Skip to main content

Multiscale models of electromagnetic and plasmonic metamaterials

  • Chapter
  • 1171 Accesses

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 547))

Abstract

In this chapter, we discuss paradigms central to electromagnetic metamaterials and their plasmonic counterparts. We start with a slab lens with unlimited resolution, which is made possible using the concept of negative refraction, when the permittivity and permeability of a medium change sign simultaneously. Pendry’s perfect lens heavily relies upon existence of surface plasmons that exist on its boundaries. Correspondences with acoustics are then investigated in light of spring-mass models which bridge the field of electromagnetic and acoustic metamaterials, which are composites within which light or other (e.g. elastic, liquid surface) waves experience inverted Snell-Descartes laws of refraction upon resonance of micro-scale resonators. Next, we explain how geometric transforms introduced for computational easiness in helicoidal fibres, were given a twist by Pendry’s team in 2006 in order to design invisibility cloaks. Finally, we apply these mathematical tools to the control of surface plasmons propagating at structured metal-dielectric interfaces. We illustrate transformational plasmonics with a broadband plasmonic invisibility carpet which has been experimentally validated by Quidant’s group in 2010 at near infrared frequencies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. N. Fang, H. Lee, C. Sun and X. Zhang, Science 308, 534 (2005)

    Google Scholar 

  2. S. Guenneau, S.A. Ramakrishna, Negative refractive index, perfect lenses and checkerboards: Trapping and imaging effects in folded optical spaces, Comptes Rendus Physique 10, 352–378 (2009)

    Google Scholar 

  3. V. Kozlov, V. Mazya, A.B. Movchan, Asymptotic Analysis of Fields in Multistructures, Oxford Science Publications (1999)

    Google Scholar 

  4. R.C. McPhedran, N.A. Nicorovici, G.W. Milton, Optical and dielectric properties of partially resonant composites, Phys. Rev. B 49, 8479 (1994).

    Google Scholar 

  5. A.B. Movchan, S. Guenneau, Localised modes in split ring resonators, Phys. Rev. B 70, 125,116 (2004)

    Google Scholar 

  6. A.B. Movchan, N.V. Movchan, S. Guenneau, R.C. McPhedran, Asymptotic estimates for localized electromagnetic modes in doubly periodic structures with defects, Proc. R. Soc. A 463, 1045 (2007)

    MathSciNet  MATH  Google Scholar 

  7. J.B. Pendry, Perfect cylindrical lenses, Opt. Express 11(7), 755-760 (2003)

    Google Scholar 

  8. S.A. Ramakrishna and T.M. Grzegorczyk, Physics and applications of negative refractive index materials (CRC Press, Boca Raton, 2009)

    Google Scholar 

  9. D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S.A. Ramakrishna and J.B. Pendry, Limitations on subdiffraction imaging with a negative refractive index slab, Appl. Phys. Lett. 82(10), 1506 (2003).

    Google Scholar 

  10. S.A. Ramakrishna and J.B. Pendry, The asymmetric lossy near-perfect lens, J. Mod. Opt. 49(10), 1747-1762 (2002).

    MATH  Google Scholar 

  11. J.B. Pendry and S.A. Ramakrishna, Focussing light using negative refraction, J. Phys. Cond. Matt. 15, 6345-6364 (2003).

    Google Scholar 

  12. J.B. Pendry, A.J. Holden, D.J. Robbins and W.J. Stewart, Extremely low frequency plasmons in metallic mesostructures, Physical Review Letters 76, 4763 (1996)

    Google Scholar 

  13. J.B. Pendry, A.J. Holden, W.J. Stewart and I. Youngs, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Micr. Theory and Techniques 47, 2075-2084 (1996)

    Google Scholar 

  14. J.B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett. 85, 3966-3969 (2000)

    Google Scholar 

  15. S.A. Ramakrishna and O.J.F. Martin, Resolving the wave vector in negative refractive index media, Opt. Letters 30(19), 2626 (2005).

    Google Scholar 

  16. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of and μ, Sov. Phys. Usp. 10, 509-514 (1968)

    Google Scholar 

  17. S.A. Ramakrishna, J.B. Pendry, M.C.K. Wiltshire and W.J. Stewart, Imaging the near field, J. Mod. Optics 50, 1419 (2003)

    Google Scholar 

  18. M. P. Silverman, And Yet It Moves, 151-163 (Cambridge Univ. Press, New York, NY, USA, 1993).

    Google Scholar 

  19. V. U. Nazarov and Y. C. Chang, Resolving the wave vector and the refractive index from the coefficient of reflectance, Opt. Lett. 32, 2939-2941 (2007).

    Google Scholar 

  20. J.B. Pendry, A.J. Holden, D.J. Robbins and W.J. Stewart, Low frequency plasmons in thin-wire structures, J. Phys.: Condens. Matter 10, 4785-4809 (1998).

    Google Scholar 

  21. D. R. Smith, W.J. Padilla, V. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity Phys. Rev. Lett. 84, 4184 (2000)

    Google Scholar 

  22. D. Maystre and S. Enoch, Perfect lenses made with left-handed materials: Alice’s mirror?, J. Opt. Soc. Am A 21, 122-131 (2004).

    Google Scholar 

  23. Y. F. Chen, P. Fischer, and F. W. Wise, Negative refraction at optical frequencies in nonmagnetic two component molecular media, Phys. Rev. Lett. 95, 067402 (2005).

    Google Scholar 

  24. J. Skaar, On resolving the refractive index and the wave vector, Opt. Lett. 31, 3372-3374 (2006).

    Google Scholar 

  25. S.A. Ramakrishna, Comment on ‘Negative refraction at optical frequencies in nonmagnetic two component molecular media’, Phys. Rev. Lett. 98, 059701 (2007).

    Google Scholar 

  26. A. Lakhtakia, J. B. Geddes III, and T. G. Mackay, When does the choice of the refractive index of a linear, homogeneous, isotropic, active, dielectric medium matter?, Opt. Express 15, 17709-17714 (2007).

    Google Scholar 

  27. J. Seidel, F. Grafström and L. Eng, Stimulated emmission of surface plasmons at the interface between a silver film and an optically pumped dye solution, Phys. Rev. Lett. 94, 177401 (2005).

    Google Scholar 

  28. S. A. Ramakrishna Physics of negative refractive index materials, Rep. Prog. Phys. 68, 449-521 (2005).

    Google Scholar 

  29. S. Guenneau, R. Craster, A. Antonakakis, K. Cherednichenko, S. Cooper, Homogenization techniques for periodic structures, Chapter 11 in Gratings: Theory and numeric applications, E. Popov editor, Institut Fresnel/CNRS/Aix-Marseille-University (2012) ISBN: 2-85399-860-4 (www.fresnel.fr/numerical-grating-book)

    Google Scholar 

  30. A. Alu and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 95, 016623 (2005).

    Google Scholar 

  31. J.-P. Berenger A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,Journal of Computational Physics 114, 185-200 (1994)

    MathSciNet  MATH  Google Scholar 

  32. A. Bossavit, Notions de géométrie differentielle pour l’étude des courants de Foucault et des méthodes numériques en Electromagnétisme, Méthodes numériques en électromagnétisme (A. Bossavit, C. Emson, I. Mayergoyz), Eyrolles, Paris, 1-147 (1991)

    Google Scholar 

  33. A. Bossavit, A Rationale for ’Edge-Elements’ in 3-D Fields Computations, IEEE Trans. Mag. 24(1), 74-79 (1998)

    Google Scholar 

  34. M. Brun, S. Guenneau and A.B. Movchan, Achieving control of in-plane elastic waves, Appl. Phys. Lett. 94, 061903 (2009)

    Google Scholar 

  35. H. Chen and C.T. Chan, Acoustic cloaking in three dimensions using acoustic metamaterials, Appl. Phys. Lett. 91, 183518 (2007).

    Google Scholar 

  36. S.A. Cummer and D. Schurig, One path to acoustic cloaking, New J. Phys. 9, 45 (2007).

    Google Scholar 

  37. F.J.G. de Abajo, G. Gomez-Santos, L.A. Blanco, A.G. Borisov and S.V. Shabanov, Tunneling mechanisms of light transmission through metallic films, Phys. Rev. Lett. 95, 067403 (2005).

    Google Scholar 

  38. A. Diatta and S. Guenneau, Non singular cloaks allow mimesis, J. Optics 13, 024012 (2011)

    Google Scholar 

  39. P. Dular, J.-Y. Hody, A. Nicolet, A. Genon and W. Legros, Mixed Finite Elements Associated with a Collection of Tetrahedra, Hexahedra and Prisms,IEEE Trans. Mag.30(5), 2980-2983 (1994)

    Google Scholar 

  40. P. Dular, A. Nicolet, A. Genon and W. Legros, A Discrete Sequence Associated with Mixed Finite Elements and its Gauge Condition for Vector Potentials,IEEE Trans. on Mag.31(3), 1356-1359 (1995)

    Google Scholar 

  41. A. Farhat, S. Guenneau, A.B. Movchan, S. Enoch, Achieving invisibility over a finite range of frequencies, Opt. Express 16, 5656-5661 (2008)

    Google Scholar 

  42. A. Greenleaf, M. Lassas and G. Uhlmann, On nonuniqueness for Calderon’s inverse problem, Math. Res. Lett. 10, 685-693 (2003)

    MathSciNet  MATH  Google Scholar 

  43. A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Isotropic transformation optics: approximate acoustic and quantum cloaking, New J. Phys. 10, 115024 (2008)

    Google Scholar 

  44. A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Full-wave invisibility of active devices at all frequencies, Comm. Math. Phys. 275(3) 749-789 (2007)

    MathSciNet  MATH  Google Scholar 

  45. A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Schrödinger’s Hat: Electromagnetic, acoustic and quantum amplifiers via transformation optics, (preprint:arXiv:1107.4685v1)

    Google Scholar 

  46. S. Guenneau, A. Nicolet, F. Zolla, C. Geuzaine and B. Meys, A finite element formulation for spectral problems in optical fibers,COMPEL20(1), 120-131 (2001)

    Google Scholar 

  47. S. Guenneau, A. Nicolet, F. Zolla and S. Lasquellec, Modeling of photonic crystal optical fibers with finite elements,IEEE Trans. Mag.38(2), 1261-1264 (2002)

    Google Scholar 

  48. S. Guenneau, S. Lasquellec, A. Nicolet and F. Zolla, Design of photonic band gap optical fibers using finite elements, COMPEL21(4), 534-539 (2002)

    Google Scholar 

  49. S. Guenneau, A. Nicolet, F. Zolla and S. Lasquellec, Theoretical and numerical study of photonic crystal fibers, Progress In Electromagnetic Research41, 271-305 (2003)

    Google Scholar 

  50. H. Igarashi and T. Honma, A finite element analysis of TE modes in twisted waveguides, IEEE Trans. Mag. 27(5), 4052-4055 (1991)

    Google Scholar 

  51. J.-F. Imhoff, G. Meunier, X. Brunotte and J. C. Sabonnadiere, An Original Solution for Unbounded Electromagnetic 2D- and 3D-problems Throughout the Finite Element Method,IEEE Trans. Mag.26(5), 1659-1661 (1990)

    Google Scholar 

  52. B. Kanté, D. Germain, and A. de Lustrac, Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies, Phys. Rev. B 80, 201104(R) (2009)

    Google Scholar 

  53. R. V. Kohn, H. Shen, M.S. Vogelius and M. I. Weinstein, Cloaking via change of variables in electric impedance tomography, Inverse Problems 24 015016 (2008).

    MathSciNet  Google Scholar 

  54. M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry, Proceedings of the Royal Society of Edinburgh, Sect. A. Mathematics 131(5), 1183-1207 (2001)

    MathSciNet  MATH  Google Scholar 

  55. U. Leonhardt, T. G. Philbin, General relativity in electrical engineering;New J. Phys.8(10), 247 (2006)

    Google Scholar 

  56. L. Lewin and T. Ruehle, Propagation in twisted square waveguide,IEEE Trans. MTT28(1), 44-48 (1980)

    Google Scholar 

  57. D. A. Lowther, E. M. Freeman, and B. Forghani, A Sparse Matrix Open Boundary Method for the Finite Element Analysis, IEEE Trans. Mag.25(4), 2810-2812 (1989)

    Google Scholar 

  58. U. Leonhardt, Optical Conformal Mapping, Science 312, 1777 (2006)

    MathSciNet  MATH  Google Scholar 

  59. R. K. Luneburg, Mathematical theory of optics, University of California Press, Berkeley (1964)

    Google Scholar 

  60. G.W. Milton, M. Briane and J.R. Willis, On cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8, 248 (2006)

    Google Scholar 

  61. G.W. Milton and N.A. Nicorovici, On the cloaking effects associated with anomalous localised resonance, Proc. R. Soc. A 462, 3027-3059 (2006)

    MathSciNet  MATH  Google Scholar 

  62. G. W. Milton, M. Briane and J. R. Willis, On the cloaking for elasticity and physical equations with a transformation invariant form, New J. Phys. 8(248),1-20 (2006)

    Google Scholar 

  63. A. Nicolet, J.-F. Remacle, B. Meys, A. Genon and W. Legros, Transformation methods in computational electromagnetics, Journal of Applied Physics75(10), 6036-6038 (1994)

    Google Scholar 

  64. A. Nicolet, F. Zolla and S. Guenneau, Modelling of twisted optical waveguides with edge elements, Eur. Phys. J. Appl. Phys.28, 153-157 (2004)

    Google Scholar 

  65. A. Nicolet, A. B. Movchan, S. Guenneau and F. Zolla, Asymptotic modelling of weakly twisted electrostatic problems, C. R. Mecanique334(2), 91-97 (2006)

    MATH  Google Scholar 

  66. A. Nicolet and F. Zolla, Finite Element Analysis of Helicoidal Waveguides, IET Science, Measurement & Technology1(1), 67-70 (2007)

    Google Scholar 

  67. A. Nicolet, A. B. Movchan, C. Geuzaine, F. Zolla and S. Guenneau, High order asymptotic analysis of twisted electrostatic problems, Physica B394(2), 335-338 (2007)

    Google Scholar 

  68. A. Nicolet, F. Zolla, Y. A. Ould and S. Guenneau, Leaky Modes in Twisted Microstructured Optical Fibres, Waves in Complex and Random Media17(4), 559-570 (2007)

    MATH  Google Scholar 

  69. A. Nicolet, F. Zolla, Y. Ould Agha and S. Guenneau, Geometrical transformations and equivalent materials in computational electromagnetism, COMPEL27(4), 806-819 (2008)

    MathSciNet  MATH  Google Scholar 

  70. A. Nicolet, F. Zolla and S. Guenneau, Finite element analysis of cylindrical invisibility cloaks of elliptical cross section, IEEE Trans. Mag.33(14), 1584-1586 (2008)

    Google Scholar 

  71. A. Norris, Acoustic cloaking theory, Proc. R. Soc. Lond. 464, 2411 (2008)

    MathSciNet  MATH  Google Scholar 

  72. Y. Ould Agha, F. Zolla, A. Nicolet and S. Guenneau, On the use of PML for the computation of leaky modes: an application to Microstructured Optical Fibres, COMPEL27(1), 95-109 (2008)

    MathSciNet  MATH  Google Scholar 

  73. J. B. Pendry and D. R. Smith, Reversing light with negative refraction, Physics Today57(6), 37-43 (2004)

    Google Scholar 

  74. J. B. Pendry and D. Shurig and D. R. Smith, Controlling electromagnetic fields, Science312, 1780-1782 (2006)

    Google Scholar 

  75. S. A. Ramakrishna, Physics of negative refractive index materials, Reports Progress Physics68(2), 449-521 (2005)

    MathSciNet  Google Scholar 

  76. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, Metamaterial electromagnetic cloak at microwave frequency, Science314(5801), 977-980 (2006)

    Google Scholar 

  77. D. Schurig, J. B. Pendry and D. R. Smith, Transformation-designed optical elements, Optics Express15(22), 14772-14782 (2007)

    Google Scholar 

  78. J. A. Stratton, Electromagnetic Theory, (McGraw-Hill, New-York, 1941)

    MATH  Google Scholar 

  79. H. Yabe and Y. Mushiake, An analysis of a hybrid-mode in a twisted rectangular waveguide, IEEE Trans. MTT32(1), 65-71 (1984)

    Google Scholar 

  80. S. Zhang, D.A. Genov, C. Sun and X. Zhang, Cloaking of matter waves, Phys. Rev. Lett. 100, 123002 (2008)

    Google Scholar 

  81. F. Zolla, G. Renversez, A. Nicolet, B. Khulmey, S. Guenneau and D. Felbacq, Foundations of Photonic Crystal Fibres, (Imperial College Press, London, 2005)

    Google Scholar 

  82. F. Zolla, S. Guenneau, A. Nicolet and J. B. Pendry, Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect, Optics Letters32(9), 1069-1071 (2007)

    Google Scholar 

  83. A.A. Maradudin A.V. Zayats and I.I. Smolyaninov. Nano-optics of surface plasmon polaritons. Phys. Rep., 408:131–314, (2005).

    Google Scholar 

  84. T.A. Leskova B. Baumeier and A.A. Maradudin. Cloaking from surface plasmon polaritons by a circular array of point scatterers. Phys. Rev. Lett., 103:246809 (2009).

    Google Scholar 

  85. L. Brillouin. Wave propagation in periodic structures. (Dover, New York, 1953).

    MATH  Google Scholar 

  86. B.J. Justice S.A. Cummer J.B. Pendry A.F. Starr D.R. Smith D. Schurig, J.J. Mock. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314:977 (2006).

    Google Scholar 

  87. A. Doppler. Uber das farbige licht der doppelsterne und einige andere gestirne des himmels. (1842).

    Google Scholar 

  88. L. Tsonev E. Popov and D. Maystre. Losses of plasmon surface wave on metallic grating. J. Mod. Opt., 37:379–387 (1990).

    Google Scholar 

  89. L. Tsonev E. Popov and D. Maystre. Lamellar diffraction grating anomalies. Appl. Opt., 33:5214–5219 (1994).

    Google Scholar 

  90. A. Nicolet J.B. Pendry F. Zolla, S. Guenneau. Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect. Opt. Lett., 32(1):1069–1071 (2007).

    Google Scholar 

  91. L.A. Blanco A.G. Borisov F.J. Garcia de Abajo, G. Gomez-Santos and S.V. Shabanov. Tunneling mechanism of light transmission through metallic films. Phys. Rev. Lett., 95:067403 (2005).

    Google Scholar 

  92. Y. Fu and X. Zhou. Plasmonic lenses: A review. Plasmonics, 1–24 (2010).

    Google Scholar 

  93. S. Guenneau and S.A. Ramakrishna. Negative refractive index, perfect lenses and checkerboards: Trapping and imaging effects in folded optical spaces. Comptes rendus Physique, 10:352–378 (2009).

    Google Scholar 

  94. A. Hessel and A. A. Oliner. A new theory of woods anomalies on optical gratings. Appl. Opt, 4:1275–1297 (1965).

    Google Scholar 

  95. Y. Huang. Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Opt. Express, 15(1):11133–11141 (2007).

    Google Scholar 

  96. P.A. Huidobro. Transformation optics for plasmonics. Nano Letters, 10(1):1985–1990 (2010).

    Google Scholar 

  97. M.C. Hutley. Diffraction gratings. (Academic Press 1982).

    Google Scholar 

  98. C.C. Davis I.I. Smolyaninov, Y-J. Hung. Imaging and focusing properties of plasmonic metamaterial devices. Phys. Rev. B, 76:205424 (2007).

    Google Scholar 

  99. J.-F. Imhoffl. On original solution for unbounded electromagnetic 2d and 3d-problems throughout the finite element method. IEEE Transactions on Magnetics, 26(5) (1990).

    Google Scholar 

  100. M. Kadic J. Renger. Hidden progress: broadband plasmonic invisibility. Opt. Express, 18(1):15757–15768 (2010).

    Google Scholar 

  101. T. Zentgraf G. Bartal J. Valentine, J. Li and X. Zhang. An optical cloak made of dielectrics. Nature Mater., 8:569–571 (2009).

    Google Scholar 

  102. D. Schurig J.B. Pendry and D.R. Smith. Controlling electromagnetic fields. Science, 312:1780 (2006).

    MathSciNet  MATH  Google Scholar 

  103. L. Martin-Moreno J.B. Pendry and F.J. Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305:847 (2004).

    Google Scholar 

  104. M. Kadic. Transformational plasmonics: cloak, concentrator and rotator for spps. Opt. Express, 18(1):12027–12032 (2010).

    Google Scholar 

  105. Muamer Kadic, Sebastien Guenneau, Stefan Enoch, and S. Anantha Ramakrishna. Plasmonic space folding: Focusing surface plasmons via negative refraction in complementary media. ACS Nano, 5(9):6819–6825 (2011).

    Google Scholar 

  106. E. Kretschmann and H. Reather. Radiative decay of nonradiative surface plasmon excited by light. Z.Naturf., 23A:2135–2136 (1968).

    Google Scholar 

  107. P Lalanne, J Hazart, P Chavel, E Cambril, and H Launois. A transmission polarizing beam splitter grating. J. Opt. A: Pure Appl. Opt., 1:215–219 (1999).

    Google Scholar 

  108. C.R. Lawrence. Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings. Biosens.Bioelectron., 11:389–400 (1996).

    Google Scholar 

  109. U. Leonhardt. Optical conformal mapping. Science, 312:1777 (2006).

    MathSciNet  MATH  Google Scholar 

  110. U. Leonhardt and T. G. Philbin. Transformation optics and the geometry of light. Prog. Opt., 53:69–152 (2009).

    Google Scholar 

  111. U. Leonhardt and T. Tyc. Broadband invisibility by non-euclidean cloaking. Science, 323:110 (2009).

    Google Scholar 

  112. C.B. Poitras L.H. Gabrielli, J. Cardenas and M. Lipson. Silicon nanostructure cloak operating at optical frequencies. Nat. Photonics, 8:461–463 (2009).

    Google Scholar 

  113. Jensen Li and J. B. Pendry. Hiding under the carpet: A new strategy for cloaking. Phys. Rev. Lett., 101(20):203901 (2008).

    Google Scholar 

  114. B. Liedberg. Surface plasmon resonance for gas detection and biosensing. Lab.Sensors Actuat., 4:299–304 (1983).

    Google Scholar 

  115. Y. Liu. Transformational plasmon optics. Nano Letters, 10(1):1991–1997 (2010).

    Google Scholar 

  116. A.B. Movchan M. Farhat, S. Guenneau and S. Enoch. Achieving invisibility over a finite range of frequencies. Opt. Express, 16:5656–5661 (2008).

    Google Scholar 

  117. D.A. Roberts S.A. Cummer D.R. Smith M. Rahm, D. Schurig and J.B. Pendry. ‘design of electromagnetic cloaks and concentrators using forminvariant coordinate transformations of maxwell’s equations. Photon. Nanostruct. Fundam Appl., 6:87–95 (2008).

    Google Scholar 

  118. S. Maier. Plasmonics: Fundamentals and applications. New York, Springer (2007).

    Google Scholar 

  119. J.C. Maxwell. The scientific papers of James Clerk Maxwell. reprinted by Dover Publications, New York, 1:285 (1953).

    Google Scholar 

  120. D. Maystre. General study of grating anomalies from electromagnetic surface modes. Chapter 17 of Electromagnetic Surface Modes, A. D. Boardman, John Wiley and Sons:661–724 (1982).

    Google Scholar 

  121. D. Maystre and S. Enoch. Perfect lenses made with left handed materials: Alice’s mirror. J. Opt. Soc. Am. A., 21:122–131 (2004).

    Google Scholar 

  122. M. Kafesaki Th. Koschny E. Ozbay E. N. Economou N. H. Shen, S. Foteinopoulou and C. M. Soukoulis. Compact planar far-field superlens based on anisotropic left-handed metamaterials. Phys. Rev. B, 80:115123 (2009).

    Google Scholar 

  123. R.C. McPhedran N.A. Nicorovici and G.W. Milton. Optical and dielectric properties of partially resonant composites. Phys. Rev. B, 49:8479–8482 (1994).

    Google Scholar 

  124. A. Otto. Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys., 216:398–410 (1968).

    Google Scholar 

  125. L. C. Botten R. C. McPhedran P. J. Bliek, R. Deleuil and D. Maystre. Inductive grids in the region of diffraction anomalies - theory, experiment, and applications. IEEE MTT, 10:1119–1125 (1980).

    Google Scholar 

  126. E.D. Palik. Handbook of optical constants of solids. Academic, London (1985).

    Google Scholar 

  127. C.H. Palmer. Parallel diffraction grating anomalies. J.Opt.Soc.Am., 42:269 (1952).

    Google Scholar 

  128. J.B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85:3966–3969 (2000).

    Google Scholar 

  129. J.B. Pendry. Perfect cylindrical lenses. Opt. Express, 11:755–760 (2003).

    Google Scholar 

  130. J.B. Pendry and S. Anantha Ramakrishna. Near field lenses in two dimensions. J. Phys.: Condens. Matter, 14:8463–8479 (2002).

    Google Scholar 

  131. J.B. Pendry and S.A. Ramakrishna. Focussing light with negative refractive index. J. Phys. Cond. Matter, 15:6345 (2003).

    Google Scholar 

  132. D. Pines. A collective description of electron interactions. i. magnetic interactions. Physical Review, 82:625–634 (1951).

    MathSciNet  MATH  Google Scholar 

  133. D. Pines. A collective description of electron interactions. ii. collective vs individual particle aspects of the interactions. Physical Review, 85:338–353 (1952).

    MathSciNet  MATH  Google Scholar 

  134. J.J. Mock J.Y. Chin T.J. Cui R. Liu, C. Ji and D.R. Smith. Broadband ground-plane cloak. Science, 323:366 (2008).

    Google Scholar 

  135. H. Raether. Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics, New York: Springer-Verlag., 111 (1988).

    Google Scholar 

  136. Lord Rayleigh. Dynamical theory of the grating. Proc.Roy.Soc., A79:399 (1907).

    Google Scholar 

  137. J.J. Cowan R.H. Ritchie, E.T. Arakawa and R.N. Hamm. Surfaceplasmon resonance effect in grating diffraction. Phys. Rev. Letters, 21:1530–1533 (1968).

    Google Scholar 

  138. M.S. Vogelius R.V. Kohn, H. Shen and M.I. Weinstein. Cloaking via change of variables in electric impedance tomography. Inverse Problems, 24:015016 (2008).

    MathSciNet  Google Scholar 

  139. S.A. Ramakrishna S. Chakrabarti and S. Guenneau. Finite checkerboards of dissipative negative refractive index. Optics Express, 14:12950–12957 (2006).

    Google Scholar 

  140. A.C. Vutha S. Guenneau and S.A. Ramakrishna. Negative refraction in 2d checkerboards related by mirror anti-symmetry and 3d corner lenses. New Journal of Physics, 7:164 (2005).

    Google Scholar 

  141. B. Gralak S. Guenneau and J.B. Pendry. Perfect corner reflector. Opt. Lett., 30:146 (2005).

    Google Scholar 

  142. J.E. Stewart and W.S. Gallaway. Diffraction anomalies in grating spectrophotometers. Appl. Opt., 1:421–429 (1962).

    Google Scholar 

  143. H. F. Ghaemi T. Thio P. A. Woff T. W. Ebbesen, H. J. Lezec. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391:667 (1998).

    Google Scholar 

  144. S.A. Maier. Plasmonics: Fundamentals and Applications New York, Springer (2007).

    Google Scholar 

  145. V.G. Veselago. The electrodnamics of substances with simultaneously negative values of permitivity and permeability. Soviet Physics Uspekhi, 10(4) (1968).

    Google Scholar 

  146. R.H. Baughman V.M. Agranovich, Y.R. Shen and A.A. Zakhidov. Optical bulk and surface waves with negative refraction. Journal of Luminescence, 110:167–173 (2004).

    Google Scholar 

  147. A.V. Kildiev W. Cai, U.K. Chettiar and V.M. Shalaev. Optical cloaking with metamaterials. Nature Photonics, 1:224–227 (2007).

    Google Scholar 

  148. R.W. Wood. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical magazine, 4:396–402 (1902).

    Google Scholar 

  149. R.W. Wood. Anomalous diffracting gratings. Physical Review, 48:928–937 (1935).

    Google Scholar 

  150. X.M. Yang Q. Cheng R. Liu W.X. Jiang, T.J. Cui and D.R. Smith. Invisibility cloak without singularity. Phys. Lett., 93:194102 (2008).

    Google Scholar 

  151. G. Bartal Y. Liu, T. Zentgraf and X. Zhang. Transformational plasmon optics. Nano Lett., 6:1991–1997 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 CISM, Udine

About this chapter

Cite this chapter

Guenneau, S. (2013). Multiscale models of electromagnetic and plasmonic metamaterials. In: Craster, R.V., Kaplunov, J. (eds) Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism. CISM International Centre for Mechanical Sciences, vol 547. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1619-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1619-7_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1618-0

  • Online ISBN: 978-3-7091-1619-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics