Skip to main content

Micromorphic approach to crystal plasticity and phase transformation

  • Chapter
Plasticity and Beyond

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 550))

Abstract

Continuum crystal plasticity models are extended to incorporate the effect of the dislocation density tensor on material hardening. The approach is based on generalized continuum mechanics including strain gradient plasticity, Cosserat and micromorphic media. The applications deal with the effect of precipitate size in two–phase single crystals and to the Hall-Petch grain size effect in polycrystals. Some links between the micromorphic approach and phase field models are established. A coupling between phase field approach and elastoviscoplasticity constitutive equations is then presented and applied to the prediction of the influence of viscoplasticity on the kinetics of diffusive precipitate growth and morphology changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Guillaume Abrivard. A coupled crystal plasticity–phase field formulation to describe microstructural evolution in polycrystalline aggregates. PhD, Mines ParisTech, 2009.

    Google Scholar 

  • E.C. Aifantis. On the microstructural origin of certain inelastic models. Journal of Engineering Materials and Technology, 106:326–330, 1984.

    Article  Google Scholar 

  • K. Ammar, B. Appolaire, G. Cailletaud, F. Feyel, and F. Forest. Finite element formulation of a phase field model based on the concept of generalized stresses. Computational Materials Science, 45:800–805, 2009a.

    Article  Google Scholar 

  • K. Ammar, B. Appolaire, G. Cailletaud, and S. Forest. Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media. European Journal of Computational Mechanics, 18:485–523, 2009b.

    Google Scholar 

  • K. Ammar, B. Appolaire, G. Cailletaud, and S. Forest. Phase field modeling of elasto-plastic deformation induced by diffusion controlled growth of a misfitting spherical precipitate. Philosophical Magazine Letters, 91:164–172, 2011.

    Article  Google Scholar 

  • B. Appolaire, E. Aeby-Gautier, J. D. Teixeira, M. Dehmas, and S. Denis. Non-coherent interfaces in diffuse interface models. Philosophical Magazine, 90:461–483, 2010.

    Article  Google Scholar 

  • R.J. Asaro. Crystal plasticity. J. Appl. Mech., 50:921–934, 1983.

    Article  MATH  Google Scholar 

  • O. Aslan and S. Forest. Crack growth modelling in single crystals based on higher order continua. Computational Materials Science, 45:756–761, 2009.

    Article  Google Scholar 

  • O. Aslan and S. Forest. The micromorphic versus phase field approach to gradient plasticity and damage with application to cracking in metal single crystals. In R. de Borst and E. Ramm, editors, Multiscale Methods in Computational Mechanics, pages 135–154. Lecture Notes in Applied and Computational Mechanics 55, Springer, 2011.

    Chapter  Google Scholar 

  • O. Aslan, N. M. Cordero, A. Gaubert, and S. Forest. Micromorphic approach to single crystal plasticity and damage. International Journal of Engineering Science, 49:1311–1325, 2011.

    Article  MathSciNet  Google Scholar 

  • V.P. Bennett and D.L. McDowell. Crack tip displacements of microstructurally small surface cracks in single phase ductile polycrystals. Engineering Fracture Mechanics, 70(2):185–207, 2003.

    Article  Google Scholar 

  • J. Besson, G. Cailletaud, J.-L. Chaboche, S. Forest, and M. Blétry. Non–Linear Mechanics of Materials. Series: Solid Mechanics and Its Applications, Vol. 167, Springer, ISBN: 978-90-481-3355-0, 433 p., 2009.

    Google Scholar 

  • B.A. Bilby, R. Bullough, L.R.T. Gardner, and E. Smith. Continuous distributions of dislocations iv: Single glide and plane strain. Proc. Roy. Soc. London, A236:538–557, 1957.

    Google Scholar 

  • P. Cermelli and M.E. Gurtin. On the characterization of geometrically necessary dislocations in finite plasticity. Journal of the Mechanics and Physics of Solids, 49:1539–1568, 2001.

    Article  MATH  Google Scholar 

  • Y. Chen and J.D. Lee. Connecting molecular dynamics to micromorphic theory. (I) instantaneous and averaged mechanical variables. Physica A, 322:359–376, 2003a.

    Article  MATH  Google Scholar 

  • Y. Chen and J.D. Lee. Connecting molecular dynamics to micromorphic theory. (II) balance laws. Physica A, 322:377–392, 2003b.

    Article  MATH  Google Scholar 

  • Y. Chen and J.D. Lee. Determining material constants in micromorphic theory through phonon dispersion relations. International Journal of Engineering Science, 41:871–886, 2003c.

    Article  Google Scholar 

  • W.D. Claus and A.C. Eringen. Three dislocation concepts and micromorphic mechanics. In Developments in Mechanics, Vol. 6. Proceedings of the 12th Midwestern Mechanics Conference, pages 349–358, 1969.

    Google Scholar 

  • W.D. Claus and A.C. Eringen. Dislocation dispersion of elastic waves. International Journal of Engineering Science, 9:605–610, 1971.

    Article  MATH  Google Scholar 

  • J.D. Clayton, D.J. Bamman, and D.L. McDowell. A geometric framework for the kinematics of crystals with defects. Philosophical Magazine, 85: 3983–4010, 2005.

    Article  Google Scholar 

  • N.M. Cordero, A. Gaubert, S. Forest, E. Busso, F. Gallerneau, and S. Kruch. Size effects in generalised continuum crystal plasticity for two–phase laminates. Journal of the Mechanics and Physics of Solids, 58:1963–1994, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Ehlers and W. Volk. On theoretical and numerical methods in the theory of porous media based on polar and non–polar elasto–plastic solid materials. Int. J. Solids Structures, 35:4597–4617, 1998.

    Article  MATH  Google Scholar 

  • R.A.B. Engelen, M.G.D. Geers, and F.P.T. Baaijens. Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. International Journal of Plasticity, 19:403–433, 2003.

    Article  MATH  Google Scholar 

  • A.C. Eringen and W.D. Claus. A micromorphic approach to dislocation theory and its relation to several existing theories. In J.A. Simmons, R. de Wit, and R. Bullough, editors, Fundamental Aspects of Dislocation Theory, pages 1023–1062. Nat. Bur. Stand. (US) Spec. Publ. 317, II, 1970.

    Google Scholar 

  • A.C. Eringen and E.S. Suhubi. Nonlinear theory of simple microelastic solids. Int. J. Engng Sci., 2:189–203, 389–404, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  • Y. Estrin. Dislocation density related constitutive modelling. In Unified Constitutive Laws of Plastic Deformation, pages 69–106. Academic Press, 1996.

    Chapter  Google Scholar 

  • A. Finel, Y. Le Bouar, A. Gaubert, and U. Salman. Phase field methods: Microstructures, mechanical properties and complexity. Comptes Rendus Physique, 11:245–256, 2010.

    Article  Google Scholar 

  • M. Fivel and S. Forest. Plasticité cristalline et transition d’échelle : cas du monocristal. Techniques de l’Ingénieur, M4016, 23 pages, 2004a.

    Google Scholar 

  • M. Fivel and S. Forest. Plasticité cristalline et transition d’échelle : cas du polycristal. Techniques de l’Ingénieur, M4017, 11 pages, 2004b.

    Google Scholar 

  • S. Forest. The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE Journal of Engineering Mechanics, 135:117–131, 2009.

    Article  Google Scholar 

  • S. Forest. Some links between cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. Philosophical Magazine, 88: 3549–3563, 2008.

    Article  Google Scholar 

  • S. Forest and E. C. Aifantis. Some links between recent gradient thermoelasto-plasticity theories and the thermomechanics of generalized continua. International Journal of Solids and Structures, 47:3367–3376, 2010.

    Article  MATH  Google Scholar 

  • S. Forest and R. Sedláček. Plastic slip distribution in two–phase laminate microstructures: Dislocation–based vs. generalized–continuum approaches. Philosophical Magazine A, 83:245–276, 2003.

    Article  Google Scholar 

  • S. Forest and R. Sievert. Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mechanica, 160:71–111, 2003.

    Article  MATH  Google Scholar 

  • S. Forest and R. Sievert. Nonlinear microstrain theories. International Journal of Solids and Structures, 43:7224–7245, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Forest, F. Barbe, and G. Cailletaud. Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multiphase materials. International Journal of Solids and Structures, 37:7105–7126, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  • S. Forest, F. Pradel, and K. Sab. Asymptotic analysis of heterogeneous Cosserat media. International Journal of Solids and Structures, 38:4585–4608, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Frémond and B. Nedjar. Damage, gradient of damage and principle of virtual power. Int. J. Solids Structures, 33:1083–1103, 1996.

    Article  MATH  Google Scholar 

  • E. Fried and M.E. Gurtin. Continuum theory of thermally induced phase transitions based on an order parameter. Physica D, 68:326–343, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  • A. Gaubert, A. Finel, Y. Le Bouar, and G. Boussinot. Viscoplastic phase field modellling of rafting in ni base superalloys. In Continuum Models and Discrete Systems CMDS11, pages 161–166. Mines Paris Les Presses, 2008.

    Google Scholar 

  • A. Gaubert, Y. Le Bouar, and A. Finel. Coupling phase field and viscoplasticity to study rafting in ni-based superalloys. Philosophical Magazine, 90:375–404, 2010.

    Article  Google Scholar 

  • P. Germain. La méthode des puissances virtuelles en mécanique des milieux continus, première partie : théorie du second gradient. J. de Mécanique, 12:235–274, 1973a.

    MathSciNet  MATH  Google Scholar 

  • P. Germain. The method of virtual power in continuum mechanics. part 2 : Microstructure. SIAM J. Appl. Math., 25:556–575, 1973b.

    Article  MATH  Google Scholar 

  • P. Grammenoudis and Ch. Tsakmakis. Micromorphic continuum Part I: Strain and stress tensors and their associated rates. International Journal of Non–Linear Mechanics, 44:943–956, 2009.

    Article  Google Scholar 

  • P. Grammenoudis, Ch. Tsakmakis, and D. Hofer. Micromorphic continuum Part II: Finite deformation plasticity coupled with damage. International Journal of Non–Linear Mechanics, 44:957–974, 2009.

    Article  Google Scholar 

  • W. Günther. Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandlungen der Braunschweig. Wiss. Ges., 10:195–213, 1958.

    MATH  Google Scholar 

  • M.E. Gurtin. A gradient theory of single–crystal viscoplasticity that accounts for geometrically necessary dislocations. Journal of the Mechanics and Physics of Solids, 50:5–32, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin. Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Physica D, 92:178–192, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin and L. Anand. Nanocrystalline grain boundaries that slip and separate: A gradient theory that accounts for grain-boundary stress and conditions at a triple-junction. Journal of the Mechanics and Physics of Solids, 56:184–199, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin and L. Anand. Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck & Hutchinson and their generalization. Journal of the Mechanics and Physics of Solids, 57:405–421, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  • C.B. Hirschberger and P. Steinmann. Classification of concepts in thermodynamically consistent generalized plasticity. ASCE Journal of Engineering Mechanics, 135:156–170, 2009.

    Article  Google Scholar 

  • William C. Johnson and J. Iwan D. Alexander. Interfacial conditions for thermomechanical equilibrium in two-phase crystals. Journal of Applied Physics, 9:2735–2746, 1986.

    Article  Google Scholar 

  • A.G. Khachaturyan. Theory of structural transformations in solids. John Wiley & Sons, 1983.

    Google Scholar 

  • S.G. Kim, W.T. Kim, and T Suzuki. Interfacial compositions of solid and liquid in a phase–field model with finite interface thickness for isothermal solidification in binary alloys. Physical Review E, 58(3):3316–3323, 1998.

    Article  Google Scholar 

  • S.G. Kim, W.T. Kim, and T Suzuki. Phase–field model for binary alloys. Physical Review E, 60(6):7186–7197, 1999.

    Article  Google Scholar 

  • E. Kröner. On the physical reality of torque stresses in continuum mechanics. Int. J. Engng. Sci., 1:261–278, 1963.

    Article  Google Scholar 

  • E. Kröner. Initial studies of a plasticity theory based upon statistical mechanics. In M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee, editors, Inelastic Behaviour of Solids, pages 137–147. McGraw-Hill, 1969.

    Google Scholar 

  • E. Kröner and C. Teodosiu. Lattice defect approach to plasticity and viscoplasticity. In A. Sawczuk, editor, Problems of Plasticity, International Symposium on Foundations of Plasticity, Warsaw. Noordhoff International Publishing Leyden, 1972.

    Google Scholar 

  • M. Lazar and G.A. Maugin. Dislocations in gradient micropolar–I: screw dislocation. Journal of the Mechanics and Physics of Solids, 52:2263–2284, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Lazar and G.A. Maugin. On microcontinuum field theories: the eshelby stress tensor and incompatibility conditions. Philosophical Magazine, 87: 3853–3870, 2007.

    Article  Google Scholar 

  • M. Lazar, G.A. Maugin, and E.C. Aifantis. Dislocations in second strain gradient elasticity. International Journal of Solids and Structures, 43: 1787–1817, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  • J.D. Lee and Y. Chen. Constitutive relations of micromorphic thermoplasticity. International Journal of Engineering Science, 41:387–399, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Mandel. Une généralisation de la théorie de la plasticité de W.T. Koiter. International Journal of Solids and Structures, 1:273–295, 1965.

    Article  Google Scholar 

  • J. Mandel. Plasticité classique et viscoplasticité. CISM Courses and Lectures No. 97, Udine, Springer Verlag, Berlin, 1971.

    Google Scholar 

  • J. Mandel. Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Structures, 9:725–740, 1973.

    Article  MATH  Google Scholar 

  • G.A. Maugin. The method of virtual power in continuum mechanics: Application to coupled fields. Acta Mechanica, 35:1–70, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  • J.R. Mayeur, D.L. McDowell, and D.J. Bammann. Dislocation–based micropolar single crystal plasticity: Comparison if multi– and single cristerion theories. Journal of the Mechanics and Physics of Solids, 59:398–422, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Mazière, J. Besson, S. Forest, B. Tanguy, H. Chalons, and F. Vogel. Numerical aspects in the finite element simulation of the portevin-le chatelier effect. Computer Methods in Applied Mechanics and Engineering, 199:734–754, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  • L. Méric, P. Poubanne, and G. Cailletaud. Single crystal modeling for structural calculations. Part 1: Model presentation. J. Engng. Mat. Technol., 113:162–170, 1991.

    Article  Google Scholar 

  • C. Miehe. A multifield incremental variational framework for gradienttype standard dissipative solids, in press. Journal of the Mechanics and Physics of Solids, 2011.

    Google Scholar 

  • C. Miehe, F. Welchinger, and M. Hofacker. Thermodynamically–consistent phase field models of fracture: Variational principles and multifield FE implementations. International Journal for Numerical Methods in Engineering, 83:1273–1311, 2010a.

    Article  MATH  Google Scholar 

  • C. Miehe, F. Welchinger, and M. Hofacker. A phase field model of electromechanical fracture. Journal of the Mechanics and Physics of Solids, 58:1716–1740, 2010b.

    Article  MATH  Google Scholar 

  • R.D. Mindlin. Micro–structure in linear elasticity. Arch. Rat. Mech. Anal., 16:51–78, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  • A. I. Murdoch. A thermodynamical theory of elastic material interfaces. Q. J. Mech. appl. Math., 29:245–275, 1978.

    Article  MathSciNet  Google Scholar 

  • J.F. Nye. Some geometrical relations in dislocated crystals. Acta Metall., 1:153–162, 1953.

    Article  Google Scholar 

  • R.H.J. Peerlings, M.G.D. Geers, R. de Borst, and W.A.M. Brekelmans. A critical comparison of nonlocal and gradient–enhanced softening continua. Int. J. Solids Structures, 38:7723–7746, 2001.

    Article  MATH  Google Scholar 

  • A. Rajagopal, P. Fischer, E. Kuhl, and P. Steinmann. Natural element analysis of the cahn-hilliard phase-field model. Computational Mechanics, 46: 471–493, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  • R.A. Regueiro. On finite strain micromorphic elastoplasticity. International Journal of Solids and Structures, 47:786–800, 2010.

    Article  MATH  Google Scholar 

  • C. Sansour, S. Skatulla, and H. Zbib. A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Structures, 47:1546–1554, 2010.

    Article  MATH  Google Scholar 

  • Schäfer,H. Eine Feldtheorie der Versetzungen im Cosserat-Kontinuum. ZAMP, 20:891–899, 1969.

    Article  MATH  Google Scholar 

  • I. Steinbach and M. Apel. Multi phase field model for solid state transformation with elastic strain. Physica D, 217:153–160, 2006.

    Article  MATH  Google Scholar 

  • P. Steinmann. Views on multiplicative elastoplasticity and the continuum theory of dislocations. International Journal of Engineering Science, 34: 1717–1735, 1996.

    Article  MATH  Google Scholar 

  • B. Svendsen. Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations. J. Mech. Phys. Solids, 50:1297–1329, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  • C. Teodosiu. A dynamic theory of dislocations and its applications to the theory of the elastic-plastic continuum. In J.A. Simmons, R. de Wit, and R. Bullough, editors, Fundamental Aspects of Dislocation Theory, pages 837–876. Nat. Bur. Stand. (US) Spec. Publ. 317, II, 1970.

    Google Scholar 

  • C. Teodosiu and F. Sidoroff. A theory of finite elastoviscoplasticity of single crystals. Int. J. of Engng Science, 14:165–176, 1976.

    Article  MATH  Google Scholar 

  • R.L.J.M. Ubachs, P.J.G. Schreurs, and M.G.D. Geers. A nonlocal diffuse interface model for microstructure evolution of tin–lead solder. Journal of the Mechanics and Physics of Solids, 52:1763–1792, 2004.

    Article  MATH  Google Scholar 

  • R.L.J.M. Ubachs, P.J.G. Schreurs, and M.G.D. Geers. Elasto-viscoplastic nonlocal damage modelling of thermal fatigue in anisotropic lead-free solder. Mechanics of Materials, 39:685–701, 2007.

    Article  Google Scholar 

  • Y. Wang, L.-Q. Chen, and A.G. Khachaturyan. Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap. Acta Metallurgica et Materialia, 41:279–296, 1993.

    Article  Google Scholar 

  • A. Zeghadi, S. Forest, A.-F. Gourgues, and O. Bouaziz. Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure–Part 2: Crystal plasticity. Philosophical Magazine, 87:1425–1446, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Forest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 CISM, Udine

About this chapter

Cite this chapter

Forest, S., Ammar, K., Appolaire, B., Cordero, N., Gaubert, A. (2014). Micromorphic approach to crystal plasticity and phase transformation. In: Schröder, J., Hackl, K. (eds) Plasticity and Beyond. CISM International Centre for Mechanical Sciences, vol 550. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1625-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1625-8_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1624-1

  • Online ISBN: 978-3-7091-1625-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics