Skip to main content

Computational Physiology of the Basal Ganglia, Movement Disorders, and Their Therapy

  • Chapter
  • First Online:
Movement Disorders Curricula

Abstract

Classical models of the basal ganglia (BG) depict them as closed cortex–BG–cortex loops. The motor cortex activity is driven by the opposite effects of dopamine on the excitability of striatal projection neurons expressing D1 and D2 dopamine receptors and the subsequent change in discharge rate of neurons in the direct and indirect BG pathways. More modern computational BG models depict them as an actor/critic machine learning network. The BG main axis (actor) connects the cortical networks encoding the current state of the subject to the BG input stages (striatum) and continues through BG downstream structures to the cortical and subcortical motor centers. Dopamine modulates the coupling between the state and motor encoding networks by the modulation of the efficacy of the cortico-striatal synapses.

Here, we present a novel computational model of the BG network that combines the main features of both classical and modern BG models. The BG networks are built as actor/critics network. The dimensionality reduction networks of the BG main axis (actor) connect the thalamocortical networks encoding the current state of the subject to the BG input stages (striatum and the subthalamic nucleus, STN). The information then flows through the central nucleus of the basal ganglia (the external segment of the globus pallidus, GPe) to the BG output stages (internal segment of the globus pallidus and the substantia nigra reticulata, GPi and SNr, respectively) that innervate the cortical and subcortical (brainstem) motor centers.

The main computational goal of the BG is multi-objective optimization of behavior (e.g., to maximize future cumulative gains and minimize costs). The competitive networks of the BG main axis flexibly extract relevant features for ongoing and future actions from the current state of the thalamocortical activity. The BG critics (neuromodulators) include the dopaminergic, cholinergic, serotonergic, and histaminergic projections to the striatum. These BG critics differentially modulate the excitability of striatal neurons and the efficacy of the cortico-striatal synapses. Modulation of striatal and BG excitability enables instantaneous optimal trade-offs between exploratory (gambling) and exploitative (greedy) behaviors. Adjustment of the cortico-striatal synaptic efficacy empowers long-term learning of optimal behavioral policy (state-to-action associations).

Degeneration of midbrain dopaminergic neurons and other BG neuromodulators (e.g., in Parkinson’s disease) leads to abnormal competitive dynamics and synchronous oscillatory discharge of the neurons in the BG main axis. Because the BG networks are the default connection between the neural networks encoding state and actions, the other neural networks (e.g., cortico-cortical networks) cannot compensate for the abnormal BG activity. Therapy of BG-related movement disorders can be achieved by either dopamine replacement therapy (DRT) or by functional inactivation of the BG main axis, as achieved by deep brain stimulation (DBS) paradigms. Functional inactivation of the BG main axis enables compensation by other neuronal networks and restoration of close-to-normal state-to-action coupling.

Future DBS therapies might be improved by mimicking the BG multi-objective optimization paradigms. These therapies should aim at restoring normal BG activity, motor behavior, and quality of life by the provision of more precise (in time and space) functional inactivation of the abnormal activity in the BG networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.

    Article  CAS  PubMed  Google Scholar 

  2. Arbuthnott GW, Wickens J. Space, time and dopamine. Trends Neurosci. 2007;30:62–9.

    Article  CAS  PubMed  Google Scholar 

  3. Arkadir D, Bergman H, Fahn S. Redundant dopaminergic activity may enable compensatory axonal sprouting in Parkinson disease. Neurology. 2014;82:1093–8.

    Article  PubMed  Google Scholar 

  4. Bar-Gad I, Morris G, Bergman H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol. 2003;71:439–73.

    Article  PubMed  Google Scholar 

  5. Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science. 1990;249:1436–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bergman H, Wichmann T, Karmon B, DeLong MR. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol. 1994;72:507–20.

    CAS  PubMed  Google Scholar 

  7. Bezard E, Boraud T, Chalon S, Brotchie JM, Guilloteau D, Gross CE. Pallidal border cells: an anatomical and electrophysiological study in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkey. Neuroscience. 2001;103:117–23.

    Article  CAS  PubMed  Google Scholar 

  8. Cools R, Nakamura K, Daw ND. Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology. 2011;36:98–113.

    Article  CAS  PubMed  Google Scholar 

  9. Filion M, Tremblay L. Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 1991;547:142–51.

    CAS  PubMed  Google Scholar 

  10. Filion M, Tremblay L, Bedard PJ. Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res. 1991;547:152–61.

    CAS  PubMed  Google Scholar 

  11. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma Jr FJ, Sibley DR. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250:1429–32.

    Article  CAS  PubMed  Google Scholar 

  12. Heimer G, Rivlin-Etzion M, Bar-Gad I, Goldberg JA, Haber SN, Bergman H. Dopamine replacement therapy does not restore the full spectrum of normal pallidal activity in the 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine primate model of Parkinsonism. J Neurosci. 2006;26:8101–14.

    Article  CAS  PubMed  Google Scholar 

  13. Hutchinson WD, Levy R, Dostrovsky JO, Lozano AM, Lang AE. Effects of apomorphine on globus pallidus neurons in parkinsonian patients. Ann Neurol. 1997;42:767–75.

    Article  CAS  PubMed  Google Scholar 

  14. Joshua M, Adler A, Mitelman R, Vaadia E, Bergman H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci. 2008;28:11673–84.

    Article  CAS  PubMed  Google Scholar 

  15. Lee JI, Verhagen ML, Ohara S, Dougherty PM, Kim JH, Lenz FA. Internal pallidal neuronal activity during mild drug-related dyskinesias in Parkinson’s disease: decreased firing rates and altered firing patterns. J Neurophysiol. 2007;97:2627–41.

    Article  CAS  PubMed  Google Scholar 

  16. Levy R, Hutchison WD, Lozano AM, Dostrovsky JO. Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J Neurosci. 2002;22:2855–61.

    CAS  PubMed  Google Scholar 

  17. Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain. 2002;125:1196–209.

    Article  PubMed  Google Scholar 

  18. Merello M, Balej J, Delfino M, Cammarota A, Betti O, Leiguarda R. Apomorphine induces changes in GPi spontaneous outflow in patients with Parkinson’s disease. Mov Disord. 1999;14:45–9.

    Article  CAS  PubMed  Google Scholar 

  19. Miller WC, DeLong MR. Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism. In: Carpenter MB, Jayaraman A, editors. The basal ganglia II. New York: Plenum Press; 1987. p. 415–27.

    Chapter  Google Scholar 

  20. Niv Y, Daw ND, Joel D, Dayan P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacol (Berl). 2007;191:507–20.

    Article  CAS  Google Scholar 

  21. Papa SM, DeSimone R, Fiorani M, Oldfield EH. Internal globus pallidus discharge is nearly suppressed during levodopa-induced dyskinesias. Ann Neurol. 1999;46:732–8.

    Article  CAS  PubMed  Google Scholar 

  22. Parush N, Tishby N, Bergman H. Dopaminergic balance between reward maximization and policy complexity. Front Syst Neurosci. 2011;5:22.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Raz A, Vaadia E, Bergman H. Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci. 2000;20:8559–71.

    CAS  PubMed  Google Scholar 

  24. Reynolds JN, Wickens JR. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 2002;15:507–21.

    Article  PubMed  Google Scholar 

  25. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72:370–84.

    Article  CAS  PubMed  Google Scholar 

  26. Schultz W. Reward signaling by dopamine neurons. Neuroscientist. 2001;7:293–302.

    Article  CAS  PubMed  Google Scholar 

  27. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997;275:1593–9.

    Article  CAS  PubMed  Google Scholar 

  28. Tobler PN, Fiorillo CD, Schultz W. Adaptive coding of reward value by dopamine neurons. Science. 2005;307:1642–5.

    Article  CAS  PubMed  Google Scholar 

  29. Weinberger M, Hutchison WD, Lozano AM, Hodaie M, Dostrovsky JO. Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. J Neurophysiol. 2009;101:789–802.

    Article  CAS  PubMed  Google Scholar 

  30. Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, Lang AE, Dostrovsky JO. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol. 2006;96:3248–56.

    Article  PubMed  Google Scholar 

  31. Wichmann T, Soares J. Neuronal firing before and after burst discharges in the monkey basal ganglia is predictably patterned in the normal state and altered in parkinsonism. J Neurophysiol. 2006;95:2120–33.

    Article  PubMed  Google Scholar 

  32. Wichmann T, Bergman H, DeLong MR. The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol. 1994;72:521–30.

    CAS  PubMed  Google Scholar 

  33. Zaidel A, Spivak A, Grieb B, Bergman H, Israel Z. Subthalamic span of beta oscillations predicts deep brain stimulation efficacy for patients with Parkinson’s disease. Brain. 2010;133:2007–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Simone and Bernard Guttman chair of Brain Research and by the Rosetrees and Vorst foundations (to HB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagai Bergman MD, DSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Wien

About this chapter

Cite this chapter

Iskhakova, L., Rappel, P., Arkadir, D., Eitan, R., Israel, Z., Bergman, H. (2017). Computational Physiology of the Basal Ganglia, Movement Disorders, and Their Therapy. In: Falup-Pecurariu, C., Ferreira, J., Martinez-Martin, P., Chaudhuri, K. (eds) Movement Disorders Curricula. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1628-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1628-9_1

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1627-2

  • Online ISBN: 978-3-7091-1628-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics