Skip to main content

Visceral Leishmaniasis: Immune Mechanisms and New Insights in Vaccine Development and Control

  • Chapter
  • First Online:
Neglected Tropical Diseases - Middle East and North Africa

Part of the book series: Neglected Tropical Diseases ((NTD))

  • 969 Accesses

Abstract

Visceral leishmaniasis (VL), an emerging and sustainable fatal disease, claims significant proportion of lives predominantly in the marginalised areas of developing countries. The impact of existing interventions to control the disease is insufficient. Epidemics and resurgence of the disease can be correlated with expansion of the vector habitat, emergence of co-infections, poor socio-economic condition, mass migration due to natural calamities or civil war, and laxity in policymaking. Since vaccine is unavailable, early diagnosis and successful treatment are vital for VL management. Complete treatment of post kala-azar dermal leishmaniasis (PKDL ) patients and effective surveillance of asymptomatic individuals need implementation in VL control programme. In zoonotic VL, screening of animal reservoirs is of utmost important. Revolutionising research perspective is highly recommended to build upon our knowledge on parasite, its mode of action, and the immune status of the host during infection, to support the VL control programme. A multidisciplinary and comprehensive effort would be imperative among scientists, medical professionals, and policymakers in order to control and eliminate the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari A et al (2012) Mycobacterium indicus pranii (Mw) re-establishes host protective immune response in Leishmania donovani infected macrophages: critical role of IL-12. PLoS One 7(7):e40265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Afrin F, Ali N (1997) Adjuvanticity and protective immunity elicited by Leishmania donovani antigens encapsulated in positively charged liposomes. Infect Immun 65(6):2371–2377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Afrin F et al (2002) Characterization of Leishmania donovani antigens encapsulated in liposomes that induce protective immunity in BALB/c mice. Infect Immun 70(12):6697–6706

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvar J et al (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21(2):334–359, table of contents

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvar J et al (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7(5):e35671

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alvar J et al (2013) Case study for a vaccine against leishmaniasis. Vaccine 31(Suppl 2):B244–B249

    CAS  PubMed  Google Scholar 

  • Anam K et al (1999) Differential decline in Leishmania membrane antigen-specific immunoglobulin G (IgG), IgM, IgE, and IgG subclass antibodies in Indian kala-azar patients after chemotherapy. Infect Immun 67(12):6663–6669

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson CF et al (2009) IL-27 regulates IL-10 and IL-17 from CD4+ cells in nonhealing Leishmania major infection. J Immunol 183(7):4619–4627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ansari NA, Ramesh V, Salotra P (2006a) Interferon (IFN)-gamma, tumor necrosis factor-alpha, interleukin-6, and IFN-gamma receptor 1 are the major immunological determinants associated with post-kala azar dermal leishmaniasis. J Infect Dis 194(7):958–965

    CAS  PubMed  Google Scholar 

  • Ansari NA, Saluja S, Salotra P (2006b) Elevated levels of interferon-gamma, interleukin-10, and interleukin-6 during active disease in Indian kala azar. Clin Immunol 119(3):339–345

    CAS  PubMed  Google Scholar 

  • Ansari NA et al (2008a) Elevated levels of IgG3 and IgG4 subclass in paediatric cases of kala azar. Parasite Immunol 30(8):403–409

    CAS  PubMed  Google Scholar 

  • Ansari NA et al (2008b) Evidence for involvement of TNFR1 and TIMPs in pathogenesis of post-kala-azar dermal leishmaniasis. Clin Exp Immunol 154(3):391–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ansari NA et al (2011) IL-27 and IL-21 are associated with T cell IL-10 responses in human visceral leishmaniasis. J Immunol 186(7):3977–3985

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bahar K et al (1996) Comparative safety and immunogenicity trial of two killed Leishmania major vaccines with or without BCG in human volunteers. Clin Dermatol 14(5):489–495

    CAS  PubMed  Google Scholar 

  • Banerjee A, De M, Ali N (2008) Complete cure of experimental visceral leishmaniasis with amphotericin B in stearylamine-bearing cationic liposomes involves down-regulation of IL-10 and favorable T cell responses. J Immunol 181(2):1386–1398

    CAS  PubMed  Google Scholar 

  • Basu R et al (2005) Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1- and Th2-like responses in visceral leishmaniasis. J Immunol 174(11):7160–7171

    CAS  PubMed  Google Scholar 

  • Belkaid Y et al (2001) The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 194(10):1497–1506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharya P, Ali N (2013) Involvement and interactions of different immune cells and their cytokines in human visceral leishmaniasis. Rev Soc Bras Med Trop 46(2):128–134

    PubMed  Google Scholar 

  • Bhowmick S, Ali N (2009) Identification of novel Leishmania donovani antigens that help define correlates of vaccine-mediated protection in visceral leishmaniasis. PLoS One 4(6):e5820

    PubMed Central  PubMed  Google Scholar 

  • Bhowmick S, Ravindran R, Ali N (2007) Leishmanial antigens in liposomes promote protective immunity and provide immunotherapy against visceral leishmaniasis via polarized Th1 response. Vaccine 25(35):6544–6556

    CAS  PubMed  Google Scholar 

  • Bhowmick S, Ravindran R, Ali N (2008) gp63 in stable cationic liposomes confers sustained vaccine immunity to susceptible BALB/c mice infected with Leishmania donovani. Infect Immun 76(3):1003–1015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhowmick S et al (2010) Comparison of liposome based antigen delivery systems for protection against Leishmania donovani. J Control Release 141(2):199–207

    CAS  PubMed  Google Scholar 

  • Bilate AM, Lafaille JJ (2012) Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol 30:733–758

    CAS  PubMed  Google Scholar 

  • Boaventura VS et al (2010) Human mucosal leishmaniasis: neutrophils infiltrate areas of tissue damage that express high levels of Th17-related cytokines. Eur J Immunol 40(10):2830–2836

    CAS  PubMed  Google Scholar 

  • Borja-Cabrera GP et al (2002) Long lasting protection against canine kala-azar using the FML-QuilA saponin vaccine in an endemic area of Brazil (Sao Goncalo do Amarante, RN). Vaccine 20(27–28):3277–3284

    CAS  PubMed  Google Scholar 

  • Breton M et al (2005) Live nonpathogenic parasitic vector as a candidate vaccine against visceral leishmaniasis. Infect Immun 73(10):6372–6382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruhn KW et al (2012) Killed but metabolically active Leishmania infantum as a novel whole-cell vaccine for visceral leishmaniasis. Clin Vaccine Immunol 19(4):490–498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caldas A et al (2005) Balance of IL-10 and interferon-gamma plasma levels in human visceral leishmaniasis: implications in the pathogenesis. BMC Infect Dis 5:113

    PubMed Central  PubMed  Google Scholar 

  • Carrion J et al (2011) Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation. Parasit Vectors 4:150

    PubMed Central  PubMed  Google Scholar 

  • Cenini P et al (1993) Mononuclear cell subpopulations and cytokine levels in human visceral leishmaniasis before and after chemotherapy. J Infect Dis 168(4):986–993

    CAS  PubMed  Google Scholar 

  • Chakravarty J et al (2011) A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine 29(19):3531–3537

    CAS  PubMed  Google Scholar 

  • Chappuis F et al (2007) Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol 5(11):873–882

    CAS  PubMed  Google Scholar 

  • Coler RN et al (2002) Immunization with a polyprotein vaccine consisting of the T-Cell antigens thiol-specific antioxidant, Leishmania major stress-inducible protein 1, and Leishmania elongation initiation factor protects against leishmaniasis. Infect Immun 70(8):4215–4225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coler RN et al (2007) Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells. Infect Immun 75(9):4648–4654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costa DJ et al (2004) Lutzomyia longipalpis salivary gland homogenate impairs cytokine production and costimulatory molecule expression on human monocytes and dendritic cells. Infect Immun 72(3):1298–1305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19(1):111–126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cunningham AC (2002) Parasitic adaptive mechanisms in infection by leishmania. Exp Mol Pathol 72(2):132–141

    CAS  PubMed  Google Scholar 

  • Cunningham J et al (2012) A global comparative evaluation of commercial immunochromatographic rapid diagnostic tests for visceral leishmaniasis. Clin Infect Dis 55(10):1312–1319

    PubMed Central  PubMed  Google Scholar 

  • Das A, Ali N (2012) Vaccine development against Leishmania donovani. Front Immunol 3:99

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dey T et al (2000) Antileishmanial activities of stearylamine-bearing liposomes. Antimicrob Agents Chemother 44(6):1739–1742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dey A et al (2008) Kinesin motor domain of Leishmania donovani as a future vaccine candidate. Clin Vaccine Immunol 15(5):836–842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dey R et al (2013) Live attenuated Leishmania donovani p27 gene knockout parasites are nonpathogenic and elicit long-term protective immunity in BALB/c mice. J Immunol 190(5):2138–2149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dole VS et al (2000) Immunization with recombinant LD1 antigens protects against experimental leishmaniasis. Vaccine 19(4–5):423–430

    CAS  PubMed  Google Scholar 

  • Dorlo TP et al (2012) Translational pharmacokinetic modelling and simulation for the assessment of duration of contraceptive use after treatment with miltefosine. J Antimicrob Chemother 67(8):1996–2004

    CAS  PubMed  Google Scholar 

  • Dube A et al (1998) Vaccination of langur monkeys (Presbytis entellus) against Leishmania donovani with autoclaved L. major plus BCG. Parasitology 116(Pt 3):219–221

    PubMed  Google Scholar 

  • Ejazi SA, Ali N (2013) Developments in diagnosis and treatment of visceral leishmaniasis during the last decade and future prospects. Expert Rev Anti Infect Ther 11(1):79–98

    CAS  PubMed  Google Scholar 

  • Galvao-Castro B et al (1984) Polyclonal B cell activation, circulating immune complexes and autoimmunity in human american visceral leishmaniasis. Clin Exp Immunol 56(1):58–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganguly S et al (2008) Increased levels of interleukin-10 and IgG3 are hallmarks of Indian post-kala-azar dermal leishmaniasis. J Infect Dis 197(12):1762–1771

    CAS  PubMed  Google Scholar 

  • Ganguly S et al (2010) Enhanced lesional Foxp3 expression and peripheral anergic lymphocytes indicate a role for regulatory T cells in Indian post-kala-azar dermal leishmaniasis. J Invest Dermatol 130(4):1013–1022

    CAS  PubMed  Google Scholar 

  • Gasim S et al (1998) High levels of plasma IL-10 and expression of IL-10 by keratinocytes during visceral leishmaniasis predict subsequent development of post-kala-azar dermal leishmaniasis. Clin Exp Immunol 111(1):64–69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gasim S et al (2000) The development of post-kala-azar dermal leishmaniasis (PKDL) is associated with acquisition of Leishmania reactivity by peripheral blood mononuclear cells (PBMC). Clin Exp Immunol 119(3):523–529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghalib HW et al (1993) Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest 92(1):324–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh AK, Dasgupta S, Ghose AC (1995) Immunoglobulin G subclass-specific antileishmanial antibody responses in Indian kala-azar and post-kala-azar dermal leishmaniasis. Clin Diagn Lab Immunol 2(3):291–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh A, Zhang WW, Matlashewski G (2001) Immunization with A2 protein results in a mixed Th1/Th2 and a humoral response which protects mice against Leishmania donovani infections. Vaccine 20(1–2):59–66

    CAS  PubMed  Google Scholar 

  • Ghosh K et al (2013) Successful therapy of visceral leishmaniasis with curdlan involves T-helper 17 cytokines. J Infect Dis 207(6):1016–1025

    CAS  PubMed  Google Scholar 

  • Giorgobiani E et al (2011) Epidemiologic aspects of an emerging focus of visceral leishmaniasis in Tbilisi, Georgia. PLoS Negl Trop Dis 5(12):e1415

    PubMed Central  PubMed  Google Scholar 

  • Gomes R et al (2008) Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci USA 105(22):7845–7850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez-Lombana C et al (2013) IL-17 mediates immunopathology in the absence of IL-10 following Leishmania major infection. PLoS Pathog 9(3):e1003243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goto Y et al (2007) Protective immunization against visceral leishmaniasis using Leishmania sterol 24-c-methyltransferase formulated in adjuvant. Vaccine 25(42):7450–7458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gradoni L et al (2005) Failure of a multi-subunit recombinant leishmanial vaccine (MML) to protect dogs from Leishmania infantum infection and to prevent disease progression in infected animals. Vaccine 23(45):5245–5251

    CAS  PubMed  Google Scholar 

  • Guerin PJ et al (2002) Visceral leishmaniasis: current status of control, diagnosis, and treatment, and a proposed research and development agenda. Lancet Infect Dis 2(8):494–501

    PubMed  Google Scholar 

  • Hailu A et al (2004) Elevated plasma levels of interferon (IFN)-gamma, IFN-gamma inducing cytokines, and IFN-gamma inducible CXC chemokines in visceral leishmaniasis. Am J Trop Med Hyg 71(5):561–567

    CAS  PubMed  Google Scholar 

  • Handman E (2001) Leishmaniasis: current status of vaccine development. Clin Microbiol Rev 14(2):229–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hatam GR et al (2009) Improvement of the newly developed latex agglutination test (Katex) for diagnosis of visceral leishmaniasis. J Clin Lab Anal 23(4):202–205

    PubMed  Google Scholar 

  • Ismail A et al (1999) Immunopathology of post kala-azar dermal leishmaniasis (PKDL): T-cell phenotypes and cytokine profile. J Pathol 189(4):615–622

    CAS  PubMed  Google Scholar 

  • Jha TK (2006) Drug unresponsiveness & combination therapy for kala-azar. Indian J Med Res 123(3):389–398

    CAS  PubMed  Google Scholar 

  • Kamhawi S et al (2000) Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290(5495):1351–1354

    CAS  PubMed  Google Scholar 

  • Kashino SS et al (2012) Identification of Leishmania infantum chagasi proteins in urine of patients with visceral leishmaniasis: a promising antigen discovery approach of vaccine candidates. Parasite Immunol 34(7):360–371

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katara GK et al (2012) Evidence for involvement of Th17 type responses in post kala azar dermal leishmaniasis (PKDL). PLoS Negl Trop Dis 6(6):e1703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaur T, Sobti RC, Kaur S (2011a) Cocktail of gp63 and Hsp70 induces protection against Leishmania donovani in BALB/c mice. Parasite Immunol 33(2):95–103

    CAS  PubMed  Google Scholar 

  • Kaur J, Kaur T, Kaur S (2011b) Studies on the protective efficacy and immunogenicity of Hsp70 and Hsp83 based vaccine formulations in Leishmania donovani infected BALB/c mice. Acta Trop 119(1):50–56

    CAS  PubMed  Google Scholar 

  • Kellina OI (1981) Problem and current lines in investigations on the epidemiology of leishmaniasis and its control in the U.S.S.R. Bull Soc Pathol Exot Filiales 74(3):306–318

    CAS  PubMed  Google Scholar 

  • Kenney RT et al (1998) Splenic cytokine responses in Indian kala-azar before and after treatment. J Infect Dis 177(3):815–818

    CAS  PubMed  Google Scholar 

  • Khalil EA et al (2000) Autoclaved Leishmania major vaccine for prevention of visceral leishmaniasis: a randomised, double-blind, BCG-controlled trial in Sudan. Lancet 356(9241):1565–1569

    CAS  PubMed  Google Scholar 

  • Khamesipour A et al (2005) Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. Vaccine 23(28):3642–3648

    CAS  PubMed  Google Scholar 

  • Khamesipour A et al (2006) Leishmaniasis vaccine candidates for development: a global overview. Indian J Med Res 123(3):423–438

    PubMed  Google Scholar 

  • Kumar R, Nylen S (2012) Immunobiology of visceral leishmaniasis. Front Immunol 3:251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kushawaha PK et al (2012a) Evaluation of Leishmania donovani protein disulfide isomerase as a potential immunogenic protein/vaccine candidate against visceral Leishmaniasis. PLoS One 7(4):e35670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kushawaha PK et al (2012b) Leishmania donovani triose phosphate isomerase: a potential vaccine target against visceral leishmaniasis. PLoS One 7(9):e45766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lasri S et al (1999) Immune responses in vaccinated dogs with autoclaved Leishmania major promastigotes. Vet Res 30(5):441–449

    CAS  PubMed  Google Scholar 

  • Laufs H et al (2002) Intracellular survival of Leishmania major in neutrophil granulocytes after uptake in the absence of heat-labile serum factors. Infect Immun 70(2):826–835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liese J, Schleicher U, Bogdan C (2008) The innate immune response against Leishmania parasites. Immunobiology 213(3–4):377–387

    CAS  PubMed  Google Scholar 

  • Llanos-Cuentas A et al (2010) A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine when used in combination with sodium stibogluconate for the treatment of mucosal leishmaniasis. Vaccine 28(46):7427–7435

    CAS  PubMed  Google Scholar 

  • Lopez Kostka S et al (2009) IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol 182(5):3039–3046

    CAS  PubMed  Google Scholar 

  • Malla N, Mahajan RC (2006) Pathophysiology of visceral leishmaniasis—some recent concepts. Indian J Med Res 123(3):267–274

    CAS  PubMed  Google Scholar 

  • Maroof A et al (2008) Posttranscriptional regulation of II10 gene expression allows natural killer cells to express immunoregulatory function. Immunity 29(2):295–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marth T, Kelsall BL (1997) Regulation of interleukin-12 by complement receptor 3 signaling. J Exp Med 185(11):1987–1995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martins VT et al. (2013) Correction: antigenicity and protective efficacy of a leishmania amastigote-specific protein, member of the super-oxygenase family, against visceral leishmaniasis. PLoS Negl Trop Dis 7(4)

    Google Scholar 

  • Maurya R et al (2010) Human visceral leishmaniasis is not associated with expansion or accumulation of Foxp3+ CD4 cells in blood or spleen. Parasite Immunol 32(7):479–483

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazumdar T, Anam K, Ali N (2004) A mixed Th1/Th2 response elicited by a liposomal formulation of Leishmania vaccine instructs Th1 responses and resistance to Leishmania donovani in susceptible BALB/c mice. Vaccine 22(9–10):1162–1171

    CAS  PubMed  Google Scholar 

  • Mazumder S et al (2007) Non-coding pDNA bearing immunostimulatory sequences co-entrapped with leishmanial antigens in cationic liposomes elicits almost complete protection against experimental visceral leishmaniasis in BALB/c mice. Vaccine 25(52):8771–8781

    CAS  PubMed  Google Scholar 

  • Mazumder S, Maji M, Ali N (2011a) Potentiating effects of MPL on DSPC bearing cationic liposomes promote recombinant GP63 vaccine efficacy: high immunogenicity and protection. PLoS Negl Trop Dis 5(12):e1429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazumder S et al (2011b) Potency, efficacy and durability of DNA/DNA, DNA/protein and protein/protein based vaccination using gp63 against Leishmania donovani in BALB/c mice. PLoS One 6(2):e14644

    CAS  PubMed Central  PubMed  Google Scholar 

  • McHugh RS et al (2002) CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16(2):311–323

    CAS  PubMed  Google Scholar 

  • Medeiros IM et al (2000) Circulating levels of sTNFR and discrepancy between cytotoxicity and immunoreactivity of TNF-alpha in patients with visceral leishmaniasis. Clin Microbiol Infect 6(1):34–37

    CAS  PubMed  Google Scholar 

  • Melaku Y et al (2007) Treatment of kala-azar in southern Sudan using a 17-day regimen of sodium stibogluconate combined with paromomycin: a retrospective comparison with 30-day sodium stibogluconate monotherapy. Am J Trop Med Hyg 77(1):89–94

    CAS  PubMed  Google Scholar 

  • Melby PC et al (2001) Leishmania donovani p36(LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral leishmaniasis. Infect Immun 69(8):4719–4725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miret J et al (2008) Evaluation of an immunochemotherapeutic protocol constituted of N-methyl meglumine antimoniate (Glucantime) and the recombinant Leish-110f + MPL-SE vaccine to treat canine visceral leishmaniasis. Vaccine 26(12):1585–1594

    CAS  PubMed  Google Scholar 

  • Misra A et al (2001) Successful vaccination against Leishmania donovani infection in Indian langur using alum-precipitated autoclaved Leishmania major with BCG. Vaccine 19(25–26):3485–3492

    CAS  PubMed  Google Scholar 

  • Momeni AZ et al (1999) A randomised, double-blind, controlled trial of a killed L. major vaccine plus BCG against zoonotic cutaneous leishmaniasis in Iran. Vaccine 17(5):466–472

    CAS  PubMed  Google Scholar 

  • Mondal S, Bhattacharya P, Ali N (2010) Current diagnosis and treatment of visceral leishmaniasis. Expert Rev Anti Infect Ther 8(8):919–944

    PubMed  Google Scholar 

  • Morris RV et al (2001) Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol 167(9):5226–5230

    CAS  PubMed  Google Scholar 

  • Murray HW et al (2002) Interleukin-10 (IL-10) in experimental visceral leishmaniasis and IL-10 receptor blockade as immunotherapy. Infect Immun 70(11):6284–6293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray HW et al (2005) Antagonizing deactivating cytokines to enhance host defense and chemotherapy in experimental visceral leishmaniasis. Infect Immun 73(7):3903–3911

    CAS  PubMed Central  PubMed  Google Scholar 

  • Musa AM et al (2008) Immunochemotherapy of persistent post-kala-azar dermal leishmaniasis: a novel approach to treatment. Trans R Soc Trop Med Hyg 102(1):58–63

    CAS  PubMed  Google Scholar 

  • Mutiso JM et al (2012) Leishmania donovani whole cell antigen delivered with adjuvants protects against visceral leishmaniasis in vervet monkeys (Chlorocebus aethiops). J Biomed Res 26(1):8–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mutiso JM et al (2013) Development of Leishmania vaccines: predicting the future from past and present experience. J Biomed Res 27(2):85–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muzio M et al (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164(11):5998–6004

    CAS  PubMed  Google Scholar 

  • Nadim A et al (1983) Effectiveness of leishmanization in the control of cutaneous leishmaniasis. Bull Soc Pathol Exot Filiales 76(4):377–383

    CAS  PubMed  Google Scholar 

  • Nascimento E et al (2010) A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine when used in combination with meglumine antimoniate for the treatment of cutaneous leishmaniasis. Vaccine 28(40):6581–6587

    CAS  PubMed  Google Scholar 

  • Novoa R et al (2011) IL-17 and regulatory cytokines (IL-10 and IL-27) in L. braziliensis infection. Parasite Immunol 33(2):132–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28(9):378–384

    CAS  PubMed  Google Scholar 

  • Nylen S et al (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204(4):805–817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palatnik-de-Sousa CB (2012) Vaccines for canine leishmaniasis. Front Immunol 3:69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palatnik-de-Sousa CB, Day MJ (2011) One Health: the global challenge of epidemic and endemic leishmaniasis. Parasit Vectors 4:197

    PubMed Central  PubMed  Google Scholar 

  • Palatnik-de-Sousa CB et al (1994) Experimental murine Leishmania donovani infection: immunoprotection by the fucose-mannose ligand (FML). Braz J Med Biol Res 27(2):547–551

    CAS  PubMed  Google Scholar 

  • Palatnik-de-Sousa CB et al (2009) Decrease of the incidence of human and canine visceral leishmaniasis after dog vaccination with Leishmune in Brazilian endemic areas. Vaccine 27(27):3505–3512

    PubMed  Google Scholar 

  • Papadopoulou B et al (2002) Reduced infectivity of a Leishmania donovani biopterin transporter genetic mutant and its use as an attenuated strain for vaccination. Infect Immun 70(1):62–68

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peters C et al (1995) The role of macrophage receptors in adhesion and uptake of Leishmania mexicana amastigotes. J Cell Sci 108(Pt 12):3715–3724

    CAS  PubMed  Google Scholar 

  • Picado A et al (2012) Vector control interventions for visceral leishmaniasis elimination initiative in South Asia, 2005-2010. Indian J Med Res 136(1):22–31

    PubMed Central  PubMed  Google Scholar 

  • Pitta MG et al (2009) IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J Clin Invest 119(8):2379–2387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rai AK et al (2012) Regulatory T cells suppress T cell activation at the pathologic site of human visceral leishmaniasis. PLoS One 7(2):e31551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravindran R et al (2010) Comparison of BCG, MPL and cationic liposome adjuvant systems in leishmanial antigen vaccine formulations against murine visceral leishmaniasis. BMC Microbiol 10:181

    PubMed Central  PubMed  Google Scholar 

  • Ravindran R, Maji M, Ali N (2012) Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid-trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route. Mol Pharm 9(1):59–70

    CAS  PubMed  Google Scholar 

  • Ready PD (2013) Biology of phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol 58:227–250

    CAS  PubMed  Google Scholar 

  • Ribeiro VM et al (2013) Control of visceral leishmaniasis in Brazil: recommendations from Brasileish. Parasit Vectors 6(1):8

    PubMed Central  PubMed  Google Scholar 

  • Ribeiro-Gomes FL et al (2004) Macrophage interactions with neutrophils regulate Leishmania major infection. J Immunol 172(7):4454–4462

    CAS  PubMed  Google Scholar 

  • Ritter U, Moll H (2000) Monocyte chemotactic protein-1 stimulates the killing of leishmania major by human monocytes, acts synergistically with IFN-gamma and is antagonized by IL-4. Eur J Immunol 30(11):3111–3120

    CAS  PubMed  Google Scholar 

  • Rodrigues OR et al (2009) Identification of regulatory T cells during experimental Leishmania infantum infection. Immunobiology 214(2):101–111

    CAS  PubMed  Google Scholar 

  • Sacks D, Kamhawi S (2001) Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol 55:453–483

    CAS  PubMed  Google Scholar 

  • Saha S et al (2006) Immune responses in kala-azar. Indian J Med Res 123(3):245–266

    CAS  PubMed  Google Scholar 

  • Saha S et al (2007) IL-10- and TGF-beta-mediated susceptibility in kala-azar and post-kala-azar dermal leishmaniasis: the significance of amphotericin B in the control of Leishmania donovani infection in India. J Immunol 179(8):5592–5603

    CAS  PubMed  Google Scholar 

  • Saha S et al (2011) Easy test for visceral Leishmaniasis and post-kala-azar dermal leishmaniasis. Emerg Infect Dis 17(7):1304–1306

    PubMed Central  PubMed  Google Scholar 

  • Sakaguchi S et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164

    CAS  PubMed  Google Scholar 

  • Salotra P, Singh R (2006) Challenges in the diagnosis of post kala-azar dermal leishmaniasis. Indian J Med Res 123(3):295–310

    PubMed  Google Scholar 

  • Samant M et al (2009) Immunization with the DNA-encoding N-terminal domain of proteophosphoglycan of Leishmania donovani generates Th1-type immunoprotective response against experimental visceral leishmaniasis. J Immunol 183(1):470–479

    CAS  PubMed  Google Scholar 

  • Santos WR et al (1999) Vaccination of Swiss Albino mice against experimental visceral leishmaniasis with the FML antigen of Leishmania donovani. Vaccine 17(20–21):2554–2561

    CAS  PubMed  Google Scholar 

  • Santos WR et al (2002) Saponins, IL12 and BCG adjuvant in the FML-vaccine formulation against murine visceral leishmaniasis. Vaccine 21(1–2):30–43

    CAS  PubMed  Google Scholar 

  • Schleicher U et al (2007) NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs. J Exp Med 204(4):893–906

    CAS  PubMed Central  PubMed  Google Scholar 

  • Selvapandiyan A et al (2009) Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. J Immunol 183(3):1813–1820

    CAS  PubMed  Google Scholar 

  • Shadab M, Ali N (2011) Evasion of host defence by Leishmania donovani: subversion of signaling pathways. Mol Biol Int 2011:343961

    PubMed Central  PubMed  Google Scholar 

  • Sharifi I et al (1998) Randomised vaccine trial of single dose of killed Leishmania major plus BCG against anthroponotic cutaneous leishmaniasis in Bam, Iran. Lancet 351(9115):1540–1543

    CAS  PubMed  Google Scholar 

  • Shimizu J et al (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3(2):135–142

    CAS  PubMed  Google Scholar 

  • Singh SP et al (2011) Options for active case detection of visceral leishmaniasis in endemic districts of India, Nepal and Bangladesh, comparing yield, feasibility and costs. PLoS Negl Trop Dis 5(2):e960

    PubMed Central  PubMed  Google Scholar 

  • Skeiky YA et al (2002) Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL adjuvant. Vaccine 20(27–28):3292–3303

    CAS  PubMed  Google Scholar 

  • Smelt SC et al (2000) B cell-deficient mice are highly resistant to Leishmania donovani infection, but develop neutrophil-mediated tissue pathology. J Immunol 164(7):3681–3688

    CAS  PubMed  Google Scholar 

  • Srivastava P et al (2011) Diagnosis of Indian visceral leishmaniasis by nucleic acid detection using PCR. PLoS One 6(4):e19304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stager S, Smith DF, Kaye PM (2000) Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. J Immunol 165(12):7064–7071

    CAS  PubMed  Google Scholar 

  • Stager S et al (2006) Distinct roles for IL-6 and IL-12p40 in mediating protection against Leishmania donovani and the expansion of IL-10+ CD4+ T cells. Eur J Immunol 36(7):1764–1771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sundar S, Chakravarty J (2010) Antimony toxicity. Int J Environ Res Public Health 7(12):4267–4277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sundar S, Chakravarty J (2012) Recent advances in the diagnosis and treatment of kala-azar. Natl Med J India 25(2):85–89

    PubMed  Google Scholar 

  • Sundar S et al (2011) Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet 377(9764):477–486

    CAS  PubMed  Google Scholar 

  • Tewary P et al (2004) Immunostimulatory oligodeoxynucleotides are potent enhancers of protective immunity in mice immunized with recombinant ORFF leishmanial antigen. Vaccine 22(23–24):3053–3060

    CAS  PubMed  Google Scholar 

  • Tewary P et al (2005) A heterologous prime-boost vaccination regimen using ORFF DNA and recombinant ORFF protein confers protective immunity against experimental visceral leishmaniasis. J Infect Dis 191(12):2130–2137

    CAS  PubMed  Google Scholar 

  • Tiwananthagorn S et al (2012) Involvement of CD4(+) Foxp3 (+) regulatory T cells in persistence of Leishmania donovani in the liver of alymphoplastic aly/aly mice. PLoS Negl Trop Dis 6(8):e1798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Topno RK et al (2010) Asymptomatic infection with visceral leishmaniasis in a disease-endemic area in bihar, India. Am J Trop Med Hyg 83(3):502–506

    PubMed Central  PubMed  Google Scholar 

  • Valenzuela JG et al (2001) Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med 194(3):331–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Zandbergen G et al (2002) Leishmania promastigotes release a granulocyte chemotactic factor and induce interleukin-8 release but inhibit gamma interferon-inducible protein 10 production by neutrophil granulocytes. Infect Immun 70(8):4177–4184

    PubMed Central  PubMed  Google Scholar 

  • van Zandbergen G et al (2004) Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 173(11):6521–6525

    PubMed  Google Scholar 

  • Vanloubbeeck Y, Jones DE (2004) The immunology of Leishmania infection and the implications for vaccine development. Ann N Y Acad Sci 1026:267–272

    PubMed  Google Scholar 

  • Vargas-Inchaustegui DA, Xin L, Soong L (2008) Leishmania braziliensis infection induces dendritic cell activation, ISG15 transcription, and the generation of protective immune responses. J Immunol 180(11):7537–7545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vester B et al (1999) Early gene expression of NK cell-activating chemokines in mice resistant to Leishmania major. Infect Immun 67(6):3155–3159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vinhas V et al (2007) Human anti-saliva immune response following experimental exposure to the visceral leishmaniasis vector, Lutzomyia longipalpis. Eur J Immunol 37(11):3111–3121

    CAS  PubMed  Google Scholar 

  • WHO (1984) The leishmaniases. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser 701:1–140

    Google Scholar 

  • Workman CJ et al (2009) The development and function of regulatory T cells. Cell Mol Life Sci 66(16):2603–2622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu W, Huang L, Mendez S (2010) A live Leishmania major vaccine containing CpG motifs induces the de novo generation of Th17cells in C57BL/6 mice. Eur J Immunol 40(9):2517–2527

    CAS  PubMed  Google Scholar 

  • Zer R et al (2001) Effect of sand fly saliva on Leishmania uptake by murine macrophages. Int J Parasitol 31(8):810–814

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Amrita Das, Pradyot Bhattacharya, and Md. Asad for valuable suggestions and proofreading of the manuscript.

Financial and Competing Interests Disclosure:

The authors were supported by the Council of Scientific and Industrial Research, Government of India (BSC 0114) . The authors have no other relevant affiliations or financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilised in the production of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Ejazi, S.A., Ali, N. (2014). Visceral Leishmaniasis: Immune Mechanisms and New Insights in Vaccine Development and Control. In: McDowell, M., Rafati, S. (eds) Neglected Tropical Diseases - Middle East and North Africa. Neglected Tropical Diseases. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1613-5_6

Download citation

Publish with us

Policies and ethics