Skip to main content

Brain-Computer Interface for Assessing Consciousness in Severely Brain-Injured Patients

  • Chapter
  • First Online:

Abstract

Brain-computer interfaces (BCIs) are tools that allow overcoming motor disability in patients with brain injury, allowing them to communicate with the environment. This chapter reviews studies on BCI applications in patients with disorders of consciousness, including EEG and fMRI applications, with a critical appraisal regarding false-positive and false-negative results. The role of steady-state visually evoked potentials and of the cognitive evoked potential P3 (or P300) will be highlighted. Future research has to overcome several challenges limiting current BCI application in routine practice and provide more reliable tools for diagnosis. Alternative protocols might be of interest in the development of easy-to-use systems for caregivers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Based on CRS-R data obtained from Pokorny et al. Note that for four patients, subscales scores were not available, preventing the current analysis in terms of false negatives.

References

  • Alvarez TL et al (2012) Concurrent vision dysfunctions in convergence insufficiency with traumatic brain injury. Optom Vis Sci 89(12):1740–1751

    Article  PubMed  Google Scholar 

  • Bardin JC et al (2011) Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain 134(Pt 3):769–782

    Article  PubMed Central  PubMed  Google Scholar 

  • Bekinschtein TA et al (2008) Can electromyography objectively detect voluntary movement in disorders of consciousness? J Neurol Neurosurg Psychiatry 79(7):826–828

    Article  CAS  PubMed  Google Scholar 

  • Bianchi L et al (2010) Which physiological components are more suitable for visual ERP based brain-computer interface? A preliminary MEG/EEG study. Brain Topogr 23(2):180–185

    Article  PubMed  Google Scholar 

  • Birbaumer N (1997) Slow cortical potentials: their origin, meaning, and clinical use. In: van Boxtel GJM, Böcker K (eds) Brain and behavior past, present, and future. Tilburg University Press, Tilburg, pp 25–39

    Google Scholar 

  • Birbaumer N (2006) Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43(6):517–532

    Article  PubMed  Google Scholar 

  • Birbaumer N et al (1999) A spelling device for the paralysed. Nature 398(6725):297–298

    Article  CAS  PubMed  Google Scholar 

  • Birbaumer N et al (2000) The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng 8(2):190–193

    Article  CAS  PubMed  Google Scholar 

  • Birbaumer N et al (2012) Ideomotor silence: the case of complete paralysis and brain-computer interfaces (BCI). Psychol Res 76(2):183–191

    Article  PubMed  Google Scholar 

  • Boly M, Seth AK (2012) Modes and models in disorders of consciousness science. Arch Ital Biol 150(2–3):172–184

    CAS  PubMed  Google Scholar 

  • Bruno MA et al (2011) From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J Neurol 258(7):1373–1384

    Article  PubMed  Google Scholar 

  • Bruno MA et al (2012) Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J Neurol 259(6):1087–1098

    Article  PubMed  Google Scholar 

  • Casali AG et al (2013) A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 5(198):198ra105

    Article  PubMed  Google Scholar 

  • Chatelle C et al (2012) Brain-computer interfacing in disorders of consciousness. Brain Inj 26(12):1510–1522

    Article  PubMed  Google Scholar 

  • Chatelle C, Laureys S, Noirhomme Q (2014) BCI and diagnosis. In: Gerd Grübler, Elisabeth Hildt (ed) Brain-computer-interfaces in their ethical, social and cultural contexts. Springer, Dordrecht

    Google Scholar 

  • Chennu S et al (2013) Dissociable endogenous and exogenous attention in disorders of consciousness. Neuroimage Clin 3:450–461

    Article  PubMed Central  PubMed  Google Scholar 

  • Citi L et al (2008) P300-based BCI mouse with genetically-optimized analogue control. IEEE Trans Neural Syst Rehabil Eng 16(1):51–61

    Article  PubMed  Google Scholar 

  • Combaz A et al (2013) A comparison of two spelling Brain-Computer Interfaces based on visual P3 and SSVEP in Locked-In Syndrome. PLoS One 8(9):e73691

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruse D et al (2011) Bedside detection of awareness in the vegetative state. Lancet 378(9809):2088–2094

    Article  PubMed  Google Scholar 

  • Cruse D et al (2012a) The relationship between aetiology and covert cognition in the minimally-conscious state. Neurology 78(11):816–822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruse D et al (2012b) Detecting awareness in the vegetative state: electroencephalographic evidence for attempted movements to command. PLoS One 7(11):e49933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruse D et al (2013) Reanalysis of “Bedside detection of awareness in the vegetative state: a cohort study” – Authors’ reply. Lancet 381(9863):291–292

    Article  PubMed  Google Scholar 

  • Cui X et al (2007) Vividness of mental imagery: individual variability can be measured objectively. Vision Res 47(4):474–478

    Article  PubMed Central  PubMed  Google Scholar 

  • Dickstein R et al (2014) Motor imagery group practice for gait rehabilitation in individuals with post-stroke hemiparesis: a pilot study. NeuroRehabilitation 34(2):267–276

    PubMed  Google Scholar 

  • Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehabil Eng 8(2):174–179

    Article  CAS  PubMed  Google Scholar 

  • Elbert T et al (1980) Biofeedback of slow cortical potentials. I. Electroencephalogr Clin Neurophysiol 48(3):293–301

    Article  CAS  PubMed  Google Scholar 

  • Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  CAS  PubMed  Google Scholar 

  • Faugeras F et al (2011) Probing consciousness with event-related potentials in the vegetative state. Neurology 77(3):264–268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fiori F et al (2013) Exploring motor and visual imagery in Amyotrophic Lateral Sclerosis. Exp Brain Res 226(4):537–547

    Google Scholar 

  • Giacino JT (1997) Disorders of consciousness: differential diagnosis and neuropathologic features. Semin Neurol 17(2):105–111

    Article  CAS  PubMed  Google Scholar 

  • Giacino J et al (2002) The minimally conscious state: definition and diagnostic criteria. Neurology 58(3):349–353

    Article  PubMed  Google Scholar 

  • Gibson RM et al (2014) Complexity and familiarity enhance single-trial detectability of imagined movements with electroencephalography. Clin Neurophysiol 125(8):1556–1567

    Article  PubMed  Google Scholar 

  • Goldfine AM et al (2011) Determination of awareness in patients with severe brain injury using EEG power spectral analysis. Clin Neurophysiol 122(11):2157–2168

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldfine AM et al (2013) Reanalysis of Bedside detection of awareness in the vegetative state: a cohort study. Lancet 381(9863):289–291

    Article  PubMed Central  PubMed  Google Scholar 

  • Gray M et al (2003) Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady state probe topography (SSPT). Neuroimage 20(2):975–986

    Article  CAS  PubMed  Google Scholar 

  • Guger C et al (2003) How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst Rehabil Eng 11(2):145–147

    Article  CAS  PubMed  Google Scholar 

  • Guger C et al (2009) How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Lett 462(1):94–98

    Article  CAS  PubMed  Google Scholar 

  • Halder S et al (2010) An auditory oddball brain-computer interface for binary choices. Clin Neurophysiol 121(4):516–523

    Article  CAS  PubMed  Google Scholar 

  • Hill NJ et al (2006) Classifying EEG and ECoG signals without subject training for fast BCI implementation: comparison of nonparalyzed and completely paralyzed subjects. IEEE Trans Neural Syst Rehabil Eng 14(2):183–186

    Article  PubMed  Google Scholar 

  • Hochberg LR et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann U et al (2008) An efficient P300-based brain-computer interface for disabled subjects. J Neurosci Methods 167(1):115–125

    Article  PubMed  Google Scholar 

  • Jackson PL et al (2001) Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch Phys Med Rehabil 82(8):1133–1141

    Article  CAS  PubMed  Google Scholar 

  • Kasahara T et al (2012) The correlation between motor impairments and event-related desynchronization during motor imagery in ALS patients. BMC Neurosci 13:66.

    Google Scholar 

  • Kaufmann T et al (2011) ERPs contributing to classification in the P300 BCI. In: Proceedings of the 5th International Brain-Computer Interface Conference. Graz University of Technology, Austria

    Google Scholar 

  • King JR et al (2013) Information sharing in the brain indexes consciousness in noncommunicative patients. Curr Biol 23(19):1914–1919

    Article  CAS  PubMed  Google Scholar 

  • Kleih SC et al (2010) Motivation modulates the P300 amplitude during brain-computer interface use. Clin Neurophysiol 121(7):1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Kubler A, Birbaumer N (2008) Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol 119(11):2658–2666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubler A et al (1999) The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp Brain Res 124(2):223–232

    Article  CAS  PubMed  Google Scholar 

  • Kubler A et al (2006) BCI Meeting 2005–workshop on clinical issues and applications. IEEE Trans Neural Syst Rehabil Eng 14(2):131–134

    Article  CAS  PubMed  Google Scholar 

  • Kubler A et al (2009) A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients. Ann N Y Acad Sci 1157:90–100

    Article  PubMed  Google Scholar 

  • Laureys S et al (2005) The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? Prog Brain Res 150:495–511

    Article  PubMed  Google Scholar 

  • Laureys S et al (2010) Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med 8:68

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee JH et al (2009) Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm. Neurosci Lett 450(1):1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lesenfants D et al (2011) Design of a novel covert SSVEP-based BCI. In: Proceedings of the 5th International Brain-Computer Interface Conference. University of Technology Publishing House, Graz, Austria

    Google Scholar 

  • Lew HL et al (2009) Auditory and visual impairments in patients with blast-related traumatic brain injury: Effect of dual sensory impairment on Functional Independence Measure. J Rehabil Res Dev 46(6):819–826

    Article  PubMed  Google Scholar 

  • Logie RH et al (2011) Low and high imagers activate networks differentially in mental rotation. Neuropsychologia 49(11):3071–3077

    Article  PubMed  Google Scholar 

  • Luauté J et al (2010) Long-term outcomes of chronic minimally conscious and vegetative states. Neurology 75(3):246–252

    Google Scholar 

  • Lugo ZR et al (2014) A vibrotactile P300-based brain-computer interface for consciousness detection and communication. Clin EEG Neurosci 45(1):14–21

    Article  PubMed  Google Scholar 

  • Lulé D et al (2013) Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin Neurophysiol 124(1):101–106

    Google Scholar 

  • Majerus S et al (2009) The problem of aphasia in the assessment of consciousness in brain-damaged patients. Prog Brain Res 177:49–61

    Article  PubMed  Google Scholar 

  • Malinowska U et al (2013) Electroencephalographic profiles for differentiation of disorders of consciousness. Biomed Eng Online 12(1):109

    Article  PubMed Central  PubMed  Google Scholar 

  • Manyakov NV et al (2011) Comparison of classification methods for P300 brain-computer interface on disabled subjects. Comput Intell Neurosci 2011:519868

    PubMed Central  PubMed  Google Scholar 

  • Monti MM, Coleman MR, Owen AM (2009) Executive functions in the absence of behavior: functional imaging of the minimally conscious state. Prog Brain Res 177:249–260

    Article  PubMed  Google Scholar 

  • Monti MM et al (2010) Willful modulation of brain activity in disorders of consciousness. N Engl J Med 362(7):579–589

    Article  CAS  PubMed  Google Scholar 

  • Mugler EM et al (2010) Design and implementation of a P300-based brain-computer interface for controlling an internet browser. IEEE Trans Neural Syst Rehabil Eng 18(6):599–609

    Article  PubMed  Google Scholar 

  • Müller-Putz GR et al (2013) A single-switch bci based on passive and imagined movements: toward restoring communication in minimally conscious patients. Int J Neural Syst 23(2):1250037

    Article  PubMed  Google Scholar 

  • Naci L, Owen AM (2013) Making every word count for nonresponsive patients. JAMA Neurol 70(10):1235–1241

    PubMed  Google Scholar 

  • Nakase-Richardson R et al (2009) Emergence from minimally conscious state: insights from evaluation of posttraumatic confusion. Neurology 73(14):1120–1126

    Article  CAS  PubMed  Google Scholar 

  • Nam CS, Woo J, Bahn S (2012) Severe motor disability affects functional cortical integration in the context of brain-computer interface (BCI) use. Ergonomics 55(5):581–591

    Article  PubMed  Google Scholar 

  • Neuper C et al (2003) Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol 114(3):399–409

    Article  CAS  PubMed  Google Scholar 

  • Neuper C et al (2005) Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res 25(3):668–677

    Article  PubMed  Google Scholar 

  • Nijboer F et al (2008) A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119(8):1909–1916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nijboer F, Birbaumer N, Kubler A (2010) The influence of psychological state and motivation on brain-computer interface performance in patients with amyotrophic lateral sclerosis – a longitudinal study. Front Neurosci 4:55

    PubMed Central  PubMed  Google Scholar 

  • Oostra KM et al (2012) Motor imagery ability in patients with traumatic brain injury. Arch Phys Med Rehabil 93(5):828–833

    Article  PubMed  Google Scholar 

  • Owen AM et al (2006) Detecting awareness in the vegetative state. Science 313(5792):1402

    Article  CAS  PubMed  Google Scholar 

  • Page SJ, Levine P, Leonard A (2007) Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke 38(4):1293–1297

    Article  PubMed  Google Scholar 

  • Page SJ et al (2009) Cortical plasticity following motor skill learning during mental practice in stroke. Neurorehabil Neural Repair 23(4):382–388

    Article  PubMed Central  PubMed  Google Scholar 

  • Parini S et al (2009) A robust and self-paced BCI system based on a four class SSVEP paradigm: algorithms and protocols for a high-transfer-rate direct brain communication. Comput Intell Neurosci 864564

    Google Scholar 

  • Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G et al (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103(6):642–651

    Article  CAS  PubMed  Google Scholar 

  • Pham M et al (2005) An auditory brain-computer interface based on the self-regulation of slow cortical potentials. Neurorehabil Neural Repair 19(3):206–218

    Article  PubMed  Google Scholar 

  • Phillips CL et al (2011) “Relevance vector machine” consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients. Neuroimage 56(2):797–808

    Article  PubMed  Google Scholar 

  • Piccione F et al (2006) P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin Neurophysiol 117(3):531–537

    Article  CAS  PubMed  Google Scholar 

  • Pichiorri F et al (2011) Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness. J Neural Eng 8(2):025020

    Article  CAS  PubMed  Google Scholar 

  • Plum F, Posner J (1966) The diagnosis of stupor and coma, F.A. Davis Co., Philadelphia

    Google Scholar 

  • Pogoda TK et al (2012) Multisensory impairment reported by veterans with and without mild traumatic brain injury history. J Rehabil Res Dev 49(7):971–984

    Article  PubMed  Google Scholar 

  • Pokorny C et al (2013) The auditory P300-based single-switch brain-computer interface: paradigm transition from healthy subjects to minimally conscious patients. Artif Intell Med 59(2):81–90

    Article  PubMed  Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    Article  PubMed Central  PubMed  Google Scholar 

  • Prasad G et al (2010) Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J Neuroeng Rehabil 7:60

    Article  PubMed Central  PubMed  Google Scholar 

  • Regan D (1966) Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalogr Clin Neurophysiol 20(3):238–248

    Article  CAS  PubMed  Google Scholar 

  • Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York

    Google Scholar 

  • Risetti M et al (2013) On ERPs detection in disorders of consciousness rehabilitation. Front Hum Neurosci 7:775

    Article  PubMed Central  PubMed  Google Scholar 

  • Rowe FJ et al (2013) A prospective profile of visual field loss following stroke: prevalence, type, rehabilitation, and outcome. Biomed Res Int 2013:719096

    Article  PubMed Central  PubMed  Google Scholar 

  • Royal Collage of Physicians. The permanent vegetative state (1996). Review by a working group convened by the Royal College of Physicians and endorsed by the Conference of Medical Royal Colleges and their faculties of the United Kingdom J R Coll Physicians Lond 30(2):119–121

    Google Scholar 

  • Sacco K et al (2011) A combined robotic and cognitive training for locomotor rehabilitation: evidences of cerebral functional reorganization in two chronic traumatic brain injured patients. Front Hum Neurosci 5:146

    Article  PubMed Central  PubMed  Google Scholar 

  • Santos-Couto-Paz CC, Teixeira-Salmela LF, Tierra-Criollo CJ (2013) The addition of functional task-oriented mental practice to conventional physical therapy improves motor skills in daily functions after stroke. Braz J Phys Ther 17(6):564–571

    Article  PubMed Central  PubMed  Google Scholar 

  • Schnakers C et al (2008a) Voluntary brain processing in disorders of consciousness. Neurology 71:1614–1620

    Article  CAS  PubMed  Google Scholar 

  • Schnakers C et al (2008b) Cognitive function in the locked-in syndrome. J Neurol 255(3):323–330

    Article  PubMed  Google Scholar 

  • Schnakers C et al (2009) Detecting consciousness in a total locked-in syndrome: an active event-related paradigm. Neurocase 4:1–7

    Google Scholar 

  • Sellers EW, Donchin E (2006) A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol 117(3):538–548

    Article  PubMed  Google Scholar 

  • Sellers EW, Kubler A, Donchin E (2006) Brain-computer interface research at the University of South Florida Cognitive Psychophysiology Laboratory: the P300 Speller. IEEE Trans Neural Syst Rehabil Eng 14(2):221–224

    Article  PubMed  Google Scholar 

  • Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 11(5):449–455

    Google Scholar 

  • Silvoni S et al (2009) P300-based brain-computer interface communication: evaluation and follow-up in amyotrophic lateral sclerosis. Front Neurosci 3:60

    PubMed Central  PubMed  Google Scholar 

  • Sorger B et al (2009) Another kind of ‘BOLD Response’: answering multiple-choice questions via online decoded single-trial brain signals. Prog Brain Res 177:275–292

    Article  PubMed  Google Scholar 

  • Stoll J et al (2013) Pupil responses allow communication in locked-in syndrome patients. Curr Biol 23(15):R647–R648

    Article  CAS  PubMed  Google Scholar 

  • Teo WP, Chew E (2014) Is motor-imagery brain-computer interface feasible in stroke rehabilitation? A narrative review. PM R 6(8):723–728

    Article  PubMed  Google Scholar 

  • Vialatte FB et al (2010) Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol 90(4):418–438

    Article  PubMed  Google Scholar 

  • Whyte J et al (2013) Functional outcomes in traumatic disorders of consciousness: 5-year outcomes from the National Institute on Disability and Rehabilitation Research Traumatic Brain Injury Model Systems. Arch Phys Med Rehabil 94(10):1855–1860

    Article  PubMed  Google Scholar 

  • Wolpaw JR et al (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  PubMed  Google Scholar 

  • Yoo SS et al (2004) Brain-computer interface using fMRI: spatial navigation by thoughts. Neuroreport 15(10):1591–1595

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Martin Monti, Christoph Pokorny, and Audrey Vanhaudenhuyse for their collaboration on the patients’ data information. This study was supported by the National Funds for Scientific Research (FNRS), Action de Recherche Concertée, Fonds Léon Fredericq, James S. McDonnell Foundation, Mind Science Foundation, University of Liège, the Belgian American Educational Foundation (BAEF), the Fédération Wallonie Bruxelles International (WBI), and the Belgian Interuniversity Attraction Pole. CC is funded by the BAEF and WBI; SL is an FNRS research director. The text reflects solely the views of its authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Chatelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Chatelle, C., Lesenfants, D., Guller, Y., Laureys, S., Noirhomme, Q. (2015). Brain-Computer Interface for Assessing Consciousness in Severely Brain-Injured Patients. In: Rossetti, A., Laureys, S. (eds) Clinical Neurophysiology in Disorders of Consciousness. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1634-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1634-0_11

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1633-3

  • Online ISBN: 978-3-7091-1634-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics