Skip to main content

Mechanosensing in Developing Lymphatic Vessels

  • Chapter
  • First Online:
Book cover Developmental Aspects of the Lymphatic Vascular System

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 214))

Abstract

The lymphatic vasculature is responsible for fluid homeostasis, transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a network of lymphatic capillaries that drain into collecting lymphatic vessels and ultimately bring fluid back to the blood circulation. Lymphatic endothelial cells (LECs) that line lymphatic capillaries present loose overlapping intercellular junctions and anchoring filaments that support fluid drainage. When interstitial fluid accumulates within tissues, the extracellular matrix (ECM) swells and pulls the anchoring filaments. This results in opening of the LEC junctions and permits interstitial fluid uptake. The absorbed fluid is then transported within collecting lymphatic vessels, which exhibit intraluminal valves that prevent lymph backflow and smooth muscle cells that sequentially contract to propel lymph.

Mechanotransduction involves translation of mechanical stimuli into biological responses. LECs have been shown to sense and respond to changes in ECM stiffness, fluid pressure-induced cell stretch, and fluid flow-induced shear stress. How these signals influence LEC function and lymphatic vessel growth can be investigated by using different mechanotransduction assays in vitro and to some extent in vivo.

In this chapter, we will focus on the mechanical forces that regulate lymphatic vessel expansion during embryonic development and possibly secondary lymphedema. In mouse embryos, it has been recently shown that the amount of interstitial fluid determines the extent of lymphatic vessel expansion via a mechanosensory complex formed by β1 integrin and vascular endothelial growth factor receptor-3 (VEGFR3). This model might as well apply to secondary lymphedema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akl, T. J., Nagai, T., Cote, G. L., & Gashev, A. A. (2011). Mesenteric lymph flow in adult and aged rats. American Journal of Physiology. Heart and Circulatory Physiology, 301(5), H1828–H1840. doi:10.1152/ajpheart.00538.2011.

    Article  PubMed  CAS  Google Scholar 

  • Ando, J., & Yamamoto, K. (2009). Vascular mechanobiology: Endothelial cell responses to fluid shear stress. Circulation Journal, 73(11), 1983–1992.

    Article  PubMed  CAS  Google Scholar 

  • Anwar, M. A., Shalhoub, J., Lim, C. S., Gohel, M. S., & Davies, A. H. (2012). The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. Journal of Vascular Research, 49(6), 463–478. doi:10.1159/000339151.

    Article  PubMed  CAS  Google Scholar 

  • Arnsdorf, E. J., Tummala, P., Kwon, R. Y., & Jacobs, C. R. (2009). Mechanically induced osteogenic differentiation–the role of RhoA, ROCKII and cytoskeletal dynamics. Journal of Cell Science, 122(Pt 4), 546–553. doi:10.1242/jcs.036293.

    Article  PubMed  CAS  Google Scholar 

  • Aukland, K., & Reed, R. K. (1993). Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiological Reviews, 73(1), 1–78.

    PubMed  CAS  Google Scholar 

  • Baluk, P., Fuxe, J., Hashizume, H., Romano, T., Lashnits, E., Butz, S., et al. (2007). Functionally specialized junctions between endothelial cells of lymphatic vessels. Journal of Experimental Medicine, 204(10), 2349–2362. doi:10.1084/jem.20062596.

    Article  PubMed  CAS  Google Scholar 

  • Batra, N., Burra, S., Siller-Jackson, A. J., Gu, S., Xia, X., Weber, G. F., et al. (2012). Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 3359–3364. doi:10.1073/pnas.1115967109.

    Article  PubMed  CAS  Google Scholar 

  • Bazigou, E., & Makinen, T. (2013). Flow control in our vessels: Vascular valves make sure there is no way back. Cellular and Molecular Life Sciences, 70(6), 1055–1066. doi:10.1007/s00018-012-1110-6.

    Article  PubMed  CAS  Google Scholar 

  • Benetos, A., Laurent, S., Hoeks, A. P., Boutouyrie, P. H., & Safar, M. E. (1993). Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arteriosclerosis and Thrombosis, 13(1), 90–97.

    Article  PubMed  CAS  Google Scholar 

  • Berbari, N. F., O’Connor, A. K., Haycraft, C. J., & Yoder, B. K. (2009). The primary cilium as a complex signaling center. Current Biology, 19(13), R526–R535. doi:10.1016/j.cub.2009.05.025.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., & Ingber, D. E. (1997). Geometric control of cell life and death. Science, 276(5317), 1425–1428.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, J. J., & Chien, S. (2011). Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiological Reviews, 91(1), 327–387. doi:10.1152/physrev.00047.2009.

    Article  PubMed  Google Scholar 

  • Danussi, C., Spessotto, P., Petrucco, A., Wassermann, B., Sabatelli, P., Montesi, M., et al. (2008). Emilin1 deficiency causes structural and functional defects of lymphatic vasculature. Molecular and Cellular Biology, 28(12), 4026–4039. doi:10.1128/MCB.02062-07.

    Article  PubMed  CAS  Google Scholar 

  • Dixelius, J., Makinen, T., Wirzenius, M., Karkkainen, M. J., Wernstedt, C., Alitalo, K., & Claesson-Welsh, L. (2003). Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. The Journal of Biological Chemistry, 278(42), 40973–40979. doi:10.1074/jbc.M304499200.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, J. B., Greiner, S. T., Gashev, A. A., Cote, G. L., Moore, J. E., & Zawieja, D. C. (2006). Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation, 13(7), 597–610. doi:10.1080/10739680600893909.

    Article  PubMed  Google Scholar 

  • Drewes, R. C., Hedrick, M. S., Hillman, S. S., & Withers, P. C. (2007). Unique role of skeletal muscle contraction in vertical lymph movement in anurans. Journal of Experimental Biology, 210(Pt 22), 3931–3939. doi:10.1242/jeb.009548.

    Article  PubMed  Google Scholar 

  • Duncan, G. S., Andrew, D. P., Takimoto, H., Kaufman, S. A., Yoshida, H., Spellberg, J., et al. (1999). Genetic evidence for functional redundancy of Platelet/Endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. Journal of Immunology, 162(5), 3022–3030.

    CAS  Google Scholar 

  • Dupont, S., Morsut, L., Aragona, M., Enzo, E., Giulitti, S., Cordenonsi, M., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474(7350), 179–183. doi:10.1038/nature10137.

    Article  PubMed  CAS  Google Scholar 

  • Engler, A. J., Rehfeldt, F., Sen, S., & Discher, D. E. (2007). Microtissue elasticity: Measurements by atomic force microscopy and its influence on cell differentiation. Methods in Cell Biology, 83, 521–545. doi:10.1016/S0091-679X(07)83022-6.

    Article  PubMed  CAS  Google Scholar 

  • Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689. doi:10.1016/j.cell.2006.06.044.

    Article  PubMed  CAS  Google Scholar 

  • Finan, J. D., & Guilak, F. (2010). The effects of osmotic stress on the structure and function of the cell nucleus. Journal of Cellular Biochemistry, 109(3), 460–467. doi:10.1002/jcb.22437.

    PubMed  CAS  Google Scholar 

  • Földi, M., & Strössenreuther, R. (2005). Foundations of manual lymph drainage (3rd ed.). New York: Elsevier.

    Google Scholar 

  • Francois, M., Caprini, A., Hosking, B., Orsenigo, F., Wilhelm, D., Browne, C., et al. (2008). Sox18 induces development of the lymphatic vasculature in mice. Nature, 456(7222), 643–647. doi:10.1038/nature07391.

    Article  PubMed  CAS  Google Scholar 

  • Friedland, J. C., Lee, M. H., & Boettiger, D. (2009). Mechanically activated integrin switch controls alpha5beta1 function. Science, 323(5914), 642–644. doi:10.1126/science.1168441.

    Article  PubMed  CAS  Google Scholar 

  • Galvagni, F., Pennacchini, S., Salameh, A., Rocchigiani, M., Neri, F., Orlandini, M., et al. (2010). Endothelial cell adhesion to the extracellular matrix induces c-Src-dependent VEGFR-3 phosphorylation without the activation of the receptor intrinsic kinase activity. Circulation Research, 106(12), 1839–1848. doi:10.1161/CIRCRESAHA.109.206326.

    Article  PubMed  CAS  Google Scholar 

  • Gashev, A. A., & Zawieja, D. C. (2010). Hydrodynamic regulation of lymphatic transport and the impact of aging. Pathophysiology, 17(4), 277–287. doi:10.1016/j.pathophys.2009.09.002.

    Article  PubMed  Google Scholar 

  • Gelosa, P., Sevin, G., Pignieri, A., Budelli, S., Castiglioni, L., Blanc-Guillemaud, V., et al. (2011). Terutroban, a thromboxane/prostaglandin endoperoxide receptor antagonist, prevents hypertensive vascular hypertrophy and fibrosis. American Journal of Physiology. Heart and Circulatory Physiology, 300(3), H762–H768. doi:10.1152/ajpheart.00880.2010.

    Article  PubMed  CAS  Google Scholar 

  • Greber, K., & Schipp, R. (1990). Early development and myogenesis of the posterior anuran lymph hearts. Anatomy and Embryology, 181(1), 75–82.

    Article  PubMed  CAS  Google Scholar 

  • Hägerling, R., Pollmann, C., Andreas, M., Schmidt, C., Nurmi, H., Adams, R. H., et al. (2013). A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO Journal, 32(5), 629–644. doi:10.1038/emboj.2012.340.

    Article  PubMed  Google Scholar 

  • Hahn, C., Orr, A. W., Sanders, J. M., Jhaveri, K. A., & Schwartz, M. A. (2009). The subendothelial extracellular matrix modulates JNK activation by flow. Circulation Research, 104(8), 995–1003. doi:10.1161/CIRCRESAHA.108.186486.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, C., & Schwartz, M. A. (2009). Mechanotransduction in vascular physiology and atherogenesis. Nature Reviews Molecular Cell Biology, 10(1), 53–62. doi:10.1038/nrm2596.

    Article  PubMed  CAS  Google Scholar 

  • Harry, B. L., Sanders, J. M., Feaver, R. E., Lansey, M., Deem, T. L., Zarbock, A., et al. (2008). Endothelial cell PECAM-1 promotes atherosclerotic lesions in areas of disturbed flow in ApoE-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(11), 2003–2008. doi:10.1161/ATVBAHA.108.164707.

    Article  PubMed  CAS  Google Scholar 

  • Hedrick, M. S., Hillman, S. S., Drewes, R. C., & Withers, P. C. (2013). Lymphatic regulation in non-mammalian vertebrates. Journal of Applied Physiology, 115(3), 297–308. doi:10.1152/japplphysiol.00201.2013.

    Article  PubMed  Google Scholar 

  • Hoey, D. A., Downs, M. E., & Jacobs, C. R. (2012). The mechanics of the primary cilium: An intricate structure with complex function. Journal of Biomechanics, 45(1), 17–26. doi:10.1016/j.jbiomech.2011.08.008.

    Article  PubMed  Google Scholar 

  • Hoffman, B. D., Grashoff, C., & Schwartz, M. A. (2011). Dynamic molecular processes mediate cellular mechanotransduction. Nature, 475(7356), 316–323. doi:10.1038/nature10316.

    Article  PubMed  CAS  Google Scholar 

  • Hormeno, S., & Arias-Gonzalez, J. R. (2006). Exploring mechanochemical processes in the cell with optical tweezers. Biology of the Cell, 98(12), 679–695. doi:10.1042/BC20060036.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D. E. (2006). Cellular mechanotransduction: Putting all the pieces together again. FASEB Journal, 20(7), 811–827. doi:10.1096/fj.05-5424rev.

    Article  PubMed  CAS  Google Scholar 

  • Intengan, H. D., & Schiffrin, E. L. (2001). Vascular remodeling in hypertension: Roles of apoptosis, inflammation, and fibrosis. Hypertension, 38(3 Pt 2), 581–587.

    Article  PubMed  CAS  Google Scholar 

  • Isnard, R. N., Pannier, B. M., Laurent, S., London, G. M., Diebold, B., & Safar, M. E. (1989). Pulsatile diameter and elastic modulus of the aortic arch in essential hypertension: A noninvasive study. Journal of the American College of Cardiology, 13(2), 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Jalali, S., del Pozo, M. A., Chen, K., Miao, H., Li, Y., Schwartz, M. A., et al. (2001). Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 1042–1046. doi:10.1073/pnas.031562998.

    Article  PubMed  CAS  Google Scholar 

  • Jeltsch, M., Tammela, T., Alitalo, K., & Wilting, J. (2003). Genesis and pathogenesis of lymphatic vessels. Cell and Tissue Research, 314(1), 69–84. doi:10.1007/s00441-003-0777-2.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J. X., Siller-Jackson, A. J., & Burra, S. (2007). Roles of gap junctions and hemichannels in bone cell functions and in signal transmission of mechanical stress. Frontiers in Bioscience, 12, 1450–1462.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. M., Gamperl, A. K., Farrell, A. P., & Toews, D. P. (1997). Direct measurement of flow from the posterior lymph hearts of hydrated and dehydrated toads (Bufo marinus). Journal of Experimental Biology, 200(Pt 11), 1695–1702.

    PubMed  CAS  Google Scholar 

  • Klinghoffer, R. A., Sachsenmaier, C., Cooper, J. A., & Soriano, P. (1999). Src family kinases are required for integrin but not PDGFR signal transduction. EMBO Journal, 18(9), 2459–2471. doi:10.1093/emboj/18.9.2459.

    Article  PubMed  CAS  Google Scholar 

  • le Noble, F., Fleury, V., Pries, A., Corvol, P., Eichmann, A., & Reneman, R. S. (2005). Control of arterial branching morphogenesis in embryogenesis: Go with the flow. Cardiovascular Research, 65(3), 619–628. doi:10.1016/j.cardiores.2004.09.018.

    Article  PubMed  Google Scholar 

  • Leak, L. V., & Burke, J. F. (1968a). Ultrastructural studies on the lymphatic anchoring filaments. Journal of Cell Biology, 36(1), 129–149.

    Article  Google Scholar 

  • Leak, L. V., & Burke, J. F. (1968b). Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances. Lymphology, 1(2), 39–52.

    PubMed  CAS  Google Scholar 

  • Leckband, D. E., le Duc, Q., Wang, N., & de Rooij, J. (2011). Mechanotransduction at cadherin-mediated adhesions. Current Opinion in Cell Biology, 23(5), 523–530. doi:10.1016/j.ceb.2011.08.003.

    Article  PubMed  CAS  Google Scholar 

  • Levick, J. R., & Michel, C. C. (2010). Microvascular fluid exchange and the revised Starling principle. Cardiovascular Research, 87(2), 198–210. doi:10.1093/cvr/cvq062.

    Article  PubMed  CAS  Google Scholar 

  • Loprinzi, C. L., Okuno, S., Pisansky, T. M., Sterioff, S., Gaffey, T. A., & Morton, R. F. (1996). Postsurgical changes of the breast that mimic inflammatory breast carcinoma. Mayo Clinic Proceedings, 71(6), 552–555. doi:10.1016/S0025-6196(11)64111-6.

    Article  PubMed  CAS  Google Scholar 

  • Maby-El Hajjami, H. P. T. (2008). Developmental and pathological lymphangiogenesis: From models to human disease. Histochemistry and Cell Biology, 130(6), 1063–1078. doi:10.1007/s00418-008-0525-5.

    Article  PubMed  CAS  Google Scholar 

  • Makinen, T., Norrmen, C., & Petrova, T. V. (2007). Molecular mechanisms of lymphatic vascular development. Cellular and Molecular Life Sciences, 64(15), 1915–1929. doi:10.1007/s00018-007-7040-z.

    Article  PubMed  CAS  Google Scholar 

  • Mammoto, A., Mammoto, T., & Ingber, D. E. (2012). Mechanosensitive mechanisms in transcriptional regulation. Journal of Cell Science, 125(Pt 13), 3061–3073. doi:10.1242/jcs.093005.

    Article  PubMed  CAS  Google Scholar 

  • Mellor, R. H., Stanton, A. W., Azarbod, P., Sherman, M. D., Levick, J. R., & Mortimer, P. S. (2000). Enhanced cutaneous lymphatic network in the forearms of women with postmastectomy oedema. Journal of Vascular Research, 37(6), 501–512. doi:10.1159/000054083.

    Article  PubMed  CAS  Google Scholar 

  • Moffitt, J. R., Chemla, Y. R., Smith, S. B., & Bustamante, C. (2008). Recent advances in optical tweezers. Annual Review of Biochemistry, 77, 205–228. doi:10.1146/annurev.biochem.77.043007.090225.

    Article  PubMed  CAS  Google Scholar 

  • Morimatsu, Y., Sakashita, N., Komohara, Y., Ohnishi, K., Masuda, H., Dahan, D., et al. (2012). Development and characterization of an animal model of severe pulmonary arterial hypertension. Journal of Vascular Research, 49(1), 33–42. doi:10.1159/000329594.

    Article  PubMed  CAS  Google Scholar 

  • Ny, A., Koch, M., Schneider, M., Neven, E., Tong, R. T., Maity, S., et al. (2005). A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nature Medicine, 11(9), 998–1004. doi:10.1038/nm1285.

    PubMed  CAS  Google Scholar 

  • O’Rourke, M. (1995). Mechanical principles in arterial disease. Hypertension, 26(1), 2–9.

    Article  PubMed  Google Scholar 

  • Ohhashi, T., Mizuno, R., Ikomi, F., & Kawai, Y. (2005). Current topics of physiology and pharmacology in the lymphatic system. Pharmacology & Therapeutics, 105(2), 165–188. doi:10.1016/j.pharmthera.2004.10.009.

    Article  CAS  Google Scholar 

  • Ohya, Y., Abe, I., Fujii, K., Kobayashi, K., Onaka, U., & Fujishima, M. (1997). Intima-media thickness of the carotid artery in hypertensive subjects and hypertrophic cardiomyopathy patients. Hypertension, 29(1 Pt 2), 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Olszewski, W. E. A., Jaeger, P. M., Sokolowski, J., & Theodorsen, L. (1977). Flow and composition of leg lymph in normal men during venous stasis, muscular activity and local hyperthermia. Acta Physiologica Scandinavica, 99(2), 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Orr, A. W., Hahn, C., Blackman, B. R., & Schwartz, M. A. (2008). p21-activated kinase signaling regulates oxidant-dependent NF-kappa B activation by flow. Circulation Research, 103(6), 671–679. doi:10.1161/CIRCRESAHA.108.182097.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, L., Andrikopoulos, K., Tian, J., Lee, S. Y., Keene, D. R., Ono, R., et al. (1997). Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nature Genetics, 17(2), 218–222. doi:10.1038/ng1097-218.

    Article  PubMed  CAS  Google Scholar 

  • Petrova, T. V., Karpanen, T., Norrmen, C., Mellor, R., Tamakoshi, T., Finegold, D., et al. (2004). Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nature Medicine, 10(9), 974–981. doi:10.1038/nm1094.

    Article  PubMed  CAS  Google Scholar 

  • Planas-Paz, L., & Lammert, E. (2013). Mechanical forces in lymphatic vascular development and disease. Cellular and Molecular Life Sciences. doi:10.1007/s00018-013-1358-5.

  • Planas-Paz, L., Strilic, B., Goedecke, A., Breier, G., Fässler, R., & Lammert, E. (2012). Mechanoinduction of lymph vessel expansion. EMBO Journal, 31(4), 788–804. doi:10.1038/emboj.2011.456.

    Article  PubMed  CAS  Google Scholar 

  • Pries, A. R., Secomb, T. W., & Gaehtgens, P. (1995). Design principles of vascular beds. Circulation Research, 77(5), 1017–1023.

    Article  PubMed  CAS  Google Scholar 

  • Pyke, K. E., & Tschakovsky, M. E. (2005). The relationship between shear stress and flow-mediated dilatation: Implications for the assessment of endothelial function. Journal of Physiology, 568(Pt 2), 357–369. doi:10.1113/jphysiol.2005.089755.

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan, K., & Rockson, S. G. (2008). The clinical spectrum of lymphatic disease. Annals of the New York Academy of Sciences, 1131, 155–184. doi:10.1196/annals.1413.015.

    Article  PubMed  Google Scholar 

  • Reyes-Reyes, M., Mora, N., Zentella, A., & Rosales, C. (2001). Phosphatidylinositol 3-kinase mediates integrin-dependent NF-kappaB and MAPK activation through separate signaling pathways. Journal of Cell Science, 114(Pt 8), 1579–1589.

    PubMed  CAS  Google Scholar 

  • Richardson, W. J., Metz, R. P., Moreno, M. R., Wilson, E., & Moore, J. E., Jr. (2011). A device to study the effects of stretch gradients on cell behavior. Journal of Biomechanical Engineering, 133(10), 101008. doi:10.1115/1.4005251.

    Article  PubMed  Google Scholar 

  • Sabine, A., Agalarov, Y., Maby-El Hajjami, H., Jaquet, M., Hägerling, R., Pollmann, C., et al. (2012). Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Developmental Cell, 22(2), 430–445. doi:10.1016/j.devcel.2011.12.020.

    Article  PubMed  CAS  Google Scholar 

  • Salameh, A., & Dhein, S. (2013). Effects of mechanical forces and stretch on intercellular gap junction coupling. Biochimica et Biophysica Acta, 1828(1), 147–156. doi:10.1016/j.bbamem.2011.12.030.

    Article  PubMed  CAS  Google Scholar 

  • Schenkel, A. R., Chew, T. W., & Muller, W. A. (2004). Platelet endothelial cell adhesion molecule deficiency or blockade significantly reduces leukocyte emigration in a majority of mouse strains. Journal of Immunology, 173(10), 6403–6408.

    CAS  Google Scholar 

  • Schmid-Schonbein, G. W. (1990). Microlymphatics and lymph flow. Physiological Reviews, 70(4), 987–1028.

    PubMed  CAS  Google Scholar 

  • Schulte-Merker, S., Sabine, A., & Petrova, T. V. (2011). Lymphatic vascular morphogenesis in development, physiology, and disease. Journal of Cell Biology, 193(4), 607–618. doi:10.1083/jcb.201012094.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, M. A., & DeSimone, D. W. (2008). Cell adhesion receptors in mechanotransduction. Current Opinion in Cell Biology, 20(5), 551–556. doi:10.1016/j.ceb.2008.05.005.

    Article  PubMed  CAS  Google Scholar 

  • Sinha, B., Koster, D., Ruez, R., Gonnord, P., Bastiani, M., Abankwa, D., et al. (2011). Cells respond to mechanical stress by rapid disassembly of caveolae. Cell, 144(3), 402–413. doi:10.1016/j.cell.2010.12.031.

    Article  PubMed  CAS  Google Scholar 

  • Strilic, B., Kucera, T., & Lammert, E. (2010). Formation of cardiovascular tubes in invertebrates and vertebrates. Cellular and Molecular Life Sciences, 67(19), 3209–3218. doi:10.1007/s00018-010-0400-0.

    Article  PubMed  CAS  Google Scholar 

  • Sukharev, S., & Sachs, F. (2012). Molecular force transduction by ion channels: Diversity and unifying principles. Journal of Cell Science, 125(Pt 13), 3075–3083. doi:10.1242/jcs.092353.

    Article  PubMed  CAS  Google Scholar 

  • Swartz, M. A., & Lund, A. W. (2012). Lymphatic and interstitial flow in the tumour microenvironment: Linking mechanobiology with immunity. Nature Reviews Cancer, 12(3), 210–219. doi:10.1038/nrc3186.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A. E. (1981). Capillary fluid filtration. Starling forces and lymph flow. Circulation Research, 49(3), 557–575.

    Article  PubMed  CAS  Google Scholar 

  • Tse, J. R., & Engler, A. J. (2010). Preparation of hydrogel substrates with tunable mechanical properties. Current Protocols in Cell Biology, Chapter 10:Unit 10.16. doi:10.1002/0471143030.cb1016s47.

  • Tzima, E., Del Pozo, M. A., Kiosses, W. B., Mohamed, S. A., Li, S., Chien, S., & Schwartz, M. A. (2002). Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO Journal, 21(24), 6791–6800.

    Article  PubMed  CAS  Google Scholar 

  • Tzima, E., del Pozo, M. A., Shattil, S. J., Chien, S., & Schwartz, M. A. (2001). Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO Journal, 20(17), 4639–4647. doi:10.1093/emboj/20.17.4639.

    Article  PubMed  CAS  Google Scholar 

  • Tzima, E., Irani-Tehrani, M., Kiosses, W. B., Dejana, E., Schultz, D. A., Engelhardt, B., et al. (2005). A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 437(7057), 426–431. doi:10.1038/nature03952.

    Article  PubMed  CAS  Google Scholar 

  • von der Weid, P. Y., & Muthuchamy, M. (2010). Regulatory mechanisms in lymphatic vessel contraction under normal and inflammatory conditions. Pathophysiology, 17(4), 263–276. doi:10.1016/j.pathophys.2009.10.005.

    Article  PubMed  Google Scholar 

  • Warboys, C. M., Amini, N., de Luca, A., & Evans, P. C. (2011). The role of blood flow in determining the sites of atherosclerotic plaques. F1000 Medicine Reports, 3, 5. doi:10.3410/M3-5.

    Article  PubMed  Google Scholar 

  • Warren, A. G., Brorson, H., Borud, L. J., & Slavin, S. A. (2007). Lymphedema: A comprehensive review. Annals of Plastic Surgery, 59(4), 464–472. doi:10.1097/01.sap.0000257149.42922.7e.

    Article  PubMed  CAS  Google Scholar 

  • Weber, C., & Noels, H. (2011). Atherosclerosis: Current pathogenesis and therapeutic options. Nature Medicine, 17(11), 1410–1422. doi:10.1038/nm.2538.

    Article  PubMed  CAS  Google Scholar 

  • Wigle, J. T., & Oliver, G. (1999). Prox1 function is required for the development of the murine lymphatic system. Cell, 98(6), 769–778.

    Article  PubMed  CAS  Google Scholar 

  • Yang, B., Radel, C., Hughes, D., Kelemen, S., & Rizzo, V. (2011). p190 RhoGTPase-activating protein links the beta1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(2), 376–383. doi:10.1161/ATVBAHA.110.217794.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, L., Sang, C., Yang, C., & Zhuang, F. (2011). Effects of stress fiber contractility on uniaxial stretch guiding mitosis orientation and stress fiber alignment. Journal of Biomechanics, 44(13), 2388–2394. doi:10.1016/j.jbiomech.2011.06.033.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckhard Lammert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Planas-Paz, L., Lammert, E. (2014). Mechanosensing in Developing Lymphatic Vessels. In: Kiefer, F., Schulte-Merker, S. (eds) Developmental Aspects of the Lymphatic Vascular System. Advances in Anatomy, Embryology and Cell Biology, vol 214. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1646-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1646-3_3

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1645-6

  • Online ISBN: 978-3-7091-1646-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics