & Watson, S. P. (2010). CLEC-2 is not required for platelet aggregation at arteriolar shear. Journal of Thrombosis and Haemostasis, 8, 2328–2332.

    Article  PubMed  CAS  Google Scholar 

  • Ichise, H., Ichise, T., Ohtani, O., & Yoshida, N. (2009). Phospholipase Cgamma2 is necessary for separation of blood and lymphatic vasculature in mice. Development, 136, 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Kerrigan, A. M., Navarro-Nunez, L., Pyz, E., Finney, B. A., Willment, J. A., Watson, S. P., et al. (2012). Podoplanin-expressing inflammatory macrophages activate murine platelets via CLEC-2. Journal of Thrombosis and Haemostasis, 10, 484–486.

    Article  PubMed  CAS  Google Scholar 

  • Kiefer, F., Brumell, J., Al-Alawi, N., Latour, S., Cheng, A., Veillette, A., et al. (1998). The Syk protein tyrosine kinase is essential for Fcγ receptor signaling in macrophages and neutrophils. Molecular and Cellular Biology, 18, 4209–4220.

    PubMed  CAS  Google Scholar 

  • Mahtab, E. A., Wijffels, M. C., Van Den Akker, N. M., Hahurij, N. D., Lie Venema, H., Wisse, L. J., et al. (2008). Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: Correlation with abnormal epicardial development. Developmental Dynamics, 237, 847–857.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Villar, E., Megias, D., Castel, S., Yurrita, M. M., Vilaro, S., & Quintanilla, M. (2006). Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. Journal of Cell Science, 119, 4541–4553.

    Article  PubMed  CAS  Google Scholar 

  • Mourao-Sa, D., Robinson, M. J., Zelenay, S., Sancho, D., Chakravarty, P., Larsen, R., et al. (2011). CLEC-2 signaling via Syk in myeloid cells can regulate inflammatory responses. European Journal of Immunology, 41, 3040–3053.

    Article  PubMed  CAS  Google Scholar 

  • Navarro, A., Perez, R. E., Rezaiekhaligh, M. H., Mabry, S. M., & Ekekezie, I. I. (2011). Polarized migration of lymphatic endothelial cells is critically dependent on podoplanin regulation of Cdc42. American Journal of Physiology Lung Cellular and Molecular Physiology, 300, L32–L42.

    Article  PubMed  CAS  Google Scholar 

  • Osada, M., Inoue, O., Ding, G., Shirai, T., Ichise, H., Hirayama, K., et al. (2012). Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. Journal of Biological Chemistry, 287, 22241–22252.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., Pitcher, L. A., Sullivan, J. M., Mitsdoerffer, M., Acton, S. E., Franz, B., et al. (2011). Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity, 35, 986–996.

    Article  PubMed  CAS  Google Scholar 

  • Schacht, V., Ramirez, M. I., Hong, Y. K., Hirakawa, S., Feng, D., Harvey, N., et al. (2003). T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO Journal, 22, 3546–3556.

    Article  PubMed  CAS  Google Scholar 

  • Sebzda, E., Hibbard, C., Sweeney, S., Abtahian, F., Bezman, N., Clemens, G., et al. (2006). Syk and Slp-76 mutant mice reveal a cell-autonomous hematopoietic cell contribution to vascular development. Developmental Cell, 11, 349–361.

    Article  PubMed  CAS  Google Scholar 

  • Senis, Y. A., Tomlinson, M. G., Garcia, A., Dumon, S., Heath, V. L., Herbert, J., et al. (2007). A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein. Molecular and Cellular Proteomics, 6, 548–564.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., et al. (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 107, 542–549.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki-Inoue, K., Inoue, O., Ding, G., Nishimura, S., Hokamura, K., Eto, K., et al. (2010). Essential in vivo roles of the C-type lectin receptor CLEC-2: Embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. Journal of Biological Chemistry, 285, 24494–24507.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. Journal of Biological Chemistry, 282, 25993–26001.

    Article  PubMed  CAS  Google Scholar 

  • Tang, T., Li, L., Tang, J., Li, Y., Lin, W. Y., Martin, F., et al. (2010). A mouse knockout library for secreted and transmembrane proteins. Nature Biotechnology, 28, 749–755.

    Article  PubMed  CAS  Google Scholar 

  • Turner, M., Mee, P. J., Costello, P. S., Williams, O., Price, A. A., Duddy, L. P., et al. (1995). Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature, 378, 298–302.

    Article  PubMed  CAS  Google Scholar 

  • Uhrin, P., Zaujec, J., Breuss, J. M., Olcaydu, D., Chrenek, P., Stockinger, H., et al. (2010). Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood, 115, 3997–4005.

    Article  PubMed  CAS  Google Scholar 

  • Watson, S. P., Herbert, J. M., & Pollitt, A. Y. (2010). GPVI and CLEC-2 in hemostasis and vascular integrity. Journal of Thrombosis and Haemostasis, 8, 1456–1467.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Garcia-Verdugo, J. M., Soriano-Navarro, M., Srinivasan, R. S., Scallan, J. P., Singh, M. K., et al. (2012). Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood, 120, 2340–2348.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research in the authors’ laboratory is supported by the Wellcome Trust, British Heart Foundation, and Medical Research Council. We are grateful to Drs Alexander Brill, Craig Hughes, Leyre Navarro-Nunez, and Alice Pollitt for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve P. Watson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Watson, S.P., Lowe, K., Finney, B.A. (2014). Platelets in Lymph Vessel Development and Integrity. In: Kiefer, F., Schulte-Merker, S. (eds) Developmental Aspects of the Lymphatic Vascular System. Advances in Anatomy, Embryology and Cell Biology, vol 214. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1646-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1646-3_8

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1645-6

  • Online ISBN: 978-3-7091-1646-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics