Skip to main content

Endokrines System

  • Chapter
  • First Online:
Molekulare Sport- und Leistungsphysiologie

Zusammenfassung

Die Bedeutung des endokrinen Systems bei sportlicher Betätigung beruht einerseits auf den Veränderungen systemischer Hormonkonzentrationen, welche von Art und Dauer der Belastung abhängig sind, andererseits an deren daraus resultierenden Wirkungen auf verschiedene Stoffwechselprozesse, welche für die Realisierung einer Leistung verantwortlich sind. Bildung und Freisetzung von Hormonen ist durch verschiedene Regelkreise determiniert und unterliegen oftmals einer neuronalen Kontrolle. Die Wirkung der Hormone basiert auf der Vermittlung chemischer Signale, die an den entsprechenden Zellen der Zielorgane über Rezeptoren aufgenommen werden. Wachstum, Entwicklung, Leistungsbereitschaft und Adaptierungsfähigkeit sowie der Alterungsprozess werden damit gesteuert. Dabei ist hervorzuheben, dass sich bei Frauen und Männern bei gleichen physiologischen Mechanismen Wirkungsmechanismen manifestieren können. Im zweiten Teil wird auf die wichtigsten Regelkreise des weiblichen Körpers eingegangen, welche neben ihrer Aufgabe für die Reproduktion in die körperliche und damit in die sportliche Leistungsfähigkeit der Frau eingreifen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Hershberger MVE, S, von Eckardstein A (2009) Hormone, in Biochemie und Molekularbiologie des Menschen, M. Schartl, Gessler, M, V. Eckardstein, A., Editor. Urban und Fischer: München. p. 688–745

    Google Scholar 

  2. Sadava D.e.a. (2012) Hormone der Tiere, in Purves Biologie, Sadava D., Orians, G., Heller, H.C., Hillis, D., Berenbaum, M.R., Markl, J., Editor. Spektrum Akademischer Verlag: Heidelberg

    Google Scholar 

  3. Frayn KN (2010) Metabolic Regulation. A Human Perspective. 3 ed., Oxford: Wiley-Blackwell

    Google Scholar 

  4. Deutzmann R (2010) Hormonale Regulation, in Physiologie, J.C. Behrends, Bischofberger, J., Deutzmann, R., Editor. Georg Thieme Verlag. p. 830

    Google Scholar 

  5. Lang F, Lang P (2007) Basiswissen Physiologie. 2 ed. Heidelberg: Springer Medizin Verlag

    Google Scholar 

  6. Schartl M, Gessler M, von Eckardstein A (2009) Biochemie und Molekularbiologie des Menschen. München: Urban und Fischer

    Google Scholar 

  7. Brooks CL (2012) Molecular mechanisms of prolactin and its receptor. Endocr Rev. 33(4): p. 504–25

    Google Scholar 

  8. Herrington J, Carter-Su C (2001) Signaling pathways activated by the growth hormone receptor. Trends Endocrinol Metab. 12(6): p. 252–7

    Article  CAS  PubMed  Google Scholar 

  9. Rotwein P (2012) Mapping the growth hormone – Stat5b – IGF-I transcriptional circuit. Trends Endocrinol Metab. 23(4): p. 186–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carter-Su C, Schwartz J, Smit LS (1996) Molecular mechanism of growth hormone action. Annu Rev Physiol. 58: p. 187–207

    Article  CAS  PubMed  Google Scholar 

  11. Birzniece V, Nelson Ho KK (2011) Growth hormone and physical performance. Trends Endocrinol Metab. 22(5): p. 171–8

    Article  CAS  PubMed  Google Scholar 

  12. Velders M, Diel P (2013) How sex hormones promote skeletal muscle regeneration. Sports Med. 43(11): p. 1089–100

    Article  PubMed  Google Scholar 

  13. Taaffe DR et al. (2005) The effect of hormone replacement therapy and/or exercise on skeletal muscle attenuation in postmenopausal women: a yearlong intervention. Clin Physiol Funct Imaging. 25(5): p. 297–304

    Article  CAS  PubMed  Google Scholar 

  14. MacNeil LG et al. (2011) 17beta-estradiol attenuates exercise-induced neutrophil infiltration in men. Am J Physiol Regul Integr Comp Physiol. 300(6): p. R1443–51

    Article  Google Scholar 

  15. Dalton JT et al. (2011) The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle. 2(3): p. 153–161

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hansen D et al. (2012) Effect of acute endurance and resistance exercise on endocrine hormones directly related to lipolysis and skeletal muscle protein synthesis in adult individuals with obesity. Sports Med. 42(5): p. 415–31

    Article  PubMed  Google Scholar 

  17. Lancha A, Fruhbeck G, Gomez-Ambrosi J (2012) Peripheral signalling involved in energy homeostasis control. Nutr Res Rev. 25(2): p. 223–48

    Article  CAS  PubMed  Google Scholar 

  18. Kraemer RR, Castracane VD (2007) Exercise and humoral mediators of peripheral energy balance: ghrelin and adiponectin. Exp Biol Med (Maywood). 232(2): p. 184–94

    CAS  Google Scholar 

  19. Bouassida A et al. (2010) Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br J Sports Med. 44(9): p. 620–30

    Article  CAS  PubMed  Google Scholar 

  20. Fragala MS et al. (2011) Neuroendocrine-immune interactions and responses to exercise. Sports Med. 41(8): p. 621–39

    Article  PubMed  Google Scholar 

  21. Fuqua JS, Rogol AD (2013) Neuroendocrine alterations in the exercising human: implications for energy homeostasis. Metabolism. 62(7): p. 911–21

    Article  CAS  PubMed  Google Scholar 

  22. Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med. 35(4): p. 339–61

    Article  PubMed  Google Scholar 

  23. Meckel Y. et al. (2011) Hormonal and inflammatory responses to different types of sprint interval training. J Strength Cond Res. 25(8): p. 2161–9

    Article  PubMed  Google Scholar 

  24. Vingren JL et al. (2010) Testosterone physiology in resistance exercise and training: the up-stream regulatory elements. Sports Med. 40(12): p. 1037–53

    Article  PubMed  Google Scholar 

  25. Kraemer WJ et al. (1991) Endogenous anabolic hormonal and growth factor responses to heavy resistance exercise in males and females. Int J Sports Med. 12(2): p. 228–35

    Article  CAS  PubMed  Google Scholar 

  26. Schumann M et al. (2013) Acute neuromuscular and endocrine responses and recovery to single-session combined endurance and strength loadings: "order effect" in untrained young men. J Strength Cond Res. 27(2): p. 421–33

    Article  PubMed  Google Scholar 

  27. Kraemer WJ et al. (1989) Training responses of plasma beta-endorphin, adrenocorticotropin, and cortisol. Med Sci Sports Exerc. 21(2): p. 146–53

    Article  CAS  PubMed  Google Scholar 

  28. Amelink GJ. et al. (1990) Sex-linked variation in creatine kinase release, and its dependence on oestradiol, can be demonstrated in an in-vitro rat skeletal muscle preparation. Acta Physiol Scand. 138(2): p. 115–24

    Article  CAS  PubMed  Google Scholar 

  29. Kraemer RR, Francois M, Castracane VD (2012) Estrogen mediation of hormone responses to exercise. Metabolism. 61(10): p. 1337–46

    Article  CAS  PubMed  Google Scholar 

  30. Hackney AC et al. (2012) Thyroid hormonal responses to intensive interval versus steady-state endurance exercise sessions. Hormones (Athens). 11(1): p. 54–60

    Google Scholar 

  31. Meeusen R et al. (2013) Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 45(1): p. 186–205

    Article  PubMed  Google Scholar 

  32. Urhausen A, Gabriel H, Kindermann W (1995) Blood hormones as markers of training stress and overtraining. Sports Med. 20(4): p. 251–76

    Article  CAS  PubMed  Google Scholar 

  33. Brooks K, Carter J (2013) Overtraining, Exercise, and Adrenal Insufficiency. J Nov Physiother. 3(125)

    Google Scholar 

  34. Mullis PE (2010) Hormones and the science of athletic performance. Preface. Endocrinol Metab Clin North Am. 39(1): p. xvii

    Article  PubMed  Google Scholar 

  35. Thieme DH (2010) Doping in Sports: Biochemical Principles, Effects and Analysis. Handbook of Experimental Pharmacology, ed. F.B. Hofmann. Vol. 195. Berlin Heidelberg: Springer

    Google Scholar 

  36. Baumann GP (2012) Growth hormone doping in sports: a critical review of use and detection strategies. Endocr Rev. 33(2): p. 155–86

    Article  CAS  PubMed  Google Scholar 

  37. Mosler S et al. (2013) Modulation of follistatin and myostatin propeptide by anabolic steroids and gender. Int J Sports Med. 34(7): p. 567–72

    Article  CAS  PubMed  Google Scholar 

  38. Koshland DE Jr. (1992) The molecule of the year. Science. 258(5090): p. 1861

    Article  PubMed  Google Scholar 

  39. Allen JD et al. (2010) Plasma nitrite flux predicts exercise performance in peripheral arterial disease after 3months of exercise training. Free Radic Biol Med. 49(6): p. 1138–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sessa F et al. (2011) Gene polymorphisms and sport attitude in Italian athletes. Genet Test Mol Biomarkers. 15(4): p. 285–90

    Article  CAS  PubMed  Google Scholar 

  41. Chambliss KL, Shaul PW (2002) Estrogen modulation of endothelial nitric oxide synthase. Endocr Rev. 23(5): p. 665–86

    Article  CAS  PubMed  Google Scholar 

  42. Totzeck M et al. (2012) Higher endogenous nitrite levels are associated with superior exercise capacity in highly trained athletes. Nitric Oxide. 27(2): p. 75–81

    Article  CAS  PubMed  Google Scholar 

  43. Suhr F et al. (2013) Skeletal Muscle Function during Exercise-Fine-Tuning of Diverse Subsystems by Nitric Oxide. Int J Mol Sci. 14(4): p. 7109–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haefliger IO et al. (1999) Potential role of nitric oxide and endothelin in the pathogenesis of glaucoma. Surv Ophthalmol. 43 Suppl 1: p. S51–8

    Article  Google Scholar 

  45. Chen Z et al. (1999) Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest. 103(3): p. 401–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Worda C et al. (2004) The influence of Nos3 polymorphisms on age at menarche and natural menopause. Maturitas. 49(2): p. 157–62

    Article  CAS  PubMed  Google Scholar 

  47. Hefler LA et al. (2002) A polymorphism of the Nos3 gene and age at natural menopause. Fertil Steril. 78(6): p. 1184–6

    Article  PubMed  Google Scholar 

  48. Stonek F et al. (2001) Calculated background elimination in quantifying nitric-oxide synthase enzyme activity. J Biochem Biophys Methods. 50(1): p. 29–32

    Article  CAS  PubMed  Google Scholar 

  49. Puthucheary Z et al. (2011) The ACE gene and human performance: 12 years on. Sports Med. 41(6): p. 433–48

    Article  PubMed  Google Scholar 

  50. Hefler LA et al. (2002) Polymorphisms of the angiotensinogen gene, the endothelial nitric oxide synthase gene, and the interleukin-1beta gene promoter in women with idiopathic recurrent miscarriage. Mol Hum Reprod. 8(1): p. 95–100

    Article  CAS  PubMed  Google Scholar 

  51. Wang Z et al. (2013) Significant association between angiotensin-converting enzyme gene insertion/deletion polymorphism and risk of recurrent miscarriage: a systematic review and meta-analysis. Metabolism. 62(9): p. 1227–38

    Article  CAS  PubMed  Google Scholar 

  52. Su MT et al. (2013) Genetic association studies of ACE and PAI-1 genes in women with recurrent pregnancy loss: a systematic review and meta-analysis. Thromb Haemost. 109(1): p. 8–15

    Google Scholar 

  53. Bernstein KE et al. (2013) A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev. 65(1): p. 1–46

    Google Scholar 

  54. Montgomery HE et al. (1998) Human gene for physical performance. Nature. 393(6682): p. 221–2

    Article  CAS  PubMed  Google Scholar 

  55. Myerson S et al. (1999) Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol (1985). 87(4): p. 1313–6

    Google Scholar 

  56. Tsianos G et al. (2004) The ACE gene insertion/deletion polymorphism and elite endurance swimming. Eur J Appl Physiol. 92(3): p. 360–2

    Article  CAS  PubMed  Google Scholar 

  57. Gayagay G. et al. (1998) Elite endurance athletes and the ACE I allele the role of genes in athletic performance. Hum Genet. 103(1): p. 48–50

    Article  CAS  PubMed  Google Scholar 

  58. Alvarez R et al. (2000) Genetic variation in the renin-angiotensin system and athletic performance. Eur J Appl Physiol. 82(1-2): p. 117–20

    Article  CAS  PubMed  Google Scholar 

  59. Collins M et al. (2004) The ACE gene and endurance performance during the South African Ironman Triathlons. Med Sci Sports Exerc. 36(8): p. 1314–20

    Article  CAS  PubMed  Google Scholar 

  60. Woods D et al. (2001) Elite swimmers and the D allele of the ACE I/D polymorphism. Hum Genet. 108(3): p. 230–2

    Article  CAS  PubMed  Google Scholar 

  61. Costa AM et al. (2009) Association between ACE D allele and elite short distance swimming. Eur J Appl Physiol. 106(6): p. 785–90

    Article  CAS  PubMed  Google Scholar 

  62. Montgomery H, Dhamrait S (2002) ACE genotype and performance. J Appl Physiol (1985). 92(4): p. 1774–5; author reply 1776–7

    Article  PubMed  Google Scholar 

  63. Woods DR, Humphries SE, Montgomery HE (2000) The ACE I/D polymorphism and human physical performance. Trends Endocrinol Metab. 11(10): p. 416–20

    Article  CAS  PubMed  Google Scholar 

  64. Sonna LA et al. (2001) Angiotensin-converting enzyme genotype and physical performance during US Army basic training. J Appl Physiol (1985). 91(3): p. 1355–63

    CAS  PubMed  Google Scholar 

  65. Karjalainen J et al. (1999) Angiotensinogen gene M235T polymorphism predicts left ventricular hypertrophy in endurance athletes. J Am Coll Cardiol. 34(2): p. 494–9

    Article  CAS  PubMed  Google Scholar 

  66. Woods D et al. (2001) Angiotensin-I converting enzyme genotype-dependent benefit from hormone replacement therapy in isometric muscle strength and bone mineral density. J Clin Endocrinol Metab. 86(5): p. 2200–4

    CAS  PubMed  Google Scholar 

  67. Komukai K, Mochizuki S, Yoshimura M (2010) Gender and the renin-angiotensin-aldosterone system. Fundam Clin Pharmacol. 24(6): p. 687–98

    Article  CAS  PubMed  Google Scholar 

  68. Gonzalez-Cadavid NF, Bhasin S (2004) Role of myostatin in metabolism. Curr Opin Clin Nutr Metab Care. 7(4): p. 451–7

    Article  CAS  PubMed  Google Scholar 

  69. Fischetto G, Bermon S (2013) From gene engineering to gene modulation and manipulation: can we prevent or detect gene doping in sports? Sports Med. 43(10): p. 965–77

    Google Scholar 

  70. Tsuchida K (2004) Activins, myostatin and related TGF-beta family members as novel therapeutic targets for endocrine, metabolic and immune disorders. Curr Drug Targets Immune Endocr Metabol Disord. 4(2): p. 157–66

    Google Scholar 

  71. Santiago C et al (2011) The K153R polymorphism in the myostatin gene and muscle power phenotypes in young, non-athletic men. PLoS ONE. 6(1): p. e16323

    Article  Google Scholar 

  72. Garatachea N et al. (2013) Association of the K153R polymorphism in the myostatin gene and extreme longevity. Age (Dordr). 35(6): p. 2445–54

    Google Scholar 

  73. Gonzalez-Freire M et al. (2010) The K153R variant in the myostatin gene and sarcopenia at the end of the human lifespan. Age (Dordr). 32(3): p. 405–9

    Google Scholar 

  74. Eynon N et al. (2013) Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med. 43(9): p. 803–17

    Article  PubMed  Google Scholar 

  75. Scott RA et al. (2010) ACTN3 and ACE genotypes in elite Jamaican and US sprinters. Med Sci Sports Exerc. 42(1): p. 107–12

    Article  CAS  PubMed  Google Scholar 

  76. Eynon N et al. (2009) Is there an ACE ID – ACTN3 R577X polymorphisms interaction that influences sprint performance? Int J Sports Med. 30(12): p. 888–91

    Article  CAS  PubMed  Google Scholar 

  77. Cieszczyk P, Sawczuk M, Maciejewska-Karlowska A, Ficek K (2012) ACTN3 R577X polymorphism in top-level Polish rowers. Journal of Exercise Science & Fitness. 10(1): p. 12–15

    Article  Google Scholar 

  78. Johannesson M, Ludviksdottir D, Janson C (2000) Lung function changes in relation to menstrual cycle in females with cystic fibrosis. Respir Med. 94(11): p. 1043–6

    Article  CAS  PubMed  Google Scholar 

  79. Lanfranco F et al. (2010) Neuroendocrine alterations in obese patients with sleep apnea syndrome. Int J Endocrinol. 2010: p. 474518

    Article  PubMed  PubMed Central  Google Scholar 

  80. Teran-Perez G et al. (2012) Steroid hormones and sleep regulation. Mini Rev Med Chem. 12(11): p. 1040–8

    Article  CAS  PubMed  Google Scholar 

  81. Vos PJ et al. (1994) Effects of chlormadinone acetate, acetazolamide and oxygen on awake and asleep gas exchange in patients with chronic obstructive pulmonary disease (COPD). Eur Respir J. 7(5): p. 850–5

    CAS  PubMed  Google Scholar 

  82. Hill M et al. (2014) Steroid profiling in pregnancy: a focus on the human fetus. J Steroid Biochem Mol Biol. 139: p. 201–22

    Article  CAS  PubMed  Google Scholar 

  83. Blouin K, Boivin A, Tchernof A (2008) Androgens and body fat distribution. J Steroid Biochem Mol Biol. 108(3-5): p. 272–80

    Article  CAS  PubMed  Google Scholar 

  84. Lee MJ et al. (2014) Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim Biophys Acta. 1842(3): p. 473–81

    Article  CAS  PubMed  Google Scholar 

  85. Huber JC, Ott J (2009) The dialectic role of progesterone. Maturitas. 62(4): p. 326–9

    Article  CAS  PubMed  Google Scholar 

  86. Gruber DM. et al. (1999) Progesterone and neurology. Gynecol Endocrinol. 13 Suppl 4: p. 41–5

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Wien

About this chapter

Cite this chapter

Roth, E., Flich, K., Huber, J. (2018). Endokrines System. In: Bachl, N., Löllgen, H., Tschan, H., Wackerhage, H., Wessner, B. (eds) Molekulare Sport- und Leistungsphysiologie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1591-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1591-6_9

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1590-9

  • Online ISBN: 978-3-7091-1591-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics