Advertisement

Impaired Sleep and Alertness in Parkinson’s Disease: “What Did We Learn from Animal Models?”

  • Pierre-Hervé LuppiEmail author
  • Olivier Clément
  • Sara Valencia Garcia
  • Frédéric Brischoux
  • Patrice Fort
Chapter
  • 994 Downloads

Abstract

The aim of this review is to try to provide a conceptual framework on the mechanisms potentially responsible for sleep alteration in Parkinson’s disease (PD) based on data obtained in animals. We first provide state-of-the-art hypotheses on the mechanisms responsible for the succession of the three vigilance states, namely waking, non-rapid eye movement (non-REM) also called slow-wave sleep (SWS) and REM sleep also called paradoxical sleep (PS). We then review our knowledge on the role of dopamine in sleep-waking regulation. We pursue by discussing the results obtained on sleep in MPTP animal model of PD. We complete our review by providing hypotheses on the mechanisms responsible for REM sleep behavior disorder known to occur in half of the Parkinson’s patients based on studies of RBD animal models.

Keywords

Parkinson Brainstem Glycine GABA 

Notes

Acknowledgments

This work was supported by CNRS, Fondation France Parkinson and University Claude Bernard of Lyon.

References

  1. 1.
    Arnulf I, Konofal E, Merino-Andreu M, Houeto JL, Mesnage V, Welter ML, Lacomblez L, Golmard JL, Derenne JP, Agid Y. Parkinson’s disease and sleepiness: an integral part of PD. Neurology. 2002;58:1019–24.CrossRefPubMedGoogle Scholar
  2. 2.
    Ghorayeb I, Loundou A, Auquier P, Dauvilliers Y, Bioulac B, Tison F. A nationwide survey of excessive daytime sleepiness in Parkinson’s disease in France. Mov Disord. 2007;22:1567–72.CrossRefPubMedGoogle Scholar
  3. 3.
    Schenck CH, Bundlie SR, Mahowald MW. REM sleep behaviour disorder (RBD) delayed emergence of parkinsonism and/or dementia in 65 % of older men initially diagnosed with idiopathic RBD, and an analysis of the maximum and minimum tonic and/or phasic electromyographic abnormalities found during REM sleep. Sleep. 2003;26(Suppl):A316.Google Scholar
  4. 4.
    Abbott RD, Ross GW, White LR, Tanner CM, Masaki KH, Nelson JS, Curb JD, Petrovitch H. Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology. 2005;65:1442–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Happe S, Baier PC, Helmschmied K, Meller J, Tatsch K, Paulus W. Association of daytime sleepiness with nigrostriatal dopaminergic degeneration in early Parkinson’s disease. J Neurol. 2007;254:1037–43.CrossRefPubMedGoogle Scholar
  6. 6.
    Postuma RB, Montplaisir J. Potential early markers of Parkinson’s disease in idiopathic rapid-eye-movement sleep behaviour disorder. Lancet Neurol. 2006;5:552–3.CrossRefPubMedGoogle Scholar
  7. 7.
    Fort P, Bassetti CL, Luppi PH. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur J Neurosci. 2009;29:1741–53.CrossRefPubMedGoogle Scholar
  8. 8.
    Jones BE. Basic mechanisms of sleep-wake states. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: WB Saunders; 1994.Google Scholar
  9. 9.
    Gervasoni D, Darracq L, Fort P, Souliere F, Chouvet G, Luppi PH. Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep. Eur J Neurosci. 1998;10:964–70.CrossRefPubMedGoogle Scholar
  10. 10.
    Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH. Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci. 2000;20:4217–25.PubMedGoogle Scholar
  11. 11.
    Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science. 1996;271:216–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Gvilia I, Turner A, McGinty D, Szymusiak R. Preoptic area neurons and the homeostatic regulation of rapid eye movement sleep. J Neurosci. 2006;26:3037–44.CrossRefPubMedGoogle Scholar
  13. 13.
    Novak CM, Nunez AA. Daily rhythms in Fos activity in the rat ventrolateral preoptic area and midline thalamic nuclei. Am J Physiol. 1998;275:R1620–6. JID – 0370511.PubMedGoogle Scholar
  14. 14.
    Lu J, Greco MA, Shiromani P, Saper CB. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci. 2000;20:3830–42.PubMedGoogle Scholar
  15. 15.
    Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlethaler M, Serafin M. Identification of sleep-promoting neurons in vitro. Nature. 2000;404:992–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE, Muhlethaler M. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience. 2001;108:177–81.CrossRefPubMedGoogle Scholar
  17. 17.
    Gallopin T, Luppi PH, Cauli B, Urade Y, Rossier J, Hayaishi O, Lambolez B, Fort P. The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience. 2005;134:1377–90.CrossRefPubMedGoogle Scholar
  18. 18.
    Porkka-Heiskanen T, Strecker RE, Mccarley RW. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience. 2000;99:507–17. JID – 7605074.CrossRefPubMedGoogle Scholar
  19. 19.
    Rainnie DG, Grunze HC, McCarley RW, Greene RW. Adenosine inhibition of mesopontine cholinergic neurons: implications for EEG arousal. Science. 1994;263:689–92.CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci. 2005;8:858–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Stenberg D, Litonius E, Halldner L, Johansson B, Fredholm BB, Porkka-Heiskanen T. Sleep and its homeostatic regulation in mice lacking the adenosine A1 receptor. J Sleep Res. 2003;12:283–90.CrossRefPubMedGoogle Scholar
  22. 22.
    Urade Y, Eguchi N, Qu WM, Sakata M, Huang ZL, Chen JF, Schwarzschild MA, Fink JS, Hayaishi O. Minireview: sleep regulation in adenosine A(2A) receptor-deficient mice. Neurology. 2003;61:S94–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Fort P, Luppi PH, Gallopin T. In vitro identification of the presumed sleep-promoting neurons of the ventrolateral preoptic nucleus (VLPO). In: Luppi PH, editor. Sleep: circuits and functions. CRC Press; 2005.Google Scholar
  24. 24.
    Jouvet M. Recherches sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch Ital Biol. 1962;100:125–206.PubMedGoogle Scholar
  25. 25.
    Sakai K. Neurons responsible for paradoxical sleep. In: Wauquier A, Janssen Research Foundation, editors. Sleep: neurotransmitters and neuromodulators. New York: Raven Press; 1985.Google Scholar
  26. 26.
    Sakai K, Koyama Y. Are there cholinergic and non-cholinergic paradoxical sleep-on neurones in the pons? Neuroreport. 1996;7:2449–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Clement O, Sapin E, Berod A, Fort P, Luppi PH. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep. 2011;34:419–23.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Chase MH, Soja PJ, Morales FR. Evidence that glycine mediates the postsynaptic potentials that inhibit lumbar motoneurons during the atonia of active sleep. J Neurosci. 1989;9:743–51.PubMedGoogle Scholar
  29. 29.
    Soja PJ, Lopez-Rodriguez F, Morales FR, Chase MH. The postsynaptic inhibitory control of lumbar motoneurons during the atonia of active sleep: effect of strychnine on motoneuron properties. J Neurosci. 1991;11:2804–11.PubMedGoogle Scholar
  30. 30.
    Yamuy J, Fung SJ, Xi M, Morales FR, Chase MH. Hypoglossal motoneurons are postsynaptically inhibited during carbachol-induced rapid eye movement sleep. Neuroscience. 1999;94:11–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Kodama T, Lai YY, Siegel JM. Changes in inhibitory amino acid release linked to pontine-induced atonia: an in vivo microdialysis study. J Neurosci. 2003;23:1548–54.PubMedGoogle Scholar
  32. 32.
    Brooks PL, Peever JH. Identification of the transmitter and receptor mechanisms responsible for REM sleep paralysis. J Neurosci. 2012;32:9785–95.CrossRefPubMedGoogle Scholar
  33. 33.
    Brooks PL, Peever JH. Impaired GABA and glycine transmission triggers cardinal features of rapid eye movement sleep behavior disorder in mice. J Neurosci. 2011;31:7111–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci. 2002;16:1959–73.CrossRefPubMedGoogle Scholar
  35. 35.
    Sirieix C, Gervasoni D, Luppi PH, Leger L. Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat. PLoS One. 2012;7:e28724.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Sapin E, Lapray D, Berod A, Goutagny R, Leger L, Ravassard P, Clement O, Hanriot L, Fort P, Luppi PH. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One. 2009;4:e4272.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Boissard R, Gervasoni D, Fort P, Henninot V, Barbagli B, Luppi PH. Neuronal networks responsible for paradoxical sleep onset and maintenance in rats: a new hypothesis. Sleep. 2000;23(Suppl):107.Google Scholar
  38. 38.
    Sastre JP, Buda C, Kitahama K, Jouvet M. Importance of the ventrolateral region of the periaqueductal gray and adjacent tegmentum in the control of paradoxical sleep as studied by muscimol microinjections in the cat. Neuroscience. 1996;74:415–26.CrossRefPubMedGoogle Scholar
  39. 39.
    Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature. 2006;441:589–94.CrossRefPubMedGoogle Scholar
  40. 40.
    Darracq L, Gervasoni D, Souliere F, Lin JS, Fort P, Chouvet G, Luppi PH. Effect of strychnine on rat locus coeruleus neurones during sleep and wakefulness. Neuroreport. 1996;8:351–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Nitz D, Siegel J. GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol. 1997;273:R451–5.PubMedGoogle Scholar
  42. 42.
    Nitz D, Siegel JM. GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience. 1997;78:795–801.CrossRefPubMedGoogle Scholar
  43. 43.
    Luppi PH, Peyron C, Rampon C, Gervasoni D, Barbagli B, Boissard R, Fort P. Inhibitory mechanisms in the dorsal raphe nucleus and locus coeruleus during sleep. In: Lydic R, Baghdoyan HA, editors. Handbook of behavioral state control. CRC Press; 1999.Google Scholar
  44. 44.
    Verret L, Fort P, Gervasoni D, Leger L, Luppi PH. Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. J Comp Neurol. 2006;495:573–86.CrossRefPubMedGoogle Scholar
  45. 45.
    Verret L, Fort P, Luppi PH. Localization of the neurons responsible for the inhibition of locus coeruleus noradrenergic neurons during paradoxical sleep in the rat. Sleep. 2003;26:69.Google Scholar
  46. 46.
    Goutagny R, Luppi PH, Salvert D, Lapray D, Gervasoni D, Fort P. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat. Neuroscience. 2008;152:849–57.CrossRefPubMedGoogle Scholar
  47. 47.
    Clement O, Sapin E, Libourel PA, Arthaud S, Brischoux F, Fort P, Luppi PH. The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. J Neurosci. 2012;32:16763–74.CrossRefPubMedGoogle Scholar
  48. 48.
    Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci. 2003;4:19.CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Ahnaou A, Drinkenburg WH, Bouwknecht JA, Alcazar J, Steckler T, Dautzenberg FM. Blocking melanin-concentrating hormone MCH1 receptor affects rat sleep-wake architecture. Eur J Pharmacol. 2008;579:177–88.CrossRefPubMedGoogle Scholar
  50. 50.
    Adamantidis A, Salvert D, Goutagny R, Lakaye B, Gervasoni D, Grisar T, Luppi PH, Fort P. Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. Eur J Neurosci. 2008;27:1793–800.CrossRefPubMedGoogle Scholar
  51. 51.
    Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M. Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience. 2008;156:819–29.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci. 2013;16(11):1637–43.CrossRefPubMedGoogle Scholar
  53. 53.
    Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen Jr WB, van den Pol AN, Mulholland PJ, Shiromani PJ. Optogenetic stimulation of MCH neurons increases sleep. J Neurosci. 2013;33:10257–63.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Gervasoni D, Lin SC, Ribeiro S, Soares ES, Pantoja J, Nicolelis MA. Global forebrain dynamics predict rat behavioral states and their transitions. J Neurosci. 2004;24:11137–47.CrossRefPubMedGoogle Scholar
  55. 55.
    Miller JD, Farber J, Gatz P, Roffwarg H, German DC. Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res. 1983;273:133–41.CrossRefPubMedGoogle Scholar
  56. 56.
    Trulson ME, Preussler DW. Dopamine-containing ventral tegmental area neurons in freely moving cats: activity during the sleep-waking cycle and effects of stress. Exp Neurol. 1984;83:367–77.CrossRefPubMedGoogle Scholar
  57. 57.
    Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G. Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology. 2007;32:1232–41.CrossRefPubMedGoogle Scholar
  58. 58.
    Leger L, Sapin E, Goutagny R, Peyron C, Salvert D, Fort P, Luppi PH. Dopaminergic neurons expressing Fos during waking and paradoxical sleep in the rat. J Chem Neuroanat. 2010;39:262–71.CrossRefPubMedGoogle Scholar
  59. 59.
    Maloney KJ, Mainville L, Jones BE. c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur J Neurosci. 2002;15:774–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res. 2005;81:891–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Jones BE, Bobillier P, Pin C, Jouvet M. The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res. 1973;58:157–77.CrossRefPubMedGoogle Scholar
  62. 62.
    Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM. Dopaminergic role in stimulant-induced wakefulness. J Neurosci. 2001;21(5):1787–94.PubMedGoogle Scholar
  63. 63.
    Monti JM, Monti D. The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev. 2007;11:113–33.CrossRefPubMedGoogle Scholar
  64. 64.
    Pungor K, Papp M, Kekesi K, Juhasz G. A novel effect of MPTP: the selective suppression of paradoxical sleep in cats. Brain Res. 1990;525:310–4.CrossRefPubMedGoogle Scholar
  65. 65.
    Monaca C, Laloux C, Jacquesson JM, Gele P, Marechal X, Bordet R, Destee A, Derambure P. Vigilance states in a parkinsonian model, the MPTP mouse. Eur J Neurosci. 2004;20:2474–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Barraud Q, Lambrecq V, Forni C, McGuire S, Hill M, Bioulac B, Balzamo E, Bezard E, Tison F, Ghorayeb I. Sleep disorders in Parkinson’s disease: the contribution of the MPTP non-human primate model. Exp Neurol. 2009;219:574–82.CrossRefPubMedGoogle Scholar
  67. 67.
    Schenck CH, Bundlie SR, Ettinger MG, Mahowald MW. Chronic behavioral disorders of human REM sleep: a new category of parasomnia. Sleep. 1986;9:293–308.PubMedGoogle Scholar
  68. 68.
    Iranzo A, Santamaria J, Tolosa E. The clinical and pathophysiological relevance of REM sleep behavior disorder in neurodegenerative diseases. Sleep Med Rev. 2009;13:385–401.CrossRefPubMedGoogle Scholar
  69. 69.
    Krenzer M, Anaclet C, Vetrivelan R, Wang N, Vong L, Lowell BB, Fuller PM, Lu J. Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLoS One. 2011;6:e24998.CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Holmes CJ, Jones BE. Importance of cholinergic, GABAergic, serotonergic and other neurons in the medial medullary reticular formation for sleep-wake states studied by cytotoxic lesions in the cat. Neuroscience. 1994;62:1179–200.CrossRefPubMedGoogle Scholar
  71. 71.
    Schenkel E, Siegel JM. REM sleep without atonia after lesions of the medial medulla. Neurosci Lett. 1989;98:159–65.CrossRefPubMedGoogle Scholar
  72. 72.
    Hendricks JC, Morrison AR, Mann GL. Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res. 1982;239:81–105.CrossRefPubMedGoogle Scholar
  73. 73.
    Henley K, Morrison AR. A re-evaluation of the effects of lesions of the pontine tegmentum and locus coeruleus on phenomena of paradoxical sleep in the cat. Acta Neurobiol Exp (Warsz). 1974;34:215–32.Google Scholar
  74. 74.
    Sastre JP, Jouvet M. Le comportement onirique du chat [Oneiric behavior in cats]. Physiol Behav. 1979;22:979–89.CrossRefPubMedGoogle Scholar
  75. 75.
    Webster HH, Jones BE. Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum-cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res. 1988;458:285–302.CrossRefPubMedGoogle Scholar
  76. 76.
    Mahowald MW, Schenck CH. REM sleep behavior disorder. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. Philadelphia: Saunders; 2000.Google Scholar
  77. 77.
    Lai YY, Hsieh KC, Nguyen D, Peever J, Siegel JM. Neurotoxic lesions at the ventral mesopontine junction change sleep time and muscle activity during sleep: an animal model of motor disorders in sleep. Neuroscience. 2008;154:431–43.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Brooks PL, Peever JH. Glycinergic and GABA(A)-mediated inhibition of somatic motoneurons does not mediate rapid eye movement sleep motor atonia. J Neurosci. 2008;28:3535–45.CrossRefPubMedGoogle Scholar
  79. 79.
    Burgess C, Lai D, Siegel J, Peever J. An endogenous glutamatergic drive onto somatic motoneurons contributes to the stereotypical pattern of muscle tone across the sleep-wake cycle. J Neurosci. 2008;28:4649–60.CrossRefPubMedGoogle Scholar
  80. 80.
    Chase MH, Morales FR. The atonia and myoclonia of active (REM) sleep. Annu Rev Psychol. 1990;41:557–84.CrossRefPubMedGoogle Scholar
  81. 81.
    Du Beau A, Shakya Shrestha S, Bannatyne BA, Jalicy SM, Linnen S, Maxwell DJ. Neurotransmitter phenotypes of descending systems in the rat lumbar spinal cord. Neuroscience. 2012;227:67–79.CrossRefPubMedGoogle Scholar
  82. 82.
    Holstege G. Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res. 1991;87:307–421.CrossRefPubMedGoogle Scholar
  83. 83.
    Evarts EV. Temporal patterns of discharge of pyramidal tract neurons during sleep and waking in the monkey. J Neurophysiol. 1964;27:152–71.PubMedGoogle Scholar
  84. 84.
    Evarts EV. Relation of cell size to effects of sleep in pyramidal tract neurons. Prog Brain Res. 1965;18:81–91.CrossRefPubMedGoogle Scholar
  85. 85.
    Oudiette D, Leu-Semenescu S, Roze E, Vidailhet M, De Cock VC, Golmard JL, Arnulf I. A motor signature of REM sleep behavior disorder. Mov Disord. 2012;27:428–31.CrossRefPubMedGoogle Scholar
  86. 86.
    Arnulf I. REM sleep behavior disorder: motor manifestations and pathophysiology. Mov Disord. 2012;27:677–89.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Pierre-Hervé Luppi
    • 1
    • 2
    • 3
    • 4
    Email author
  • Olivier Clément
    • 1
    • 2
    • 3
  • Sara Valencia Garcia
    • 1
    • 2
    • 3
  • Frédéric Brischoux
    • 1
    • 2
    • 3
  • Patrice Fort
    • 1
    • 2
    • 3
  1. 1.“SLEEP” teamINSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Team Physiopathologie des réseaux neuronaux du cycle veille-sommeilLyonFrance
  2. 2.University of LyonLyonFrance
  3. 3.University Claude Bernard Lyon 1LyonFrance
  4. 4.Faculté de Médecine RTH LaennecUMR5167 CNRSLyonFrance

Personalised recommendations