Skip to main content

A numerical two-scale homogenization scheme: the FE2-method

  • Chapter
Plasticity and Beyond

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 550))

Abstract

A wide class of micro-heterogeneous materials is designed to satisfy the advanced challenges of modern materials occurring in a variety of technical applications. The effective macroscopic properties of such materials are governed by the complex interaction of the individual constituents of the associated microstructure. A sufficient macroscopic phenomenological description of these materials up to a certain order of accuracy can be very complicated or even impossible. On the contrary, a whole resolution of the fine scale for the macroscopic boundary value problem by means of a classical discretization technique seems to be too elaborate.

Instead of developing a macroscopic phenomenological constitutive law, it is possible to attach a representative volume element (RVE) of the microstructure at each point of the macrostructure; this results in a two-scale modeling scheme. A discrete version of this scheme performing finite element (FE) discretizations of the boundary value problems on both scales, the macro- and the micro-scale, is denoted as the FE2-method or as the multilevel finite element method. The main advantage of this procedure is based on the fact that we do not have to define a macroscopic phenomenological constitutive law; this is replaced by suitable averages of stress measures and deformation tensors over the microstructure.

Details concerning the definition of the macroscopic quantities in terms of their microscopic counterparts, the definition/construction of boundary conditions on the RVE as well as the consistent linearization of the macroscopic constitutive equations are discussed in this contribution.

Furthermore, remarks concerning stability problems on both scales as well as their interactions are given and representative numerical examples for elasto-plastic microstructures are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • R. Abeyaratne and N. Triantafyllidis. An investigation of localization in a porous elastic material using homogenization theory. Journal of Applied Mechanics, 51:481–486, 1984.

    MathSciNet  Google Scholar 

  • M. Agoras, O. Lopez-Pamies, and P. Ponte Castañeda. Onset of macroscopic instabilities in fiber-reinforced elastomers at finite strain. Journal of the Mechanics and Physics of Solids, 57:1828–1850, 2009.

    MathSciNet  MATH  Google Scholar 

  • M. Ambrozinski, K. Bzowski, L. Rauch, and M. Pietrzyk. Application of statistically similar representative volume element in numerical simulations of crash box stamping. Archives of Cicvil and Mechanical Engineering, 12:126–132, 2012.

    Google Scholar 

  • P. Aubert, C. Licht, and S. Pagano. Some numerical simulations of large deformations of heterogeneous hyperelastic materials. Computational Mechanics, 41:739–746, 2008.

    MATH  Google Scholar 

  • I. Babuska. Homogenisation approach in engineering. In Lecture Notes in Economics and Math. Systems, volume 134, pages 137–153. Springer Verlag, 1976.

    Google Scholar 

  • N. Bakhvalov and G. Panasenko. Homogenisation: Averaging processes in periodic media. Kluwer Academic Publishers, 1984.

    Google Scholar 

  • J.M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Archive for Rational Mechanics and Analysis, 63:337–403, 1977a.

    MATH  Google Scholar 

  • J.M. Ball. Constitutive inequalities and existence theorems in nonlinear elastostatics. In R. J. Knops, editor, Symposium on Non-Well Posed Problems and Logarithmic Convexity, volume 316. Springer-Lecture Notes in Math., 1977b.

    Google Scholar 

  • D. Balzani, J. Schröder, and D. Brands. FE2-simulation of microheterogeneous steels based on statistically similar RVEs. In Proceedings of the IUTAM Symposium on Variational Concepts with applications to the mechanics of materials, September 22-26, 2008, Bochum, Germany, 2009.

    Google Scholar 

  • D. Balzani, D. Brands, J. Schröder, and C. Carstensen. Sensitivity analysis of statistical measures for the reconstruction of microstructures based on the minimization of generalized least-square functionals. Technische Mechanik, 30:297–315, 2010.

    Google Scholar 

  • A. Bensoussan, J.L. Lions, and G. Papanicolaou. Asymptotic Analysis for Periodic Structures. North-Holland Publishing Company, 1978.

    MATH  Google Scholar 

  • J.D. Clayton and D.L. McDowell. A multiscale multiplicative decomposition for elastoplasticity of polycrystals. International Journal of Plasticity, 19:1401–1444, 2003.

    MATH  Google Scholar 

  • E. A. de Souza Neto and R.A. Feijoo. On the equivalence between spatial and material volume averaging of stress in large strain multi-scale solid constitutive models. Mechanics of Materials, 40:803–811, 2008.

    Google Scholar 

  • W.J. Drugan and J.R. Willis. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. Journal of the Mechanics and Physics of Solids, 44:497–524, 1996.

    MathSciNet  MATH  Google Scholar 

  • F. Feyel. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Computer Methods in Applied Mechanics and Engineering, 192:3233–3244, 2003.

    MATH  Google Scholar 

  • F. Feyel and J.-L. Chaboche. FE2 multiscale approach for modelling the elastoviscoplastic behavior of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering, 183:309–330, 2000.

    MATH  Google Scholar 

  • J. Fish and A. Wagiman. Multiscale finite element method for a locally nonperiodic heterogeneous medium. Computational Mechanics, 12:164–180, 1993.

    MathSciNet  MATH  Google Scholar 

  • E. I. Saavedra Flores and E. A. de Souza Neto. Remarks on symmetry conditions in computational homogenisation problems. International Journal for Computer-Aided Engineering and Software, 27:551–575, 2010.

    MATH  Google Scholar 

  • S. Forest. Homogenization methods and the mechanics of generalized continua, part 2. Theoretical and Applied Mechanics, 28–29:113–143, 2002.

    MathSciNet  Google Scholar 

  • S. Forest and D. K. Trinh. Generalized continua and non-homogeneous boundary conditions in homogenisation methods. Zeitschrift für angewandte Mathematik und Mechanik, 91:90–109, 2011.

    MathSciNet  MATH  Google Scholar 

  • M.G.D. Geers, V. Kouznetsova, and W.A.M. Brekelmans. Gradientenhanced computational homogenization for the micro-macro scale transition. Journal de Physique IV, 11:145–152, 2001.

    Google Scholar 

  • M.G.D. Geers, V. Kouznetsova, and W.A.M. Brekelmans. Multi-scale firstorder and second-order computational homogenization of microstructures towards continua. International Journal for Multiscale Computational Engineering, 1:371–386, 2003.

    Google Scholar 

  • M.G.D. Geers, E.W.C. Coenen, and V. Kouznetsova. Multi-scale computational homogenization of structured thin sheets. Modelling and Simulation in Material Science and Engineering, 15:393–404, 2007.

    Google Scholar 

  • G. Geymonat, S. Müller, and N. Triantafyllidis. Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Archive for Rational Mechanics and Analysis, 122: 231–290, 1993.

    MathSciNet  MATH  Google Scholar 

  • S. Ghosh, K. Lee, and S. Moorthy. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method. International Journal of Solids and Structures, 32:27–62, 1995.

    MathSciNet  MATH  Google Scholar 

  • F. Gruttmann and W. Wagner. A coupled two-scale shell model with applications to layered structures. International Journal for Numerical Methods in Engineering, 2013. accepted for publication.

    Google Scholar 

  • J.M. Guedes and N. Kikuchi. Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Computer Methods in Applied Mechanics and Engineering, 83: 143–198, 1990.

    MathSciNet  MATH  Google Scholar 

  • Z. Hashin. Analysis of composite materials - a survey. Journal of Applied Mechanics, 50:481–505, 1983.

    MATH  Google Scholar 

  • M. Hautefeuille, J.-B. Colliat, A. Ibrahimbegovi´c, H.G. Matthies, and P. Villon. A multi-scale approach to model localized failure with softening. Computers and Structures, 94-95:83–95, 2012.

    Google Scholar 

  • R. Hill. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids, 11:357–372, 1963.

    MATH  Google Scholar 

  • R. Hill. Theory of mechanical properties of fibre-strengthened materials 1. elastic behaviour. Journal of the Mechanics and Physics of Solids, 12: 199–212, 1964a.

    Google Scholar 

  • R. Hill. Theory of mechanical properties of fibre-strengthened materials 2. inelastic behaviour. Journal of the Mechanics and Physics of Solids, 12: 213–218, 1964b.

    Google Scholar 

  • R. Hill. A self–consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13:213–222, 1965a.

    Google Scholar 

  • R. Hill. Theory of mechanical properties of fibre-strengthened materials 3. self-consistent model. Journal of the Mechanics and Physics of Solids, 13:189–198, 1965b.

    Google Scholar 

  • R. Hill. On macroscopic measures of plastic work and deformation in microheterogeneous media. Journal of Applied Mathematics and Mechanics, 35:31–39, 1971.

    Google Scholar 

  • R. Hill. On constitutive macro-variables for heterogeneous solids at finite strain. Proceedings of the Royal Society London A, 326:131–147, 1972.

    MATH  Google Scholar 

  • R. Hill. On macroscopic effects of heterogeneity in elastoplastic media at finite strain. Mathematical Proceedings of the Cambridge Philosophical Society, 95:481–494, 1984.

    MathSciNet  MATH  Google Scholar 

  • A. Ibrahimbegovi´c and D. Markovič. Strong coupling methods in multiphase and multi-scale modeling of inelastic behavior of heterogeneous structures. Computer Methods in Applied Mechanics and Engineering, 192:3089–3107, 2003.

    MATH  Google Scholar 

  • R. Jänicke, S. Diebels, H. G. Sehlhorst, and A. Düster. Two-scale modeling of micromorphic continua. Continuum Mechanics and Thermodynamics, 21:297–315, 2009.

    MathSciNet  MATH  Google Scholar 

  • D. Jeulin and M. Ostoja-Starzewski, editors. Mechanics of random and multiscale microstructures. Springer, 2001.

    MATH  Google Scholar 

  • T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin. Determination of the size of the representative volume element for random composites: statistical and numerical approach. International Journal of Solids and Structures, 40:3647–3679, 2003.

    MATH  Google Scholar 

  • S.O. Klinkel. Theorie und Numerik eines Volumen-Schalen-Elementes bei finiten elastischen und plastischen Verzerrungen. PhD thesis, Universität Fridericiana zu Karlsruhe, 2000.

    Google Scholar 

  • V. Kouznetsova, W.A.M. Brekelmans, and Baaijens F.P.T. An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics, 27:37–48, 2001.

    MATH  Google Scholar 

  • V. Kouznetsova, M.G.D. Geers, and W.A.M. Brekelmans. Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Computer Methods in Applied Mechanics and Engineering, 193(48-51):5525–5550, 2004.

    MATH  Google Scholar 

  • E. Kröner. Allgemeine Kontinuumstheorie der Versetzung und Eigenspannung. Archive of Rational Mechanics and Analysis, 4:273–334, 1960.

    MATH  Google Scholar 

  • E. Kröner. Statistical continuum mechanics. In CISM Courses and Lectures, volume 92. Springer-Verlag, Wien, New-York, 1971.

    Google Scholar 

  • F. Larsson, K. Runesson, S. Saroukhani, and R. Vafadari. Computational homogenization based on a weak format of micro-periodicity for RVE-problems. Computer Methods in Applied Mechanics and Engineering, 200:11–26, 2011.

    MathSciNet  Google Scholar 

  • E.H. Lee. Elasto-plastic deformation at finite strains. Journal of Applied Mechanics, 36:1–6, 1969.

    MATH  Google Scholar 

  • J. Mandel. Plasticité cassique et Viscoplasticité. Number 97 in CISM lecture notes. Springer, 1972.

    Google Scholar 

  • J. Mandel and P. Dantu. Contribution à l’étude théorique et expérimentale du coefficient d’élasticité d’un milieu hétérogène mais statistiquement homogène. Anales des Ponts et Chaussées Paris, 133(2):115–146, 1963.

    Google Scholar 

  • D. Markovic, R. Niekamp, A. Ibrahimbegovic, H.G. Matthies, and R.L. Taylor. Multi-scale modeling of heterogeneous structures with inelastic constitutive behaviour: Part I - physical and mathematical aspects. Engineering Computations, 22(5-6):664–683, 2005.

    MATH  Google Scholar 

  • J.E. Marsden and J.R. Hughes. Mathematical Foundations of Elasticity. Prentice-Hall, 1983.

    MATH  Google Scholar 

  • J.C. Michel, H. Moulinec, and P. Suquet. Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering, 172:109–143, 1999.

    MathSciNet  MATH  Google Scholar 

  • C. Miehe. Kanonische Modelle multiplikativer Elasto-Plastizität. Thermodynamische Formulierung und Numerische Implementation. 1993. Habilitationsschrift.

    Google Scholar 

  • C. Miehe. Computational micro-to-macro transitions for discretized microstructures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Computer Methods in Applied Mechanics and Engineering, 192:559–591, 2003.

    MathSciNet  MATH  Google Scholar 

  • C. Miehe and C.G. Bayreuther. On mutiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers. International Journal for Numerical Methods in Engineering, 71:1135–1180, 2007.

    MathSciNet  MATH  Google Scholar 

  • C. Miehe and A. Koch. Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Archive of Applied Mechanics, 72(4):300–317, 2002.

    MATH  Google Scholar 

  • C. Miehe and E. Stein. A canonical model of multiplicative elasto-plasticity formulation and aspects of the numerical implementation. European Journal of Mechanics, A/Solids, 11:25–43, 1992.

    Google Scholar 

  • C. Miehe, J. Schotte, and J. Schröder. Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Computational Materials Science, 16(1-4):372–382, 1999a.

    Google Scholar 

  • C. Miehe, J. Schröder, and J. Schotte. Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering, 171(3-4):387–418, 1999b.

    MATH  Google Scholar 

  • C. Miehe, J. Schröder, and M. Becker. Computational homogenization analysis in finite elasticity: Material and structural instabilities on the microand macro-scales of periodic composites and their interaction. Computer Methods in Applied Mechanics and Engineering, 191:4971–5005, 2002.

    MathSciNet  MATH  Google Scholar 

  • C.B. Morrey. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific Journal of Mathematics, 2:25–53, 1952.

    MathSciNet  MATH  Google Scholar 

  • C.B. Morrey. Multiple integrals in the calculus of variations. Springer, 1966. S. Müller. Homogenization of nonconvex integral functionals and cellular elastic materials. Archive for Rational Mechanics and Analysis, 99:189–212, 1987.

    Google Scholar 

  • S. Müller and S. Neukamm. On the commutability of homogenization and linearization in finite elasticity. Archive for Rational Mechanics and Analysis, 201:465–500, 2011.

    MathSciNet  MATH  Google Scholar 

  • S. Nemat-Nasser. Averaging theorems in finite deformation plasticity. Mechanics of Materials, 31:493–523, 1999.

    Google Scholar 

  • S. Nemat-Nasser and M. Hori. Micromechanics: Overall Properties of Heterogeneous Materials. North Holland, 2 edition, 1999.

    Google Scholar 

  • R. Niekamp, D. Markovic, A. Ibrahimbegovic, H.G. Matthies, and R.L. Taylor. Multi-scale modelling of heterogeneous structures with inelastic constitutive behavior: Part II - software coupling implementation aspects. Engineering Computations, 26(1/2):6–28, 2009.

    MATH  Google Scholar 

  • R.W. Ogden. Non-linear elastic deformations. Dover Publications, 1984.

    Google Scholar 

  • N. Ohno, T. Matsuda, and X. Wu. A homogenization theory for elasticviscoplastic composites with point symmetry of internal distributions. International Journal of Solids and Structures, 38:2867–2878, 2001.

    MathSciNet  MATH  Google Scholar 

  • N. Ohno, D. Okumura, and H. Noguchi. Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation. Journal of the Mechanics and Physics of Solids, 50:1125–1153, 2002.

    MathSciNet  MATH  Google Scholar 

  • J. Ohser and F. Mücklich. Statistical analysis of microstructures in materials science. J Wiley & Sons, 2000.

    MATH  Google Scholar 

  • J. Okada, T. Washio, and T. Hisada. Study of efficient homogenization algorithms for nonlinear problems – approximation of a homogenized tangent stiffness to reduce computational cost. Computational Mechanics, 46:247–258, 2010.

    MathSciNet  MATH  Google Scholar 

  • M. Ostoja-Starzewski. Material spatial randomness: From statistical to representative volume element. Probabilistic Engineering Mechanics, 21: 112–132, 2006.

    Google Scholar 

  • M. Ostoja-Starzewski. The use, misuse, and abuse of stochastic random media. In Proceedings of European Conference on Computational Mechanics, 2001.

    Google Scholar 

  • M. Ostoja-Starzweski. Microstructural randomness and scaling in mechanics of materials. CRC Series: Modern mechanics and mathematics. Chapman & Hall, 2008.

    Google Scholar 

  • I. Özdemir, W.A.M. Brekelmans, and M.G.D. Geers. Computational homogenization for heat conduction in heterogeneous solids. International Journal for Numerical Methods in Engineering, 73:185–204, 2008.

    MathSciNet  MATH  Google Scholar 

  • D. Peri´c, D.R.J. Owen, and M.E. Honnor. A model for finite strain elastoplasticity based on logarithmic strains: Computational issues. Computer Methods in Applied Mechanics and Engineering, 94:35–61, 1992.

    MATH  Google Scholar 

  • D. Peri´c, E.A. de Souza Neto, R.A. Feijóo, M. Partovi, and A.J. Carneiro Molina. On micro-to-macro transitions for multi-scale analysis of nonlinear heterogeneous materials: unified variational basis and finite element implementation. International Journal for Numerical Methods in Engineering, 87:149–170, 2011.

    MATH  Google Scholar 

  • A. Pflüger. Stabilitätsprobleme in der Elastostatik. Springer-Verlag, 1975.

    Google Scholar 

  • G.L. Povirk. Incorporation of microstructural information into models of two-phase materials. 43/8:3199–3206, 1995.

    Google Scholar 

  • A. Reuss. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für angewandte Mathematik und Mechanik, 9(1):49–58, 1929.

    MATH  Google Scholar 

  • I. Saiki, K. Terada, K. Ikeda, and M. Hori. Appropriate number of unit cells in a representative volume element for micro-structural bifurcation encountered in a multi-scale modeling. Computer Methods in Applied Mechanics and Engineering, 191:2561–2585, 2002.

    MathSciNet  MATH  Google Scholar 

  • E. Sanchez-Palencia and A. Zaoui. Lecture notes in physics: Homogenization techniques for composite media. Springer–Verlag, Berlin, 1986.

    Google Scholar 

  • J. Schröder. Homogenisierungsmethoden der nichtlinearen Kontinuumsmechanik unter Beachtung von Stabilitätsproblemen. Bericht aus der Forschungsreihe des Instituts für Mechanik (Bauwesen), Lehrstuhl I, Universität Stuttgart, 2000. Habilitation.

    Google Scholar 

  • J. Schröder. Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Computational Materials Science, 46(3):595–599, 2009.

    Google Scholar 

  • J. Schröder. Anisotropic polyconvex energies. In J. Schröder and P. Neff, editors, Poly-, Quasi- and Rank-One Convexity in Applied Mechanics, number 516 in CISM Courses and Lectures, pages 53–105. Springer-Verlag, 2010.

    Google Scholar 

  • J. Schröder and M.-A. Keip. Multiscale modeling of electro-mechanically coupled materials: homogenization procedure and computation of overall moduli. In M. Kuna and A. Ricoeur, editors, IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials, volume 24 of IUTAM Bookseries, pages 265–276. Springer, Netherlands, 2011. ISBN 978-90-481-9887-0.

    Google Scholar 

  • J. Schröder and M.-A. Keip. Two-scale homogenization of electromechanically coupled boundary value problems – consistent linearization and applications. Computational Mechanics, 50(2):229–244, 2012.

    MathSciNet  MATH  Google Scholar 

  • J. Schröder, D. Balzani, and D. Brands. Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions. Archive of Applied Mechanics, 81 (7):975–997, 2010.

    Google Scholar 

  • J.C. Simo. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. continuum formulation. Computer Methods in Applied Mechanics and Engineering, 66:199–219, 1988.

    MathSciNet  MATH  Google Scholar 

  • J.C. Simo. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Computer Methods in Applied Mechanics and Engineering, 99:61–112, 1992.

    MathSciNet  MATH  Google Scholar 

  • J.C. Simo and C. Miehe. Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Computer Methods in Applied Mechanics and Engineering, 96:133–171, 1992.

    MathSciNet  MATH  Google Scholar 

  • R.J.M. Smit, W.A.M. Brekelmans, and H.E.H. Meijer. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering, 155:181–192, 1998.

    MATH  Google Scholar 

  • M. Stroeven and L.J. Askes, H. Sluys. Numerical determination of representative volumes for granular materials. Computer Methods in Applied Mechanics and Engineering, 193:3221–3238, 2004.

    MATH  Google Scholar 

  • M. Stroeven, H. Askes, and L.J. Sluys. A numerical approach to determine representative volumes for granular materials. In Fifth World Congress on Computational Mechanics (WCCM V). Vienna University of Technology, 2002.

    Google Scholar 

  • P.M. Suquet. Elements of homogenization for inelastic solid mechanics. In Homogenization techniques for composite materials, Lecture notes in physics 272, chapter 4, pages 193–278. Springer–Verlag, 1987.

    Google Scholar 

  • S. Swaminathan, S. Ghosh, and N.J. Pagano. Statistically equivalent representative volume elements for unidirectional composite microstructures: part i - without damage. Journal of Composite Materials, 40:583–604, 2006.

    Google Scholar 

  • L. Tartar. The general theory of homogenization. Lecture notes of the unione mathematica italiana. Springer–Verlag, 2000.

    Google Scholar 

  • I. Temizer. On the asymptotic expansion treatment of two-scale finite thermoelasticity. International Journal of Engineering Science, 53:74–84, 2012.

    MathSciNet  Google Scholar 

  • I. Temizer and P. Wriggers. On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Computer Methods in Applied Mechanics and Engineering, 198:495–510, 2008.

    MathSciNet  MATH  Google Scholar 

  • I. Temizer and T.I. Zohdi. A numerical method for homogenization in nonlinear elasticity. Computational Mechanics, 40:281–298, 2007.

    MATH  Google Scholar 

  • K. Terada and N. Kikuchi. A class of general algorithms for multi-scale analyses of heterogeneous media. Computer Methods in Applied Mechanics and Engineering, 190(40-41):5427–5464, 2001.

    MathSciNet  MATH  Google Scholar 

  • K. Terada, M. Hori, T. Kyoya, and N. Kikuchi. Simulation of the multi-scale convergence in computational homogenization approach. International Journal of Solids and Structures, 37:2285–2311, 2000.

    MATH  Google Scholar 

  • K. Terada, I. Saiki, K. Matsui, and Y. Yamakawa. Two-scale kinematics and linearization for simultaneous two-scale analysis of periodic heterogeneous solids at finite strain. Computer Methods in Applied Mechanics and Engineering, 192(31-32):3531–3563, 2003.

    MathSciNet  MATH  Google Scholar 

  • J.M.T. Thompson and G.W. Hunt. Elastic Instability Phenomena. John Wiley & Sons Ltd., 1984.

    MATH  Google Scholar 

  • N. Triantafyllidis and B.N. Maker. On the comparison between microscopic and macroscopic instability mechanisms in a class of fiber-reinforced composites. Journal of Applied Mechanics, 52:794–800, 1985.

    MATH  Google Scholar 

  • C. Truesdell and W. Noll. The nonlinear field theories of mechanics. In S. Flügge, editor, Encyclopedia of Physics, volume III/3. Springer, 1965.

    Google Scholar 

  • O. van der Sluis, P.J.G. Schreurs, W.A.M. Brekelmans, and H.E.H. Meijer. Overall behavior of heterogeneous elastoviscoplastic materials: effect of microstructural modelling. Mechanics of Materials, 32:449–462, 2000.

    Google Scholar 

  • W. Voigt. Lehrbuch der Kristallphysik. Teubner, 1910.

    Google Scholar 

  • G. Weber and L. Anand. Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoelastic solids. Computer Methods in Applied Mechanics and Engineering, 79:173–202, 1990.

    MATH  Google Scholar 

  • Z. Xia, Y. Zhang, and F. Ellyin. A unified periodical boundary conditions for representative volume elements of composites and applications. International Journal of Solids and Structures, 40:1907–1921, 2003.

    MATH  Google Scholar 

  • J. Zeman. Analysis of Composite Materials with Random Microstructure. PhD thesis, University of Prague, 2003.

    Google Scholar 

  • T.I. Zohdi and P. Wriggers. Introduction to Computational Micromechanics, volume 20 of Lecture Notes in Applied and Computational Mechanics. Springer, 2005.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schröder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 CISM, Udine

About this chapter

Cite this chapter

Schröder, J. (2014). A numerical two-scale homogenization scheme: the FE2-method. In: Schröder, J., Hackl, K. (eds) Plasticity and Beyond. CISM International Centre for Mechanical Sciences, vol 550. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1625-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1625-8_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1624-1

  • Online ISBN: 978-3-7091-1625-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics