Skip to main content

Progressive Supranuclear Palsy

  • Chapter
  • First Online:
Movement Disorders Curricula

Abstract

Progressive supranuclear palsy (PSP) is an adult-onset neurodegenerative disease, clinically characterized by prominent postural instability and falls, vertical supranuclear gaze palsy, and frontal-subcortical dementia. The etiology is still unknown but recent scientific advances have led to a consensus that the main pathogenetic event is the abnormal 4R tau deposition in the brainstem, basal ganglia, and neocortical areas. The clinical spectrum has been expanded and includes several clinical syndromes that can be underpinned by the pathological hallmark features of PSP. Attempts to identify a biomarker in the cerebrospinal fluid or a specific and sensitive neuroimaging technique have so far failed to contribute significantly to the diagnostic process. Symptomatic pharmacologic treatment of PSP is still unsatisfactory, and the effect of dopaminergic medication on the parkinsonian symptoms is limited. Although the first disease-modifying trials have failed to show any clinical benefit, they have signaled the beginning of a new era towards finding an effective treatment for this devastating disorder.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-7091-1628-9_45

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-7091-1628-9_45

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CBD:

Corticobasal degeneration

DATScan:

Dopamine transporter imaging

EIF2AK3:

Eukaryotic translation initiation factor 2-α kinase 3

ER:

Endoplasmic reticulum

FDG-PET:

Fluorodeoxyglucose positron emission tomography

GSK-3:

Glycogen synthase kinase 3

GWAS:

Genome-wide association study

IBZM:

123I-iodobenzamide

MAPT:

Microtubule-associated protein tau

MIBG:

123 I-meta-iodobenzylguanidine

MOBP:

Myelin-associated oligodendrocyte basic protein

MRS:

Magnetic resonance spectroscopy

MSA:

Multiple system atrophy

NFTs:

Neurofibrillary tangles

NINDS-SPSP:

National Institute of Neurological Disorders and Stroke and Society for Progressive Supranuclear Palsy

PAGF:

Pure akinesia with gait freezing

PD:

Parkinson’s disease

PEG:

Percutaneous endoscopic gastrostomy

PSP:

Progressive supranuclear palsy

SPECT:

Single-photon emission computed tomography

SSRIs:

Serotonin reuptake inhibitors

STX6:

Syntaxin 6

UPR:

Unfolded protein response

References

  1. Litvan I. Update on epidemiological aspects of progressive supranuclear palsy. Mov Disord. 2003;18 Suppl 6:S43–50.

    Article  PubMed  Google Scholar 

  2. Respondek G, Stamelou M, Kurz C, Ferguson LW, Rajput A, Chiu WZ, et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord. 2014;29:1758–66.

    Article  PubMed  Google Scholar 

  3. Nath U, Ben-Shlomo Y, Thomson RG, Lees AJ, Burn DJ. Clinical features and natural history of progressive supranuclear palsy: a clinical cohort study. Neurology. 2003;60:910–6.

    Article  CAS  PubMed  Google Scholar 

  4. Caparros-Lefebvre D, Sergeant N, Lees A, Camuzat A, Daniel S, Lannuzel A, et al. Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy. Brain. 2002;125:801–11.

    Article  PubMed  Google Scholar 

  5. Caparros-Lefebvre D, Elbaz A. Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Caribbean Parkinsonism Study Group. Lancet. 1999;354:281–6.

    Article  CAS  PubMed  Google Scholar 

  6. Daniel SE, de Bruin VM, Lees AJ. The clinical and pathological spectrum of Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy): a reappraisal. Brain. 1995;118(Pt 3):759–70.

    Article  PubMed  Google Scholar 

  7. Bouchard M, Suchowersky O. Tauopathies: one disease or many? Can J Neurol Sci J Can Sci Neurol. 2011;38:547–56.

    Article  Google Scholar 

  8. Kouri N, Whitwell JL, Josephs KA, Rademakers R, Dickson DW. Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nat Rev Neurol. 2011;7:263–72.

    Article  CAS  PubMed  Google Scholar 

  9. Vandrovcova J, Anaya F, Kay V, Lees A, Hardy J, de Silva R. Disentangling the role of the tau gene locus in sporadic tauopathies. Curr Alzheimers Res. 2010;7:726–34.

    Article  CAS  Google Scholar 

  10. Gozes I. Tau pathology and future therapeutics. Curr Alzheimers Res. 2010;7:685–96.

    Article  CAS  Google Scholar 

  11. Sahara N, Maeda S, Takashima A. Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration. Curr Alzheimers Res. 2008;5:591–8.

    Article  CAS  Google Scholar 

  12. Spillantini MG, Goedert M. Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 1998;21:428–33.

    Article  CAS  PubMed  Google Scholar 

  13. Spillantini MG, Bird TD, Ghetti B. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol. 1998;8:387–402.

    Article  CAS  PubMed  Google Scholar 

  14. Rampello L, Butta V, Raffaele R, Vecchio I, Battaglia G, Cormaci G, et al. Progressive supranuclear palsy: a systematic review. Neurobiol Dis. 2005;20:179–86.

    Article  CAS  PubMed  Google Scholar 

  15. Hauw JJ, Daniel SE, Dickson D, Horoupian DS, Jellinger K, Lantos PL, et al. Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology. 1994;44:2015–9.

    Article  CAS  PubMed  Google Scholar 

  16. Duyckaerts C, Verny M, Hauw JJ. Recent neuropathology of parkinsonian syndromes. Rev Neurol. 2003;159:3S11–8.

    CAS  PubMed  Google Scholar 

  17. Verny M, Jellinger KA, Hauw JJ, Bancher C, Litvan I, Agid Y. Progressive supranuclear palsy: a clinicopathological study of 21 cases. Acta Neuropathol. 1996;91:427–31.

    Article  CAS  PubMed  Google Scholar 

  18. Lee SE, Rabinovici GD, Mayo MC, Wilson SM, Seeley WW, DeArmond SJ, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol. 2011;70:327–40.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dickson DW, Ahmed Z, Algom AA, Tsuboi Y, Josephs KA. Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol. 2010;23:394–400.

    Article  PubMed  Google Scholar 

  20. Hoglinger GU, Melhem NM, Dickson DW, Sleiman PM, Wang LS, Klei L, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet. 2011;43:699–705.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Litvan I, Baker M, Hutton M. Tau genotype: no effect on onset, symptom severity, or survival in progressive supranuclear palsy. Neurology. 2001;57:138–40.

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Chen JA, Sears RL, Gao F, Klein ED, Karydas A, et al. An epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative tauopathy. PLoS Genet. 2014;10, e1004211.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lannuzel A, Michel PP, Hoglinger GU, Champy P, Jousset A, Medja F, et al. The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience. 2003;121:287–96.

    Article  CAS  PubMed  Google Scholar 

  24. Lannuzel A, Michel PP, Caparros-Lefebvre D, Abaul J, Hocquemiller R, Ruberg M. Toxicity of Annonaceae for dopaminergic neurons: potential role in atypical parkinsonism in Guadeloupe. Mov Disord. 2002;17:84–90.

    Article  PubMed  Google Scholar 

  25. Lannuzel A, Ruberg M, Michel PP. Atypical parkinsonism in the Caribbean island of Guadeloupe: etiological role of the mitochondrial complex I inhibitor annonacin. Mov Disord. 2008;23:2122–8.

    Article  PubMed  Google Scholar 

  26. Escobar-Khondiker M, Hollerhage M, Muriel MP, Champy P, Bach A, Depienne C, et al. Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. J Neurosci Off J Soc Neurosci. 2007;27:7827–37.

    Article  CAS  Google Scholar 

  27. Hoglinger GU, Lannuzel A, Khondiker ME, Michel PP, Duyckaerts C, Feger J, et al. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem. 2005;95:930–9.

    Article  CAS  PubMed  Google Scholar 

  28. Champy P, Hoglinger GU, Feger J, Gleye C, Hocquemiller R, Laurens A, et al. Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. J Neurochem. 2004;88:63–9.

    Article  CAS  PubMed  Google Scholar 

  29. Stamelou M, Pilatus U, Reuss A, Magerkurth J, Eggert KM, Knake S, et al. In vivo evidence for cerebral depletion in high-energy phosphates in progressive supranuclear palsy. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2009;29:861–70.

    Article  CAS  Google Scholar 

  30. Josephs KA, Petersen RC, Knopman DS, Boeve BF, Whitwell JL, Duffy JR, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology. 2006;66:41–8.

    Article  CAS  PubMed  Google Scholar 

  31. Litvan I, Campbell G, Mangone CA, Verny M, McKee A, Chaudhuri KR, et al. Which clinical features differentiate progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) from related disorders? A clinicopathological study. Brain. 1997;120(Pt 1):65–74.

    Article  PubMed  Google Scholar 

  32. Litvan I, Mangone CA, McKee A, Verny M, Parsa A, Jellinger K, et al. Natural history of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) and clinical predictors of survival: a clinicopathological study. J Neurol Neurosurg Psychiatry. 1996;60:615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Osaki Y, Ben-Shlomo Y, Lees AJ, Daniel SE, Colosimo C, Wenning G, et al. Accuracy of clinical diagnosis of progressive supranuclear palsy. Mov Disord. 2004;19:181–9.

    Article  PubMed  Google Scholar 

  34. Marx S, Respondek G, Stamelou M, Dowiasch S, Stoll J, Bremmer F, et al. Validation of mobile eye-tracking as novel and efficient means for differentiating progressive supranuclear palsy from Parkinson’s disease. Front Behav Neurosci. 2012;6:88.

    PubMed  PubMed Central  Google Scholar 

  35. Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000;55:1621–6.

    Article  CAS  PubMed  Google Scholar 

  36. Litvan I. Cognitive disturbances in progressive supranuclear palsy. J Neural Transm Suppl. 1994;42:69–78.

    Article  CAS  PubMed  Google Scholar 

  37. Paviour DC, Winterburn D, Simmonds S, Burgess G, Wilkinson L, Fox NC, et al. Can the frontal assessment battery (FAB) differentiate bradykinetic rigid syndromes? Relation of the FAB to formal neuropsychological testing. Neurocase. 2005;11:274–82.

    Article  CAS  PubMed  Google Scholar 

  38. Williams DR, de Silva R, Paviour DC, Pittman A, Watt HC, Kilford L, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain. 2005;128:1247–58.

    Article  PubMed  Google Scholar 

  39. Williams DR, Lees AJ. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol. 2009;8:270–9.

    Article  PubMed  Google Scholar 

  40. Stamelou M, Alonso-Canovas A, Bhatia KP. Dystonia in corticobasal degeneration: a review of the literature on 404 pathologically proven cases. Mov Disord. 2012;27:696–702.

    Article  PubMed  Google Scholar 

  41. Stamelou M, Quinn NP, Bhatia KP. “Atypical” atypical parkinsonism: new genetic conditions presenting with features of progressive supranuclear palsy, corticobasal degeneration, or multiple system atrophy-a diagnostic guide. Mov Disord. 2013;28:1184–99.

    Article  CAS  PubMed  Google Scholar 

  42. Stamelou M, Bhatia KP. Atypical parkinsonism: diagnosis and treatment. Neurol Clin. 2015;33:39–56.

    Article  PubMed  Google Scholar 

  43. Respondek G, Roeber S, Kretzschmar H, Troakes C, Al-Sarraj S, Gelpi E, et al. Accuracy of the National Institute for Neurological Disorders and Stroke/Society for Progressive Supranuclear Palsy and neuroprotection and natural history in Parkinson plus syndromes criteria for the diagnosis of progressive supranuclear palsy. Mov Disord. 2013;28:504–9.

    Article  PubMed  Google Scholar 

  44. Williams DR, Holton JL, Strand K, Revesz T, Lees AJ. Pure akinesia with gait freezing: a third clinical phenotype of progressive supranuclear palsy. Mov Disord. 2007;22:2235–41.

    Article  PubMed  Google Scholar 

  45. Stamelou M, Knake S, Oertel WH, Hoglinger GU. Magnetic resonance imaging in progressive supranuclear palsy. J Neurol. 2011;258:549–58.

    Article  CAS  PubMed  Google Scholar 

  46. Longoni G, Agosta F, Kostic VS, Stojkovic T, Pagani E, Stosic-Opincal T, et al. MRI measurements of brainstem structures in patients with Richardson’s syndrome, progressive supranuclear palsy-parkinsonism, and Parkinson’s disease. Mov Disord. 2011;26:247–55.

    Article  PubMed  Google Scholar 

  47. Massey LA, Micallef C, Paviour DC, O’Sullivan SS, Ling H, Williams DR, et al. Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord. 2012;27:1754–62.

    Article  PubMed  Google Scholar 

  48. Orimo S, Suzuki M, Inaba A, Mizusawa H. 123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative parkinsonism: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2012;18:494–500.

    Article  PubMed  Google Scholar 

  49. Vlaar AM, de Nijs T, Kessels AG, Vreeling FW, Winogrodzka A, Mess WH, et al. Diagnostic value of 123I-ioflupane and 123I-iodobenzamide SPECT scans in 248 patients with parkinsonian syndromes. Eur Neurol. 2008;59:258–66.

    Article  PubMed  Google Scholar 

  50. Tripathi M, Dhawan V, Peng S, Kushwaha S, Batla A, Jaimini A, et al. Differential diagnosis of parkinsonian syndromes using F-18 fluorodeoxyglucose positron emission tomography. Neuroradiology. 2013; 55(4):483–92.

    Google Scholar 

  51. Zwergal A, la Fougere C, Lorenzl S, Rominger A, Xiong G, Deutschenbaur L, et al. Functional disturbance of the locomotor network in progressive supranuclear palsy. Neurology. 2013;80:634–41.

    Article  PubMed  Google Scholar 

  52. Hellwig S, Amtage F, Kreft A, Buchert R, Winz OH, Vach W, et al. [(1)(8)F]FDG-PET is superior to [(1)(2)(3)I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology. 2012;79:1314–22.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao P, Zhang B, Gao S. 18F-FDG PET study on the idiopathic Parkinson’s disease from several parkinsonian-plus syndromes. Parkinsonism Relat Disord. 2012;18 Suppl 1:S60–2.

    Article  PubMed  Google Scholar 

  54. Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Doring F, Trenkwalder C, Schlossmacher MG. alpha-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol. 2011;10:230–40.

    Article  CAS  PubMed  Google Scholar 

  55. Stamelou M, Hoeglinger GU. Atypical parkinsonism: an update. Curr Opin Neurol. 2013;26:401–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boxer AL, Lang AE, Grossman M, Knopman DS, Miller BL, Schneider LS, et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 2014;13:676–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stamelou M, de Silva R, Arias-Carrion O, Boura E, Hollerhage M, Oertel WH, et al. Rational therapeutic approaches to progressive supranuclear palsy. Brain. 2010;133:1578–90.

    Article  PubMed  Google Scholar 

  58. Gozes I. Microtubules (tau) as an emerging therapeutic target: NAP (davunetide). Curr Pharm Des. 2011;17:3413–7.

    Article  CAS  PubMed  Google Scholar 

  59. Schneider A, Mandelkow E. Tau-based treatment strategies in neurodegenerative diseases. Neurother: J Am Soc Exp Neurother. 2008;5:443–57.

    Article  CAS  Google Scholar 

  60. Goedert M. Tau gene mutations and their effects. Mov Disord. 2005;20 Suppl 12:S45–52.

    Article  PubMed  Google Scholar 

  61. Dominguez JM, Fuertes A, Orozco L, del Monte-Millan M, Delgado E, Medina M. Evidence for irreversible inhibition of glycogen synthase kinase-3beta by tideglusib. J Biol Chem. 2012;287:893–904.

    Article  CAS  PubMed  Google Scholar 

  62. Medina M, Garrido JJ, Wandosell FG. Modulation of GSK-3 as a therapeutic strategy on Tau Pathologies. Front Mol Neurosci. 2011;4:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribe E, Dalfo E, et al. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimers Res. 2005;2:3–18.

    Article  CAS  Google Scholar 

  64. Martinez A, Alonso M, Castro A, Perez C, Moreno FJ. First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J Med Chem. 2002;45:1292–9.

    Article  CAS  PubMed  Google Scholar 

  65. Hanger DP, Noble W. Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int J Alzheimers Dis. 2011;2011:352805.

    PubMed  PubMed Central  Google Scholar 

  66. Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci. 2004;25:471–80.

    Article  CAS  PubMed  Google Scholar 

  67. Tolosa E, Litvan I, Hoglinger GU, Burn D, Lees A, Andres MV, et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord. 2014;29:470–8.

    Article  CAS  PubMed  Google Scholar 

  68. del Ser T, Steinwachs KC, Gertz HJ, Andres MV, Gomez-Carrillo B, Medina M, et al. Treatment of Alzheimer’s disease with the GSK-3 inhibitor tideglusib: a pilot study. J Alzheimers Dis. 2013;33:205–15.

    PubMed  Google Scholar 

  69. Hoglinger GU, Huppertz HJ, Wagenpfeil S, Andres MV, Belloch V, Leon T, et al. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov Disord. 2014;29:479–87.

    Article  PubMed  Google Scholar 

  70. Brunden KR, Trojanowski JQ, Smith 3rd AB, Lee VM, Ballatore C. Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem. 2014;22:5040–9.

    Article  CAS  PubMed  Google Scholar 

  71. Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VM. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci: Off J Soc Neurosci. 2013;33:1024–37.

    Article  CAS  Google Scholar 

  72. Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A. 2013;110:9535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11:909–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yanamandra K, Kfoury N, Jiang H, Mahan TE, Ma S, Maloney SE, et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron. 2013;80:402–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A, et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron. 2014;82:1271–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pride M, Seubert P, Grundman M, Hagen M, Eldridge J, Black RS. Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical investigations into AN1792-associated meningoencephalitis. Neuro-degenerative Dis. 2008;5:194–6.

    Article  CAS  Google Scholar 

  77. Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci: Off J Soc Neurosci. 2010;30:16559–66.

    Article  CAS  Google Scholar 

  78. Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci: Off J Soc Neurosci. 2007;27:9115–29.

    Article  CAS  Google Scholar 

  79. Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H, et al. Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem. 2011;286:34457–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. 2011;118:658–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. DeVos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K, Stewart FR, et al. Antisense reduction of tau in adult mice protects against seizures. J Neurosci: Off J Soc Neurosci. 2013;33:12887–97.

    Article  CAS  Google Scholar 

  82. Marc G, Leah R, Ofira E, Oded A, Zohar A, Hanna R. Presymptomatic treatment with acetylcholinesterase antisense oligonucleotides prolongs survival in ALS (G93A-SOD1) mice. BioMed Res Int. 2013;2013:845345.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Riboldi G, Zanetta C, Ranieri M, Nizzardo M, Simone C, Magri F, et al. Antisense oligonucleotide therapy for the treatment of C9ORF72 ALS/FTD diseases. Mol Neurobiol. 2014;50(3):721–32.

    Google Scholar 

  84. Xu H, Rösler TW, Carlsson T, de Andrade A, Fiala O, Höllerhage M, Oertel WH, Goedert M, et al. Tau silencing by siRNA in the P301S mouse model of tauopathy. Current Gene Therapy 2014;14(5):343–51.

    Google Scholar 

  85. Hollerhage M, Matusch A, Champy P, Lombes A, Ruberg M, Oertel WH, et al. Natural lipophilic inhibitors of mitochondrial complex I are candidate toxins for sporadic neurodegenerative tau pathologies. Exp Neurol. 2009;220:133–42.

    Article  PubMed  Google Scholar 

  86. Stamelou M, Reuss A, Pilatus U, Magerkurth J, Niklowitz P, Eggert KM, et al. Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord. 2008;23:942–9.

    Article  PubMed  Google Scholar 

  87. Apetauerova DSD, Yacoubian T, Hamill RW, Simon D, Scala S. Effects of coenzyme Q10 in PSP, a multicenter, randomized, placebo-controlled, double-blind study [abstract]. Mov Disord. 2014;29:265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Stamelou MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Wien

About this chapter

Cite this chapter

Stamelou, M., Oertel, W.H. (2017). Progressive Supranuclear Palsy. In: Falup-Pecurariu, C., Ferreira, J., Martinez-Martin, P., Chaudhuri, K. (eds) Movement Disorders Curricula. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1628-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1628-9_18

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1627-2

  • Online ISBN: 978-3-7091-1628-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics