Skip to main content

Modelling microstructured media: periodic systems and effective media

  • Chapter
  • 1145 Accesses

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 547))

Abstract

My aim in these lectures is to give a broad overview of the Mathematics and Physics of perfectly periodic systems, drawing heavily upon the literature of solid-state physics: it is essential to understand how structure on a micro-scale affects longer scale macro-scale behaviour and periodic systems are a naturally place to begin. Periodic systems are, on one hand, quite special and the constructive interference created by periodicity leads to strong effects that we shall see later, but on the other hand many natural and man-made structures exhibit, at least some, general periodic structure. After developing the language of periodic systems we will turn our attention to the development of asymptotic “effective” media that are posed entirely upon the macro-scale. Importantly we will develop asymptotic theories valid at high frequencies. A general approach valid for continua, semi-discrete (frame) and fully discrete (mass-spring) systems will be developed. If time allows we will then look further into some of the remarkable physics that can be seen when waves move through structured media: defect states, all-angle negative refraction and ultra-refraction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. A. S. Barker Jr and A. J. Sievers, Optical studies of the vibrational properties of disordered solids, Rev. Mod. Phys., 47 (1975), pp. S1–S179.

    Article  Google Scholar 

  2. C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers, McGraw-Hill, New York, 1978.

    MATH  Google Scholar 

  3. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comp. Phys., (1994), pp. 185–200.

    Google Scholar 

  4. L. Brillouin, Wave propagation in periodic structures: electric filters and crystal lattices, Dover, New York, second ed., 1953.

    MATH  Google Scholar 

  5. R. V. Craster, T. Antonakakis, M. Makwana, and S. Guenneau, Dangers of using the edges of the Brillouin zone, Phys. Rev. B, 86 (2012), p. 115130.

    Article  Google Scholar 

  6. R. V. Craster, J. Kaplunov, and A. V. Pichugin, High frequency homogenization for periodic media, Proc R Soc Lond A, 466 (2010), pp. 2341–2362.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. V. Craster, J. Kaplunov, and J. Postnova, High frequency asymptotics, homogenization and localization for lattices, Q. Jl. Mech. Appl. Math., 63 (2010), pp. 497–519.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. J. Gibson and M. F. Ashby, Cellular solids: structures and properties, Cambridge University Press, Cambridge, 2nd ed., 1997.

    Google Scholar 

  9. S. Guenneau and R. V. Craster, eds., Acoustic Metamaterials, Springer-Verlag, 2012.

    Google Scholar 

  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light, Princeton University Press, Princeton, second ed., 2008.

    MATH  Google Scholar 

  11. C. Kittel, Introduction to solid state physics, John Wiley & Sons, New York, 7th ed., 1996.

    Google Scholar 

  12. M. Makwana and R. V. Craster, Localized defect states for high frequency homogenized lattice models. To appear Q. Jl. Mech. Appl. Math., 2013.

    Google Scholar 

  13. E. Nolde, R. V. Craster, and J. Kaplunov, High frequency homogenization for structural mechanics, J. Mech. Phys. Solids, 59 (2011), pp. 651–671.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Ostoja-Starzewski, Lattice models in micromechanics, Appl. Mech. Rev., 55 (2002), pp. 35–60.

    Article  Google Scholar 

  15. P. S. Russell, E. Marin, A. Diez, S. Guenneau, and A. B. Movchan, Sonic band gap PCF preforms: enhancing the interaction of sound and light, Opt. Exp., 11 (2003), p. 2555.

    Article  Google Scholar 

  16. E. A. Skelton, S. D. M. Adams, and R. V. Craster, Guided elastic waves and perfectly matched layers, Wave Motion, 44 (2007), pp. 573–592.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of photonic crystal fibres, Imperial College Press, London, 2005.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 CISM, Udine

About this chapter

Cite this chapter

Craster, R.V., Makwana, M. (2013). Modelling microstructured media: periodic systems and effective media. In: Craster, R.V., Kaplunov, J. (eds) Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism. CISM International Centre for Mechanical Sciences, vol 547. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1619-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1619-7_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1618-0

  • Online ISBN: 978-3-7091-1619-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics