Skip to main content

Formation of deformation substructures observed in ductile materials

  • Chapter
Plasticity and Beyond

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 550))

  • 2713 Accesses

Abstract

Deformation substructures control plastic, creep, fatigue and fracture properties of ductile crystalline solids. The key ingredient of a substructure is a spontaneously formed dislocation arrangement – dislocation structure. The present notes provide 5 different, complementary points of view which present the dislocation structure formation as a multi scale phenomenon: (i) The basic concepts of dislocation theory and plasticity of single crystals and polycrystals (Section 2). (ii) A ”gallery” of commented pictures of dislocation structures as seen by a transmission electron microscope (Section 3). (iii) Discrete dislocation dynamics (Section 4). (iv) An attempt to formulate statistics of dislocations as a transition from discrete dislocation dynamics to continuum crystal plasticity capable of modeling dislocation structure formation (Section 5). (v) Two continuous models of dislocation structure formation: one dimensional model simulating a formation of vein structure and its transformation into a ladder structure of a persistent slip band (Section 6.1), and a model of misoriented dislocation cells (Section 6.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • F. Ackermann, L.P. Kubin, J. Lepinoux, and H. Mughrabi. The dependence of dislocation microstructure on plastic strain amplitude in cyclically strained copper single crystals. Acta Metallurgica, 32:715–725, 1984.

    Google Scholar 

  • R.J. Asaro. Geometrical effects in the inhomogeneous deformation of ductile single crystals. Acta Metallurgica, 27:445–453, 1979.

    Google Scholar 

  • R.J. Asaro. Micromechanics of crystals and polycrystals. Advances in Applied Mechanics, 23:1–115, 1983.

    Google Scholar 

  • S.J. Basinski and Z.S. Basinski. Plastic deformation and work hardening. In Nabarro F.R.N., editor, Dislocations in Solids, pages 261–362, Amsterdam, 1979. North-Holland.

    Google Scholar 

  • Z.S. Basinski. Dislocation distribution in deformed copper single crystals. Discussions of Faraday Society, 38:93–101, 1964.

    Google Scholar 

  • Z.S. Basinski and S.J. Basinski. The cyclic deformation of copper single crystals. Progress in Materials Science, 36:89–148, 1992.

    Google Scholar 

  • B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf. Evolution of f.c.c. deformation structures in polyslip. Acta Metallurgica et Materialia, 40:205–219, 1992.

    Google Scholar 

  • M. Beneš, J. Kratochvíl, J. Křišt’an, V. Minárik, and P. Pauš. A parametric simulation method for discrete dislocation dynamics. European Physical Journal ST, Special Topics, 177:061802–061815, 2009.

    Google Scholar 

  • M. Berveiller and A. Zaoui. Extension of the self-consistent scheme to plastically-flowing polycrystals. J. Mechanics and Physics of Solids, 26: 325, 1978.

    MATH  Google Scholar 

  • M.A. Biot. Mechanics of Incremental Deformations. John Willey, 1965a.

    Google Scholar 

  • M.A. Biot. Internal buckling under initial stress in finite elasticity. Proceedings Royal Society A, 273:306–328, 1963.

    MathSciNet  MATH  Google Scholar 

  • M.A. Biot. Internal instability of anisotropic viscous and viscoelastic media under initial stress. Journal of the Franklin Institute, 279:65–82, 1965b.

    MathSciNet  Google Scholar 

  • W. Blum. Dislocation structure evolution and deformation kinetics of pure materials. In The Johannes Weertman Symposium, pages 103–117, 1996.

    Google Scholar 

  • W. Blum. High-Temperature Deformation and Creep of Crystalline Solids. In R.W. Cahn, p. Haasen, and E.J. Kramer, editors, Materials Science and Technology, volume 6, chapter 8, pages 359–405, 1993.

    Google Scholar 

  • W. Blum and H.J. McQueen. Dynamics of recovery and recrystallization. Materials Science Forum, 217–222:31–42, 1996.

    Google Scholar 

  • J. Bretschneider and C. Holste. Cyclic plasticity of fcc single crystals - from nanoscale to macroscale. In J.V. Carstensen et al., editor, Proceedings of the 19th Risoe Int. Symposium on Material Science: Modelling of Structure and Mechanics of Materials from Microscale to Product, pages 25–38. Risoe National Laboratory, Roskilde, Denmark, 1998.

    Google Scholar 

  • L.M. Brown. Dislocation bowing and passing in persistent slip bands. Philosophical Magazine, 86:4055, 2006.

    Google Scholar 

  • L.M. Brown. The self stress of dislocations and the shape of extended nodes. Philosophical Magazine, 10:441–466, 1964.

    MATH  Google Scholar 

  • B. Budiansky and T.T. Wu. Theoretical prediction of plastic strain of polycrystals. In 4th Congress Applied Mechanics, page 1175, 1962.

    Google Scholar 

  • P. Cermelli and M. Gurtin. On the characterization of geometrically necessary dislocations in finite plasticity. J. Mechanics and Physics of Solids, 49:1539–1568, 2001.

    MATH  Google Scholar 

  • S. Conti and M. Ortiz. Dislocationtion microstructures and the effective behavior of single crystals. Archive of Rational Mechanics and Analysis, 176:103–147, 2005.

    MathSciNet  MATH  Google Scholar 

  • R. de Wit. Some relations for straight dislocations. physica status solidi, 20:567–570, 1967.

    Google Scholar 

  • G. De Witt and J.S. Koehler. Interaction of dislocations with an applied stress in anisotropic crystals. Physical Review, 116:1113–1120, 1959.

    Google Scholar 

  • B. Devincre. Three dimensional stress field expressions for straight dislocation segments. Solid State Communications, 93:875–878, 1995.

    Google Scholar 

  • B. Devincre and L.P. Kubin. Mesoscopic simulations of dislocations and plasticity. Materials Science and Engineering, A234-236:8–14, 1997.

    Google Scholar 

  • O.W. Dillon and J. Kratochvíl. A strain gradient theory of plasticity. Int. J. Solids and Structures, 6:1513–1533, 1970.

    MATH  Google Scholar 

  • G. Dziuk. Convergence of a semi discrete scheme for the curve shortening flow. Mathematical Models and Methods in Applied Sciences, 4:589–606, 1994.

    MathSciNet  MATH  Google Scholar 

  • J.A. El-Awady, N.M. Ghoniem, and H. Mughrabi. Dislocation modelling of localized plasticity in persistent slip bands. In B. Adams and A. Garmestani, editors, Proc. of the 136th TMS Annual Meeting and Exhibition, Materials Processing and Manufacturing Division Symposium: Mechanics and Materials Modeling and Materials Design Methodologies, Feb. 25 - Mar. 1, 2007, Orlando, Florida. TMS, 2007.

    Google Scholar 

  • A. El-Azab. The boundary value problem of dislocation dynamics. Modelling and Simulation in Materials Science and Engineering, 8:37–54, 2000a.

    Google Scholar 

  • A. El-Azab. Statistical mechanics treatment of the evolution of dislocation distributions in single crystals. Physical Review B, 61:11956–11966, 2000b.

    Google Scholar 

  • J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London, 241:376–396, 1957.

    MathSciNet  MATH  Google Scholar 

  • U. Essmann. Elektronenmikroskopische Untersuchung der Versetzungsanordnung Verformter Kupfereinkristalle. 2. Die Versetzungsanordnung im Bereich II. physica status solidi, 12:723–747, 1965.

    Google Scholar 

  • U. Essmann and M. Rapp. Slip in copper crystals following weak neutron bombardment. Acta Metallurgica, 21:1305–1317, 1973.

    Google Scholar 

  • M.C. Fivel and G.R. Canova. Developing rigorous boundary conditions to simulations of discrete dislocation dynamics. Modelling and Simulation in Materials Science and Engineering, 7:753, 1999.

    Google Scholar 

  • N.A. Fleck and J.W. Hutchinson. Strain gradient plasticity. Advances in Applied Mechanics, 33:295–361, 1997.

    Google Scholar 

  • A.J.E. Foreman. Dislocation energies in anisotropic crystals. Acta Metallurgica, 3:322–330, 1955.

    Google Scholar 

  • R.A. Foxall, M.S. Duesbery, and P.B. Hirsch. The deformation of niobium single crystals. Canadian Journal of Physics, 45:607–629, 1967.

    Google Scholar 

  • T. Fürst, J. Kratochvíl, and R. Sedláček. Crystal plasticity model of microstructure formation at severe strain. Materials Science Forum, 426-432:2759–2764, 2003.

    Google Scholar 

  • M. Gage and R.S. Hamilton. The heat equation shrinking convex plane curves. J. Differential Geometry, 23:69–96, 1986.

    MathSciNet  MATH  Google Scholar 

  • A. Gemperle, M. Rozsíval, and B. ˇSesták. Electron microscope study of dislocations in slip bands of bent Fe-3%Si alloy single crystals. Czechoslovak Journal of Physics B, 12:555–560, 1962.

    Google Scholar 

  • N.M. Ghoniem and L.Z. Sun. Fast sum method for the elastic field of 3-D dislocation ensembles. Physical Review B, 60:128–140, 1999.

    Google Scholar 

  • N.M. Ghoniem, J. Huang, and Z. Wang. Affine covariant-contravariant vector forms for the elastic field of parametric dislocations in isotropic crystals. Philosophical Magazine Latters, 82:55–63, 2002.

    Google Scholar 

  • A. Giacomini and L. Lussardi. Quasi-static evolution for a model in strain gradient plasticity. SIAM J. Mathematical Analysis, 40:1201–1245, 2008.

    MathSciNet  MATH  Google Scholar 

  • J. Gilman. Micromechanics of flow in solids. McGraw-Hill, New York, 1969.

    Google Scholar 

  • V. Gregor, J. Kratochvíl, and M. Saxlová. Micromechanisms of fatigue of metals. In A. Strejc, editor, Proceedings of Workshop 97, Prague, January 20-22, 1997, pages 591–592. V´ypočetní centrum ˇCVUT, 1997.

    Google Scholar 

  • I. Groma. Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations. Physical Review B, 56:5807–5813, 1997.

    Google Scholar 

  • I. Groma and B. Bakó. Dislocation patterning: From micro- to mesoscale description. Physical Review Letters, 84:1487–1490, 2000.

    Google Scholar 

  • I. Groma and P. Balogh. Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation. Acta Materialia, 47:3647–3654, 1999.

    Google Scholar 

  • I. Groma, F.F. Csikor, and M. Zeiser. Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Materialia, 51:1271–1281, 2003.

    Google Scholar 

  • I. Groma, G. Györgyi, and B. Kocsis. Dynamics of coarse grained dislocation densities from an effective free energy. Philosophical Magazine, 87:1185–1199, 2007.

    Google Scholar 

  • M. Gurtin. On the plasticity of single crystals: free energy, microforces, plastic strain gradients. J. Mechanics and Physics of Solids, 48:989–1036, 2000.

    MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin and L. Anand. Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mechanics and Physics of Solids, 57(3):405–421, 2009.

    MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin, L. Anand, and S.P. Lele. Gradient single-crystal plasticity with free energy dependent on dislocation densities. J. Mechanics and Physics of Solids, 55(9):1853–1878, 2007.

    MathSciNet  MATH  Google Scholar 

  • M. Hafok and R. Pippan. Comparison of single crystalline and polycrystalline behavior under high pressure torsion. Materials Science Forum, 550:277–282, 2007a.

    Google Scholar 

  • M. Hafok and R. Pippan. Post-shear deformation of high pressure torsiondeformed nickel under hydrostatic pressure. Scripta Materialia, 56:757–760, 2007b.

    Google Scholar 

  • N. Hansen. New discoveries in deformed metals. Metallurgical and Materials Transections A, 32A:2917–2935, 2001.

    Google Scholar 

  • S.V. Harren, H.E. Dève, and R.J. Asaro. Shear band formation in plane strain compression. Acta Metallurgica, 36:2435–2480, 1988.

    Google Scholar 

  • T. Hebesberger, H.P. Stüwe, A. Vorhauer, F. Wetscher, and R. Pippan. Structure of Cu deformed by high pressure torsin. Acta Materialia, 53: 393–402, 2005.

    Google Scholar 

  • R. Hill. Continuum micro-mechanics of elastoplastic polycrystals. J. Mechanics and Physics of Solids, 13:89–101, 1965.

    MATH  Google Scholar 

  • R. Hill and J.W. Hutchinson. Bifurcation phenomena in the plane tension test. J. Mechanics and Physics of Solids, 23:2396–264, 1975.

    MathSciNet  Google Scholar 

  • T. Hochrainer. Evolving systems of curved dislocations: Mathematical foundations of a statistical theory. Master’s thesis, University of Karlsruhe, Karlsruhe, November 2006.

    Google Scholar 

  • T. Hochrainer, M. Zaiser, and P. Gumbsch. A three-dimensional continuum theory of dislocations: Kinematics and mean field formulation. Philosophical Magazine, 87:1261–1282, 2007.

    Google Scholar 

  • U. Holzwarth and U. Essmann. Temperature-induced rearrangement of the dislocation pattern of persistent slip bands in copper single crystals. J. Applied Physics, A58:197–210, 1994.

    Google Scholar 

  • U. Holzwarth and U. Essmann. The evolution of persistent slip bands in copper single crystals. J. Applied Physics, A57:131–141, 1993a.

    Google Scholar 

  • U. Holzwarth and U. Essmann. Transformation of dislocation patterns in fatigued copper single crystals. Materials Science and Engineering, A164: 206–210, 1993b.

    Google Scholar 

  • J. Huang, N.M. Ghoniem, and J. Kratochvíl. On the sweeping mechanism of dipolar dislocation loops under fatigue conditions. Modelling and Simulation in Materials Science and Engineering, 12:917–928, 2004.

    Google Scholar 

  • X. Huang and G. Winther. Dislocation structures. Part I. Grain orientataion dependence. Philosophical Magazine, 87:5189–5214, 2007.

    Google Scholar 

  • D.A. Hughes, S.M.A. Khan, A. Godfrey, and H.M. Zbib. Internal structure of deformation induced planar dislocation boundaries. Materials Science and Engineering, A309-310:220–226, 2001.

    Google Scholar 

  • J.W. Hutchinson. Elastic-plastic behavior of polycrystalline metals and composites. Proc. Royal Society London A, 319:242, 1970.

    Google Scholar 

  • P.D. Ispánovity, I. Groma, G. Györgyi, F.F. Csikor, and D. Weygand. Submicron plasticity: yield stress, dislocation avalanches, and velocity distribution. Physical Review Letters, 105:085503, 2010.

    Google Scholar 

  • N.Y. Jin. Formation of dislocation structures during cyclic deformation of F.C.C. crystals - I. formation of PSBs in crystals oriented for single slip. Acta Metallurgica, 37:2055–2066, 1989.

    Google Scholar 

  • N.Y. Jin and A.T. Winter. Cyclic deformation of copper single crystals oriented for double slip. Acta Metallurgica, 32:989–995, 1984.

    Google Scholar 

  • M. Jirásek and Z.P. Baˇzant. Nonlocal integral formulation of plasticity and damage: a survey of progress. J. Engineering Mechanics, 128:1119–1149, 2002.

    Google Scholar 

  • H.P. Karnthaler, F. Prinz, and G. Haslinger. Elektronenmikroskopische Untersuchung der Versetzungsstrukturen plastisch verformter Cu-5 at.% Al Einkristalle. Acta Metallurgica, 23:155–163, 1974.

    Google Scholar 

  • U.F. Kocks, T. Hasegawa, and R.O. Scattergood. On the origin of cell walls and of lattice misorientations during deformation. Scripta Metallurgica, 14:449–454, 1980.

    Google Scholar 

  • A.M. Kosevich. Dynamical theory of dislocations. Soviet Physics - Uspekhi, 7:837–854, 1965.

    MathSciNet  Google Scholar 

  • A.M. Kosevich. Crystal dislocations and the theory of elasticity. In F.R. Nabarro, editor, Dislocations in Solids, Volume 1, pages 33–142, Amsterdam-New York-Oxford, 1979. North-Holland Publishing Company.

    Google Scholar 

  • J. Kratochvíl. Stability approach to problem of work hardening of metals. J. Mechanical Behavior of Metals, 2:353–368, 1990a.

    Google Scholar 

  • J. Kratochvíl. Instability origin of dislocation cell misorientation. Scripta Metallurgica et Materialia, 24:1225–1228, 1990b.

    Google Scholar 

  • J. Kratochvíl. On the dynamic origin of dislocation structures in deformed solids. Materials Science and Engineering, A164:15–22, 1993.

    Google Scholar 

  • J. Kratochvíl and S. Libovick´y. Dipole drift mechanism of early stages of dislocation pattern formation in deformed metal single crystals. Scripta Metallurgica, 20:1625–1630, 1986.

    Google Scholar 

  • J. Kratochvíl and A. Orlová. Instability origin of dislocation substructure. Philosophical Magazine, A 61:281–290, 1990.

    Google Scholar 

  • J. Kratochvíl and M. Saxlová. Dislocation pattern formation and strain hardening in solids. Physica Scripta, T49:399–404, 1993.

    Google Scholar 

  • J. Kratochvíl and M. Saxlová. Sweeping mechanism of dislocation pattern formation. Scripta Metallurgica et Materialia, 26:113–116, 1992.

    Google Scholar 

  • J. Kratochvíl and R. Sedláček. Pattern formation in the framework of the continuum theory of dislocations. Physical Review B, 67:094105–094114, 2003.

    Google Scholar 

  • J. Kratochvíl and R. Sedláček. Energetic approach to subgrain formation. Materials Science and Engineering, A387-389:67–81, 2004.

    Google Scholar 

  • J. Kratochvíl and R. Sedláček. Statistical foundation of continuum dislocation plasticity. Physical Review B, 77, 2008.

    Google Scholar 

  • J. Kratochvíl, M. Saxlová, and R.Sedláček. An unified model of sweeping and drift mechanisms of the formation of dipolar dislocation structures. Key Engineering Materials, 97-98:479–484, 1994.

    Google Scholar 

  • J. Kratochvíl, M. Saxlová, B. Devincre, and L.P.Kubin. On the sweeping of dipolar loops by gliding dislocations. Materials Science and Engineering, A234-236:318–321, 1997.

    Google Scholar 

  • J. Kratochvíl, M. Kruˇzík, and R. Sedláček. Statistically based continuous model of dislocation cell structure formation. Physical Review, B 75: 064104–14, 2007.

    Google Scholar 

  • J. Kratochvíl, M. Kruˇzík, and R. Sedláček. A model of ultrafine microstructure evolution in materials deformed by high pressure torsion. Acta Materialia, 57:739–748, 2009.

    Google Scholar 

  • J. Kratochvíl, M. Kruˇzík, and R. Sedláček. Model of structural fragmentation induced by high pressure torsion. Review of Advance Materials Science, 25:88–98, 2010a.

    Google Scholar 

  • J. Kratochvíl, M. Kruˇzík, and R. Sedláček. Crystal plasticity model of shear and kink bands - energetic approach. Philosophical Magazine A, 90:3729–3742, 2010b.

    Google Scholar 

  • E. Kröner. Benefits and shortcomings of the continuous theory of dislocations. Int. J. Solids and Structures, 38:1115–1134, 2001.

    MATH  Google Scholar 

  • E. Kröner. Zur plastischen Verformung des Vielkristalls. Acta Metallurgica, 9:155, 1961.

    Google Scholar 

  • D. Kuhlmann-Wilsdorf and N. Hansen. Geometrically necessary, incidental and subgrain boundaries. Scripta Metallurgica et Materialia, 25:1557–1562, 1991.

    Google Scholar 

  • D. Kuhlmann-Wilsdorf and C. Laird. Dislocation behavior in fatigue. Materials Science and Engineering, 27:137–156, 1977.

    Google Scholar 

  • J. Křišt’an and J. Kratochvíl. Interactions of glide dislocations in a channel of a persistent slip band. Philosophical Magazine, 87:4593–4613, 2007a.

    Google Scholar 

  • J. Křišt’an and J. Kratochvíl. Estimates of stress in the channel of persistent slip bands based on dislocation dynamics. Materials Science Forum, 567–568:405–408, 2007b.

    Google Scholar 

  • J. Křišt’an and J. Kratochvíl. Bowing out of dislocations from walls of persistent slip band. International Journal of Materials Research, 101: 680–683, 2010.

    Google Scholar 

  • J. Křišt’an, J. Kratochvíl, V. Minárik, and M. Beneš. Simulation of interacting dislocations glide in a channel of a persistent slip band. Modelling and Simulation in Materials Science and Engineering, 17:045009–045026, 2009.

    Google Scholar 

  • C. Laird, P. Charsley, and H. Mughrabi. Low energy dislocation structures produced by cyclic deformation. Materials Science and Engineering, 81: 433–450, 1986.

    Google Scholar 

  • C. Lemarchand, B. Devincre, and L.P. Kubin. Homogenization method for a discrete-continuum simulation of dislocation dynamics. J. Mechanics and Physics of Solids, 49:1969, 2001.

    MATH  Google Scholar 

  • S. Libovick´y and B. ˇSesták. Development of the dislocation arrangement in Fe-0.9 wt% Si single crystals deformed in tension. Philosophical Magazine A, 47:63–78, 1983.

    Google Scholar 

  • J.R. Low and A.M. Turkalo. Slip band structure and dislocation multiplication in silicon-iron crystals. Acta Metallurgica, 10:215, 1962.

    Google Scholar 

  • A. Mainik and A. Mielke. Global existence for rate-independent gradient plasticity at finite strain. J. Nonlinear Science, 19(3):221–248, 2009.

    MathSciNet  MATH  Google Scholar 

  • G.A. Malygin. Dislocation self-organization processes and crystal plasticity. Progress in Physics, 169:979–1010, 1999.

    Google Scholar 

  • K. Mecke, C. Blochwitz, and U. Kremling. The development of the dislocation structures during the fatigue process of f.c.c. single crystals. Crystal Research and Technology, 17:1557–1570, 1982.

    Google Scholar 

  • K. Mikula and D. ˇSevčovič. Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Applied Mathematics, 61: 1473–1501, 2001.

    MATH  Google Scholar 

  • K. Mikula and D. ˇSevčovič. A direct method for solving an anisotropic mean curvature flow of plane curves with an external force. Mathematical Methods in Applied Sciences, 27:1545, 2004.

    MATH  Google Scholar 

  • V. Minárik and J. Kratochvíl. Dislocation dynamics - analytical description of the interaction force between dipolar loops. Kybernetika, 43:841–854, 2007.

    MathSciNet  MATH  Google Scholar 

  • V. Minárik, J. Kratochvíl, K. Mikula, and M. Beneš. Numerical simulation of dislocation dynamics. In M. Feustauer et al., editor, 5th Eropean Coference on Numerical Mathematics and Advanced Applications ENUMATH 2003, pages 631–641. Springer Verlag, 2004.

    Google Scholar 

  • V. Minárik, M. Beneš, and J. Kratochvíl. Simulation of dynamical interaction between dislocations and dipolar loops. Journal Applied Physics, 107:841–854, 2010.

    Google Scholar 

  • D.M. Moon and W.H. Robinson. Dislocation distribution in deformed silver single crystals. Canadian Journal of Physics, 45:1017–1030, 1967.

    Google Scholar 

  • H. Mughrabi. Description of the dislocation structure after unidirectional deformation at low temperatures. In A.S. Argon, editor, Constitutive Equations in Plasticity, pages 199–250. M.I.T. Press, Cambridge, Massachusetts and London,. England, 1975.

    Google Scholar 

  • H. Mughrabi. Cyclic plasticity of matrix and persistent slip bands in fatigued metals. In O. Brulin and R.K.T. Hsieh, editors, Continuum Models of Discrete Systems, pages 241–257, Stockholm, 1981. North-Holland.

    Google Scholar 

  • H. Mughrabi. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metallurgica, 31:1367–1379, 1983.

    Google Scholar 

  • H. Mughrabi. Dual role of deformation-induced geometrically necessary dislocations with respect to lattice plane misorientations and/or longrange internal stresses. Acta Materialia, 54:3417–3427, 2006a.

    Google Scholar 

  • H. Mughrabi. Deformation-induced long-range internal stresses and lattice plane misorientations and the role of geometrically necessary dislocations. Philosophical Magazine, 86:4037–4054, 2006b.

    Google Scholar 

  • H. Mughrabi and B. Obst. Misorientations and geometrically necessary dislocations in deformed copper crystals: A microstructural analysis of X-ray rocking curves. Z. Metallkunde, 96:686–695, 2005.

    Google Scholar 

  • H. Mughrabi and F. Pschenitzka. Constrained glide and interaction of bowed-out screw dislocations in cofined channels. Philosophical Magazine, 85:3029, 2005.

    Google Scholar 

  • A. Orlová and J. ˇCadek. On the origin of the dislocation substructure during high-temperature creep. Philosophical Magazine, 21:509–518, 1970.

    Google Scholar 

  • C.S. Pande and P.M. Hazzledine. Dislocation arrays in Cu-Al alloys.I. Philosophical Magazine, 24(191):1039–1057, 1971a.

    Google Scholar 

  • C.S. Pande and P.M. Hazzledine. Dislocation arrays in Cu-Al alloys.II. Philosophical Magazine, 24(192):1393–1410, 1971b.

    Google Scholar 

  • W. Pantleon. Disorientations in dislocation structures. Materials Science and Engineering, A 400-401:118–124, 2005.

    Google Scholar 

  • W. Pantleon. On the statistical origin of disorientations in dislocation structures. Acta Materialia, 46:451–456, 1998.

    Google Scholar 

  • W. Pantleon and N. Hansen. Dislocation boundaries - the distribution function of disoriention angles. Acta Materialia, 49:1479–1493, 2001.

    Google Scholar 

  • D. Peirce, R.J. Asaro, and A. Needleman. An analysis of nonuniform and localised deformation in ductile single crystals. Acta Metallurgica, 30: 1087–1119, 1982.

    Google Scholar 

  • D. Peirce, R.J. Asaro, and A. Needleman. Material rate dependence and localized deformation in crystalline solids. Acta Metallurgica, 31:1951–1976, 1983.

    Google Scholar 

  • F. Prinz and A.S. Argon. Dislocation cell formation during plastic deformation of copper single crystals. physica status solidi (a), 57:741–753, 1980.

    Google Scholar 

  • K.R. Rajagopal and A.R. Srinivasa. Modeling anisotropic fluids within the framework of bodies with multiple natural configurations. J. Non-Newtonian Fluid Mechanics, 99(2-3):109–124, 2001.

    MATH  Google Scholar 

  • M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, and T. de la Rubia. Models for long-/short-range interactions and cross slip in 3D dislocation simulation of bcc crystals. Modelling and Simulation in Materials Science and Engineering, 6:467, 1998.

    Google Scholar 

  • M. Saxlová, J. Kratochvíl, and J. Zatloukal. The model of formation and disintegration of vein dislocation structure. Materials Science and Engineering, A234-236:205–208, 1997.

    Google Scholar 

  • H. Schmid and H.O.K. Kirschner. Self-stress and equilibrium shapes of dislocation loops. Philosophical Magazine A, 58:905–921, 1988.

    Google Scholar 

  • R. Sedláček. Viscous glide of a curved dislocation. Philosophical Magazine Letters, 76:275–280, 1997.

    Google Scholar 

  • R. Sedláček, W. Blum, J. Kratochvíl, and S. Forest. Subgrain formation during deformation: Physical origin and consequences. Metallurgical and Materials Transections A, 32A:1–9, 2001a.

    Google Scholar 

  • R. Sedláček, J. Kratochvíl, and W. Blum. Plastic instability and misoriented crystal lattice. physica status solidi, 186:1–16, 2001b.

    Google Scholar 

  • R. Sedláček, J. Kratochvíl, and E. Werner. The importance of being curved: bowing dislocations in a continuum description. Philosophical Magazine, 83:3735–3752, 2003.

    Google Scholar 

  • R. Sedláček, C. Schwarz, J. Kratochvíl, and E. Werner. Continuum theory of evolving dislocation fields. Philosophical Magazine, 87:1225–1260, 2007.

    Google Scholar 

  • J.W. Steeds. Dislocation arrangement in copper single crystals as a function of strain. Proc. Royal Society, A 292:343–373, 1966.

    Google Scholar 

  • J.W. Steeds and P.M. Hazzledine. Dislocation configurations in deformed copper and copper 10% (atomic) aluminium alloy. Discussions of Faraday Society, 38:103–110, 1964.

    Google Scholar 

  • B. Svendsen, P. Neff, and A. Menzel. On constitutive and configurational aspects of models for gradient continua with microstructure. ZAMM, Z. Angewandte Mathematik und Mechanik, 89(8):687–697, 2009.

    MathSciNet  MATH  Google Scholar 

  • M. Tang, L.P. Kubin, and G.R. Canova. Models for long-/short-range interactions and cross slip in 3d dislocation simulation of bcc crystals. Acta Materialia, 46:3221, 1998.

    Google Scholar 

  • B. Tippelt, J. Bretschneider, and C. Holste. Influence of temperature on microstructural parametrs of cyclically deformed nickel single crystals. Philosophical Magazine Letters, 74:161–166, 1996.

    Google Scholar 

  • R.Z. Valiev and T.G. Langdon. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, 51:881–981, 2006.

    Google Scholar 

  • S. Vereck´y, J. Kratochvíl, and F. Kroupa. The stress field of rectangular prismatic dislocation loops. physica status solidi (a), 191:418–426, 2002.

    Google Scholar 

  • B. ˇSesták, V. Novák, and S. Libovick´y. Cyclic deformation of single crystals of iron-silikon alloys oriented for single slip. Philosophical Magazine A, A 57:353–381, 1988.

    Google Scholar 

  • W. Wasserbach. Plastic deformation and dislocation arrangement of Nb-34at.%Ta alloy single crystals. Philosophical Magazine A, 53:335–356, 1986.

    Google Scholar 

  • F. Wetscher and R. Pippan. Cyclic high-pressure torsin of nickel and Armco iron. Philosophical Magazine, 86:5867–5883, 2006.

    Google Scholar 

  • A.T. Winter, O.B. Pedersen, and Rasmussen. Dislocation microstructure in fatigued copper polycrystals. Acta Metallurgica, 29:735–748, 1981.

    Google Scholar 

  • G. Winther. Effect of grain orientation dependent microstructures on flow stress anisotropy modelling. Scripta Materialia, 52:995–1000, 2005.

    Google Scholar 

  • G. Winther and X. Huang. Dislocation structures. Part II. Slip system dependence. Philosophical Magazine, 87:5215–5235, 2007.

    Google Scholar 

  • S. Yefimov, I. Groma, and E. van der Giessen. A comparison of a statisticalmechanics based plasticity model with discrete dislocation plasticity calculations. J. Mechanics and Physics of Solids, 52:279–300, 2004a.

    MATH  Google Scholar 

  • S. Yefimov, E. van der Giessen, and I. Groma. Bending of a single crystal: discrete dislocation and nonlocal crystal plasticity simulations. Modelling and Simulation in Materials Science and Engineering, 12:1069–1086, 2004b.

    Google Scholar 

  • M. Zaiser and T. Hochrainer. Some steps towards a continuum representation of 3D dislocation systems. Scripta Materialia, 54:717–721, 2006.

    Google Scholar 

  • M. Zaiser, M.-Carmen Miguel, and I. Groma. Statistical dynamics of dislocation systems: The influence of dislocation-dislocation interactions. Physical Review B, 64:224102, 2001.

    Google Scholar 

  • A.P. Zhilyaev and T.G. Langdon. Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science, 53:893–979, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 CISM, Udine

About this chapter

Cite this chapter

Kratochvíl, J. (2014). Formation of deformation substructures observed in ductile materials. In: Schröder, J., Hackl, K. (eds) Plasticity and Beyond. CISM International Centre for Mechanical Sciences, vol 550. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1625-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1625-8_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1624-1

  • Online ISBN: 978-3-7091-1625-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics