Skip to main content

Development of Secondary Lymphoid Organs in Relation to Lymphatic Vasculature

  • Chapter
  • First Online:
Developmental Aspects of the Lymphatic Vascular System

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 214))

Abstract

Although the initial event in lymphatic endothelial specification occurs slightly before the initiation of lymph node formation in mice, the development of lymphatic vessels and lymph nodes occurs within the same embryonic time frame. Specification of lymphatic endothelial cells starts around embryonic day 10 (E10), followed by endothelial cell budding and formation of the first lymphatic structures. Through lymphatic endothelial cell sprouting these lymph sacs give rise to the lymphatic vasculature which is complete by E15.5 in mice. It is within this time frame that lymph node formation is initiated and the first structure is secured in place. As lymphatic vessels are crucially involved in the functionality of the lymph nodes, the recent insight that both structures depend on common developmental signals for their initiation provides a molecular mechanism for their coordinated formation. Here, we will describe the common developmental signals needed to properly start the formation of lymphatic vessels and lymph nodes and their interdependence in adult life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aloisi, F., & Pujol-Borrell, R. (2006). Lymphoid neogenesis in chronic inflammatory diseases. Nature Reviews Immunology, 6, 205–217.

    Article  PubMed  CAS  Google Scholar 

  • Angeli, V., Ginhoux, F., Llodrà, J., Quemeneur, L., Frenette, P. S., Skobe, M., et al. (2006). B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity, 24, 203–215.

    Article  PubMed  CAS  Google Scholar 

  • Ansel, K. M., Ngo, V. N., Hyman, P. L., Luther, S. A., Förster, R., Sedgwick, J. D., et al. (2000). A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature, 406, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Bekker, M. N., Arkesteijn, J. B., Van den Akker, N. M. S., Hoffman, S., Webb, S., Van Vugt, J. M. G., & Gittenberger-de Groot, A. C. (2005). Increased NCAM expression and vascular development in trisomy 16 mouse embryos: Relationship with nuchal translucency. Pediatric Research, 58, 1222–1227.

    Article  PubMed  CAS  Google Scholar 

  • Bekker, M. N., Van den Akker, N. M. S., Bartelings, M. M., Arkesteijn, J. B., Fischer, S. G. L., Polman, J. A. E., et al. (2006). Nuchal edema and venous-lymphatic phenotype disturbance in human fetuses and mouse embryos with aneuploidy. Journal of the Society for Gynecologic Investigation, 13, 209–216.

    Article  PubMed  Google Scholar 

  • Bénézech, C., White, A., Mader, E., Serre, K., Parnell, S., Pfeffer, K., et al. (2010). Ontogeny of stromal organizer cells during lymph node development. Journal of Immunology, 184, 4521–4530.

    Article  Google Scholar 

  • Berggren, K., Ezerman, E. B., McCaffery, P., & Forehand, C. J. (2001). Expression and regulation of the retinoic acid synthetic enzyme RALDH-2 in the embryonic chicken wing. Developmental Dynamics, 222, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Bos, F. L., Caunt, M., Peterson-Maduro, J., Planas-Paz, L., Kowalski, J., Karpanen, T., et al. (2011). CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circulation Research, 109(5), 486–491.

    Article  PubMed  CAS  Google Scholar 

  • Cherrier, M., Sawa, S., & Eberl, G. (2012). Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. Journal of Experimental Medicine, 209, 729–740.

    Article  PubMed  CAS  Google Scholar 

  • Choi, I., Lee, S., Chung, H. K., Lee, Y. S., Kim, K. E., Choi, D., et al. (2012). 9-cis retinoic acid promotes lymphangiogenesis and enhances lymphatic vessel regeneration: Therapeutic implications of 9-cis retinoic acid for secondary lymphedema. Circulation, 125(7), 872–882.

    Article  PubMed  CAS  Google Scholar 

  • Cupedo, T., Jansen, W., Kraal, G., & Mebius, R. E. (2004a). Induction of secondary and tertiary lymphoid structures in the skin. Immunity, 21, 655–667.

    Article  PubMed  CAS  Google Scholar 

  • Cupedo, T., & Mebius, R. E. (2005). Cellular interactions in lymph node development. Journal of Immunology, 174, 21–25.

    CAS  Google Scholar 

  • Cupedo, T., Vondenhoff, M. F. R., Heeregrave, E. J., De Weerd, A. E., Jansen, W., Jackson, D. G., et al. (2004b). Presumptive lymph node organizers are differentially represented in developing mesenteric and peripheral nodes. Journal of Immunology, 173, 2968–2975.

    CAS  Google Scholar 

  • De Togni, P., Goellner, J., Ruddle, N., Streeter, P., Fick, A., Mariathasan, S., et al. (1994). Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science, 264, 703–707.

    Article  PubMed  Google Scholar 

  • Drayton, D. L., Liao, S., Mounzer, R. H., & Ruddle, N. H. (2006). Lymphoid organ development: From ontogeny to neogenesis. Nature Immunology, 7, 344–353.

    Article  PubMed  CAS  Google Scholar 

  • François, M., Caprini, A., Hosking, B., Orsenigo, F., Wilhelm, D., Browne, C., et al. (2008). Sox18 induces development of the lymphatic vasculature in mice. Nature, 456, 643–647.

    Article  PubMed  Google Scholar 

  • François, M., Short, K., Secker, G. A., Combes, A., Schwarz, Q., Davidson, T.-L., et al. (2012). Segmental territories along the cardinal veins generate lymph sacs via a ballooning mechanism during embryonic lymphangiogenesis in mice. Developmental Biology, 364, 89–98.

    Article  PubMed  Google Scholar 

  • GeurtsvanKessel, C. H., Willart, M. A. M., Bergen, I. M., Van Rijt, L. S., Muskens, F., Elewaut, D., et al. (2009). Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. Journal of Experimental Medicine, 206, 2339–2349.

    Article  PubMed  CAS  Google Scholar 

  • Hägerling, R., Pollmann, C., Andreas, M., Schmidt, C., Nurmi, H., Adams, R. H., et al. (2013). A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO Journal, 32(5), 629–644.

    Article  PubMed  Google Scholar 

  • Halin, C., Tobler, N. E., Vigl, B., Brown, L. F., & Detmar, M. (2007). VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood, 110, 3158–3167.

    Article  PubMed  CAS  Google Scholar 

  • Honda, K., Nakano, H., Yoshida, H., Nishikawa, S., Rennert, P., Ikuta, K., et al. (2001). Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer’s patch organogenesis. Journal of Experimental Medicine, 193, 621–630.

    Article  PubMed  CAS  Google Scholar 

  • Ji, S.-J., Zhuang, B., Falco, C., Schneider, A., Schuster-Gossler, K., Gossler, A., & Sockanathan, S. (2006). Mesodermal and neuronal retinoids regulate the induction and maintenance of limb innervating spinal motor neurons. Developmental Biology, 297, 249–261.

    Article  PubMed  CAS  Google Scholar 

  • Karkkainen, M. J., Haiko, P., Sainio, K., Partanen, J., Taipale, J., Petrova, T. V., et al. (2004). Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nature Immunology, 5, 74–80.

    Article  PubMed  CAS  Google Scholar 

  • Katakai, T., Hara, T., Sugai, M., Gonda, H., & Shimizu, A. (2004). Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. Journal of Experimental Medicine, 200, 783–795.

    Article  PubMed  CAS  Google Scholar 

  • Kataru, R. P., Kim, H., Jang, C., Choi, D. K., Koh, B. I., Kim, M., et al. (2011). T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity, 34, 96–107.

    Article  PubMed  CAS  Google Scholar 

  • Luther, S. A., Ansel, K. M., & Cyster, J. G. (2003). Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. Journal of Experimental Medicine, 197, 1191–1198.

    Article  PubMed  CAS  Google Scholar 

  • Marino, D., Dabouras, V., Brändli, A. W., & Detmar, M. (2011). A role for all-trans-retinoic acid in the early steps of lymphatic vasculature development. Journal of Vascular Research, 48, 236–251.

    Article  PubMed  CAS  Google Scholar 

  • Mebius, R. E., Dowbenko, D., Williams, A., Fennie, C., Lasky, L. A., & Watson, S. R. (1993). Expression of GlyCAM-1, an endothelial ligand for L-selectin, is affected by afferent lymphatic flow. Journal of Immunology, 151, 6769–6776.

    CAS  Google Scholar 

  • Mebius, R. E., Rennert, P., & Weissman, I. L. (1997). Developing lymph nodes collect CD4 + CD3- LTbeta + cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity, 7, 493–504.

    Article  PubMed  CAS  Google Scholar 

  • Mebius, R. E., Streeter, P. R., Brevé, J., Duijvestijn, A. M., & Kraal, G. (1991). The influence of afferent lymphatic vessel interruption on vascular addressin expression. Journal of Cell Biology, 115, 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Mounzer, R. H., Svendsen, O. S., Baluk, P., Bergman, C. M., Padera, T. P., Wiig, H., et al. (2010). Lymphotoxin-alpha contributes to lymphangiogenesis. Blood, 116, 2173–2182.

    Article  PubMed  CAS  Google Scholar 

  • Niederreither, K., & Dollé, P. (2008). Retinoic acid in development: Towards an integrated view. Nature Reviews Genetics, 9, 541–553.

    Article  PubMed  CAS  Google Scholar 

  • Rennert, P. D., James, D., Mackay, F., Browning, J. L., & Hochman, P. S. (1998). Lymph node genesis is induced by signaling through the lymphotoxin beta receptor. Immunity, 9, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Sockanathan, S., & Jessell, T. M. (1998). Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons. Cell, 94, 503–514.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, R. S., Dillard, M. E., Lagutin, O. V., Lin, F.-J. J., Tsai, S., Tsai, M.-J. J., et al. (2007). Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes and Development, 21, 2422–2432.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, R. S., Geng, X., Yang, Y., Wang, Y., Mukatira, S., Studer, M., et al. (2010). The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes and Development, 24, 696–707.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Z., Unutmaz, D., Zou, Y. R., Sunshine, M. J., Pierani, A., Brenner-Morton, S., et al. (2000). Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science, 288, 2369–2373.

    Article  PubMed  CAS  Google Scholar 

  • Tammela, T., & Alitalo, K. (2010). Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 140, 460–476.

    Article  PubMed  CAS  Google Scholar 

  • Tammela, T., Saaristo, A., Holopainen, T., Lyytikkä, J., Kotronen, A., Pitkonen, M., et al. (2007). Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nature Medicine, 13, 1458–1466.

    Article  PubMed  CAS  Google Scholar 

  • Van de Pavert, S. A., & Mebius, R. E. (2010). New insights into the development of lymphoid tissues. Nature Reviews Immunology, 10, 664–674.

    Article  PubMed  Google Scholar 

  • Van de Pavert, S. A., Olivier, B. J., Goverse, G., Vondenhoff, M. F., Greuter, M., Beke, P., et al. (2009). Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nature Immunology, 10, 1193–1199.

    Article  PubMed  Google Scholar 

  • Vondenhoff, M. F., Greuter, M., Goverse, G., Elewaut, D., Dewint, P., Ware, C. F., et al. (2009a). LTbetaR signaling induces cytokine expression and up-regulates lymphangiogenic factors in lymph node anlagen. Journal of Immunology, 182, 5439–5445.

    Article  CAS  Google Scholar 

  • Vondenhoff, M. F., Van de Pavert, S. A., Dillard, M. E., Greuter, M., Goverse, G., Oliver, G., & Mebius, R. E. (2009b). Lymph sacs are not required for the initiation of lymph node formation. Development, 136, 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Wigle, J. T., & Oliver, G. (1999). Prox1 function is required for the development of the murine lymphatic system. Cell, 98, 769–778.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reina E. Mebius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

van de Pavert, S.A., Mebius, R.E. (2014). Development of Secondary Lymphoid Organs in Relation to Lymphatic Vasculature. In: Kiefer, F., Schulte-Merker, S. (eds) Developmental Aspects of the Lymphatic Vascular System. Advances in Anatomy, Embryology and Cell Biology, vol 214. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1646-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1646-3_7

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1645-6

  • Online ISBN: 978-3-7091-1646-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics