Skip to main content

Genetik der Leistungsfähigkeit und Trainierbarkeit

  • Chapter
  • First Online:
  • 11k Accesses

Zusammenfassung

Das Kapitel soll einen Überblick über die Genetik gesundheitsbezogener Fitness einschließlich körperlicher Leistungsfähigkeit und Training aufzeigen. Hierbei werden die neuesten und wichtigsten Erkenntnisse zusammengefasst und ein Ausblick in die Zukunft geben. Ein Großteil der genetischen Daten basiert auf Forschungsergebnissen aus Untersuchungen zu Volkskrankheiten wie Adipositas und Diabetes mellitus Typ 2. Zusätzlich werden die Daten aus den leistungssportassoziierten Untersuchungen zusammengefasst und gewertet. Zahlreiche autosomale mitochondriale Gene mit Assoziation zur körperlichen Leistungsfähigkeit und gesundheitsbezogenen Fitness werden diskutiert. Allerdings muss berücksichtigt werden, dass die Mehrzahl der genetischen Erkenntnisse aktuell noch auf relativ kleinen Stichproben basiert und daher differenziert zu interpretieren ist.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Osborne KA, Robichon A, Burgess E, Butland S, Shaw RA, Coulthard A, Pereira HS, Greenspan RJ, Sokolowski MB (1997) Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277 (5327): 834–6

    Article  CAS  PubMed  Google Scholar 

  2. Bray MS, Hagberg JM, PÉRusse L (2009) The Human Gene Map for Performance and Health-Related Fitness Phenotypes: the 2006–2007 update. Med Sci Sports Exerc. 41: 35–73

    Article  PubMed  CAS  Google Scholar 

  3. Grobet L, Martin LJ, Poncelet D et al. (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet. 17: 71–74

    Article  CAS  PubMed  Google Scholar 

  4. Longmore GD (1993) Erythropoietin receptor mutations and Olympic glory [news]. Nature Genetics. 4: 108–110

    Article  CAS  PubMed  Google Scholar 

  5. Juvonen E, Ikkala E, Fyhrquist F, Ruutu T (1991) Autosomal dominant erythrocytosis caused by increased sensitivity to erythropoietin. Blood. 78: 3066–3069

    CAS  PubMed  Google Scholar 

  6. de la Chapelle A, Träskelin AL, Juvonen E (1993) Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci USA. 90

    Google Scholar 

  7. Bouchard C, Dionne FT, Simoneau JA, Boulay MR (1992) Genetics of aerobic and anaerobic performances. Exerc Sport Sci Rev. 20: 27–58

    Article  CAS  PubMed  Google Scholar 

  8. Larsen HB (2003) Kenyan Dominance in Distance Running. Comp Biochem Physiol A Mol Integr Physiol. 136: 161–170

    Article  PubMed  CAS  Google Scholar 

  9. Hamilton B, Weston A (2000) Perspectives on East African Middle and Long Distance Running. J Sci Med Sport. 3: vi–viii

    CAS  PubMed  Google Scholar 

  10. Jobling MA, Hurles ME, Tyler-Smith C (2004) Human Evolutionary Genetics: origins, peoples and disease. Garland Science Publishing. 523

    Google Scholar 

  11. Entine J (2001) Taboo: Why Black Athletes Dominate Sports And Why We're Afraid To Talk About It. New York:PublicAffairs

    Google Scholar 

  12. Klissouras V (1971) Heritability of adaptive variation. J Appl Physiol. 31: 338–344

    CAS  PubMed  Google Scholar 

  13. Komi P, Viitasalo J, Havu M, Thorstensson A, Sjödin B, Karlsson J (1977) Skeletal muscle fibres and muscle enzyme activities in monozygous and dizygous twins of both sexes. Acta Physiol Scand. 100: 385–392

    CAS  PubMed  Google Scholar 

  14. Weber G, Kartodihardjo W, Klissouras V (1976) Growth and physical training with reference to heredity. J Appl Physiol. 40: 211–215

    CAS  PubMed  Google Scholar 

  15. Kovar R (1977) Somatotypes of twins. Acta Univ Carol Gymn. 13: 49–59

    Google Scholar 

  16. Sklad M (1977) Skeletal maturation in monozygotic and dizygotic twins. J Hum Evol. 6: 145–149

    Article  Google Scholar 

  17. Williams LRT, Gross JB (1980) Heritability of motor skill. Acta Genet Med. 29: 127–36

    CAS  Google Scholar 

  18. Orvanova E (1984) Body build, heredity and sport achievements. In Genetics of Psychomotor Traits in Man. International Society of Sport Genetics and Somatology, Warsaw. 111–123

    Google Scholar 

  19. Bouchard C, Lesage R, Lortie G (1986) Aerobic performance in brothers, dizygotic and monozygotic twins Med Sci Sports Exerc. 18: 639–646

    Article  CAS  PubMed  Google Scholar 

  20. Fagard R, Bielen E, Amery A (1991) Heritability of aerobic power and anaerobic energy generation during exercise. J Appl Physiol. 70: 357–362

    CAS  PubMed  Google Scholar 

  21. Bouchard C, An P, Rice T (1999) Familial aggregation of VO2 max response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. 87: 1003–1008

    CAS  PubMed  Google Scholar 

  22. Bouchard C, Simoneau J, Lortie G, Boulay M, Marcotte M, Thibault M (1986) Genetic effects in human skeletal muscle fiber type distribution and enzyme activities. Can J Physiol Pharmacol. 64: 1245–1251

    Article  CAS  PubMed  Google Scholar 

  23. Ahmetov I, Rogozkin V (2009) Genes, athlete status and training – An overview. Med Sport Sci. 54: 43–71

    Article  CAS  PubMed  Google Scholar 

  24. Bouchard C, Leon A, Rao D, Skinner J, Wilmore J, Gagnon J (1995) The HERITAGE family study. Aims, design, and measurement protocol. Med Sci Sports Exerc. 27: 721–729

    Article  CAS  PubMed  Google Scholar 

  25. Rivera MA, Dionne FT, Wolfarth B (1997) Muscle-specific creatine kinase gene polymorphisms in elite endurance athletes and sedentary controls. Med Sci Sports Exerc. 29: 1444–1447

    Article  CAS  PubMed  Google Scholar 

  26. Rankinen T, Wolfarth B, Simoneau JA (2000) No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol. 88: 1571–1575

    CAS  PubMed  Google Scholar 

  27. Wolfarth B, Rankinen T, S Mühlbauer S et al. (2008) Endothelial nitric oxide synthase gene polymorphism and elite endurance athlete status: the Genathlete study. Scand J Med Sci Sports. 18: 485–490

    Article  CAS  PubMed  Google Scholar 

  28. Defoor J, Martens K, Matthijs G (2005) The caregene study: muscle-specific creatine kinase gene and aerobic power in coronary artery disease. Eur J Cardivasc Pre Rehabil. 12: 415–417

    Article  Google Scholar 

  29. Gene – Exercise Research Study (GERS). http://clinicaltrials.gov/ct2/show/NCT00976742. Accessed October 22, 2010

  30. Nazarov IB, Woods DR, Montgomery HE (2001) The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur J Hum Genet. 9: 797–801

    Article  CAS  PubMed  Google Scholar 

  31. Ahmetov II, Mozhayskaya IA, Flavell DM (2006) PPARa gene variation and physical performance in Russian athletes. Eur J Appl Physiol. 97: 103–108

    Article  CAS  PubMed  Google Scholar 

  32. Ahmetov II, Williams AG, Popov DV (2009) The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Genet. 126: 751–761

    Article  CAS  PubMed  Google Scholar 

  33. Ash GI, Scott RA, Deason M (2010) No association between ACE gene variation and endurance athlete status in Ethiopians. In Press. Med Sci Sports Exerc

    Google Scholar 

  34. Onywera V, Scott R, Boit M, Pitsiladis Y (2006) Demographic characteristics of elite Kenyan endurance runners. J Sports Sci. 24: 415–422

    Article  PubMed  Google Scholar 

  35. Scott RA, Georgiades E, Wilson RH (2003) Demographic Characteristics of Elite Ethiopian Endurance Runners. Med Sci Sports Exerc. 35: 1727–1732

    Article  PubMed  Google Scholar 

  36. Scott RA, Pitsiladis YP (2007) Genotypes and Distance Running: Clues from Africa. Sports Medicine. 37: 1–4

    Article  Google Scholar 

  37. Moran CN, Scott RA, Adams SM (2004) Y Chromosome Haplogroups of Elite Ethiopian Endurance Runners. Hum Genet. 115: 492–497

    Article  PubMed  Google Scholar 

  38. Scott RA, Wilson RH, Goodwin WH (2005) Mitochondrial DNA Lineages of Elite Ethiopian Athletes. Comp Biochem Physiol B Biochem Mol Biol. 140: 497–503

    Article  PubMed  CAS  Google Scholar 

  39. Scott RA, Moran CN, Wilson RH (2005) No Association Between Angiotensin Converting Enzyme (ACE) Gene Variation and Endurance Athlete Status in Kenyans. Comp Biochem Physiol A Mol Integr Physiol. 141: 169–175

    Article  PubMed  CAS  Google Scholar 

  40. Yang N, MacArthur D, Gulbin J (2003) ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 73: 627–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Montgomery HE, Marshall R, Hemingway H (1998) Human gene for physical performance. Nature. 393: 221–222

    Article  CAS  PubMed  Google Scholar 

  42. Montgomery HE, Clarkson P, Dollery C (1997) Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation. 96: 741–747

    Article  CAS  PubMed  Google Scholar 

  43. Cerit M, Colakoglu M, Erdogan M, Berdeli A, Cam F (2006) Relationship between ace genotype and short duration aerobic performance development. Eur J Appl Physiol. 98: 461–465

    Article  PubMed  Google Scholar 

  44. He Z, Hu Y, Feng L (2006) Polymorphisms in the HBB gene relate to individual cardiorespiratory adaptation in response to endurance training. Br J Sports Med. 40: 998–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem. 271: 17771–17778

    Article  CAS  PubMed  Google Scholar 

  46. Jiang C, Lu H, Vincent KA (2002) Gene expression profiles in human cardiac cells subjected to hypoxia or expressing a hybrid form of HIF-1 alpha. Physiol Genomics. 8: 23–32

    Article  CAS  PubMed  Google Scholar 

  47. Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev. 14: 1983–1991

    CAS  PubMed  Google Scholar 

  48. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 88: 1474–1480

    CAS  PubMed  Google Scholar 

  49. Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol. 271: 1172–C1180

    Google Scholar 

  50. Prior SJ, Hagberg JM, Phares DA (2003) Sequence variation in hypoxia-inducible factor 1alpha (HIF1A): association with maximal oxygen consumption. Physiol Genomics. 15: 20–26

    Article  CAS  PubMed  Google Scholar 

  51. Döring F, Onur S, Fischer A (2010) A common haplotype and the Pro582Ser polymorphism of the hypoxia-inducible factor-1alpha (HIF1A) gene in elite endurance athletes. J Appl Physiol. 108: 1497–1500

    Article  PubMed  CAS  Google Scholar 

  52. Sander M, Chavoshan B, Victor RG (1999) A large blood pressure-raising effect of nitric oxide synthase inhibition in humans. Hypertension. 33: 937–942

    Article  CAS  PubMed  Google Scholar 

  53. Zatz R, Baylis C (1998) Chronic nitric oxide inhibition model six years on. Hypertension. 32: 958–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Higashi Y, Sasaki S, Kurisu S (1999) Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation. 100: 1194–1202

    Article  CAS  PubMed  Google Scholar 

  55. Wang J, Wolin MS, Hintze TH (1993) Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res. 73: 829–838

    Article  CAS  PubMed  Google Scholar 

  56. Marsden PA, Heng HH, Scherer SW (1993) Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem. 268: 17478–17488

    CAS  PubMed  Google Scholar 

  57. Erbs S, Baither Y, Linke A (2003) Promoter but not exon 7 polymorphism of endothelial nitric oxide synthase affects training-induced correction of endothelial dysfunction. Arterioscler Thromb Vasc Biol. 23: 1814–1819

    Article  CAS  PubMed  Google Scholar 

  58. Data SA, Roltsch MH, Hand B, Ferrell RE, Park JJ, Brown MD (2003) eNOS T-786C genotype, physical activity, and peak forearm blood flow in females. Med Sci Sports Exerc. 35: 1991–1997

    Article  CAS  PubMed  Google Scholar 

  59. Kimura T, Yokoyama T, Matsumura Y (2003) NOS3 genotype-dependent correlation between blood pressure and physical activity. Hypertension. 41: 355–360

    Article  CAS  PubMed  Google Scholar 

  60. Rankinen T, Rice T, Perusse L (2000) NOS3 Glu298Asp genotype and blood pressure response to endurance training: the HERITAGE family study. Hypertension. 36: 885–889

    Article  CAS  PubMed  Google Scholar 

  61. Turner DC, Wallimann T, Eppenberger HM (1972) A Protein That Binds Specifically to the M- ine of Skeletal Muscle Is Identified as the Muscle Form of Creatine Kinase. Proc Nat Acad Sci USA. 70: 702–705

    Article  Google Scholar 

  62. Wallimann T, Schlosser T, Eppenberger HM (1984) Function of M-line-bound Creatine Kinase as Intramyofibrillar ATP regenerator at the receiving end of the Phosphorylcreatine Shuttle in Muscle. J Biol Chem. 259: 5238–5246

    CAS  PubMed  Google Scholar 

  63. Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol. 56: 831–838

    CAS  PubMed  Google Scholar 

  64. Yamashita K, Yoshioka T (1991) Profiles of creatine kinase isoenzyme compositions in single muscle fibers of different types. J Muscle Res Cell Motil. 12: 37–44

    Article  CAS  PubMed  Google Scholar 

  65. van Deursen J, Heerschap A, Oeriemans F (1993) Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell. 74: 621–631

    Article  PubMed  Google Scholar 

  66. Rivera MA, Dionne FT, Simoneau JA (1997) Muscle-specific creatine kinase gene polymorphism and VO2max in the HERITAGE Family Study. Med Sci Sports Exerc. 29: 1311–1317

    Article  CAS  PubMed  Google Scholar 

  67. Rivera MA, Pérusse L, Simoneau JA (2006) Linkage between a muscle-specific CK gene marker and VO2max in the HERITAGE Family Study. Med Sci Sports Exerc. 1999;31:698–701

    Google Scholar 

  68. Zhou DQ, Hu Y, Liu G, Gong L, Xi Y, Wen L. Muscle-specific creatine kinase gene polymorphism and running economy responses to an 18-week 5000-m training programme. Br J Sports Med. 40: 988–991

    Google Scholar 

  69. Clarke IJ, Henry BA (2010) Targeting energy expenditure in muscle as a means of combating obesity. Clin Exp Pharmacol Physiol. 37: 121–124

    Article  CAS  PubMed  Google Scholar 

  70. Stump CS, Henriksen EJ, Wei Y, Sowers JR (2006) The metabolic syndrome: role of skeletal muscle metabolism. Ann Med. 38: 389–402

    Article  CAS  PubMed  Google Scholar 

  71. Kelley DE (2005) Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest. 115: 1699–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev. 85: 205–243

    Article  CAS  Google Scholar 

  73. Schneider AJ, Friedmann T (2006) Gene transfer in sports: an opening scenario for genetic enhancement of normal “human traits” Advances in Genetics. 51: 37–49

    Google Scholar 

  74. Dartmouth scientists genetically engineer muscular mice. http://www.futurepundit.com/archives/003886.html. Accessed November 16, 2006

  75. Keim B (2010) Athletes beware, scientists hot on gene doping trail. http://www.wired.com/wiredscience/2010/02/gene-doping-detection/

  76. Hernandez J, Cooper J, Babel N, Morton C, Rosemurgy AS (2010) TNFalpha gene delivery therapy for solid tumors. Expert Opin Biol Ther. 10: 993–999

    Article  CAS  PubMed  Google Scholar 

  77. López-Lázaro M (2010) A new view of carcinogenesis and an alternative approach to cancer therapy. Mol Med. 16: 144–153

    Article  PubMed  CAS  Google Scholar 

  78. Muntoni F, Wells D (2007) Genetic treatments in muscular dystrophies. Curr Opin Neurol. 20: 590–594

    Article  CAS  PubMed  Google Scholar 

  79. Bushby K, Lochmüller H, Lynn S, Straub V (2009) Interventions for muscular dystrophy: molecular medicines entering the clinic. Lancet. 374: 1849–1856

    Article  CAS  PubMed  Google Scholar 

  80. Gene therapy for cancer. http://www.medic8.com/cancer/gene-therapy.htm

  81. Kulkarni M (2009) Gene therapy for human severe combined immunodeficiency disease. http://www.buzzle.com/articles/gene-therapy-for-human-severe-combined-immunodeficiency-scid-disease.html

  82. Gene therapy for Parkinson's disease is safe and some patients benefit, according to study. http://www.sciencedaily.com/releases/2007/06/070622101037.htm. Accessed June 25, 2007

  83. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 86: 1343–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Williams AG, Rayson MP, Jubb M (2000) The ACE gene and muscle performance. Nature. 403: 614

    Article  CAS  PubMed  Google Scholar 

  85. Woods DR, World M, Rayson MP (2002) Endurance enhancement related to the human angiotensin I-converting enzyme I-D polymorphism is not due to differences in the cardiorespiratory response to training. Eur J Appl Physiol. 86: 240–244

    Article  CAS  PubMed  Google Scholar 

  86. Zhang B, Tanka H, Shono N (2003) The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet. 63: 139–144

    Article  CAS  PubMed  Google Scholar 

  87. Collins M, Xenophontos SL, Cariolou MA (2004) The ACE gene and endurance performance during the South African Ironman Triathlons Med Sci Sports Exerc. 36: 1314–1320

    Article  CAS  PubMed  Google Scholar 

  88. Eynon N, Ruiz JR, Femia P (2012) The ACTN3 R577X polymorphism across three groups of elite male European athletes. PLoS One. 7(8): e43132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gayagay G, Yu B, Hambly B (1998) Elite endurance athletes and the ACE I allele- the role of genes in athletic performance. Hum Genet. 103: 48–50

    Article  CAS  PubMed  Google Scholar 

  90. Taylor R, CDS CM, Fallon K, Bockxmeer F (1999) Elite athletes and the gene for angiotensin-converting enzyme. J Appl Physiol. 87: 1035–1037

    CAS  PubMed  Google Scholar 

  91. Yu N, Chen FC, Ota S (2002) Larger Genetic Differences Within Africans Than Between Africans and Eurasians. Genetics. 161: 269–274

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhao B, Moochhala SM, Tham S (2003) Relationship between angiotensin-converting enzyme ID polymorphism and VO(2max) of Chinese males. Life Sci. 73: 2625–2630

    Article  CAS  PubMed  Google Scholar 

  93. Hagberg JM, Ferrell RE, McCole SD, Wilund KR, Moore GE (1998) VO2 max is associated with ACE genotype in postmenopausal women. J Appl Physiol. 85: 1842–1846

    CAS  PubMed  Google Scholar 

  94. Scott RA, Irving R, Irwin L (2010) ACTN3 and ACE genotypes in elite Jamaican and US sprinters. Med Sci Sports Exerc. 42: 107–112

    Article  CAS  PubMed  Google Scholar 

  95. Kalson NS, Thompson J, Davies AJ (2009) The effect of angiotensin-converting enzyme genotype on acute mountain sickness and summit success in trekkers attempting the summit of Mt. Kilimanjaro (5,895 m). Eur J Appl Physiol. 105: 373–379

    Article  CAS  PubMed  Google Scholar 

  96. Woods D, Hickman M, Jamshid Y (2001) Elite swimmers and the D allele of the ACE I/D polymorphism. Hum Genet. 108: 230–232

    Article  CAS  PubMed  Google Scholar 

  97. Schoonjans K, Staels B, Auwerx J (1996) Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res. 37: 907–925

    CAS  PubMed  Google Scholar 

  98. Auboeuf D, Rieusset J, Fajas L (1997) Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor- a in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes. 46: 1319–1327

    Article  CAS  PubMed  Google Scholar 

  99. Krey G, Braissant O, L’Horset F (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 11: 779–791

    Article  CAS  PubMed  Google Scholar 

  100. Kersten S, Desvergne B, Wahli W (2000) Roles of PPARs in health and disease. Nature. 405: 421–424

    Article  CAS  PubMed  Google Scholar 

  101. Holst D, Luquet S, Nogueira V, Kristiansen K, Leverve X, Grimaldi PA (2003) Nutritional regulation and role of peroxisome proliferator-activated receptor δ in fatty acid catabolism in skeletal muscle. Biochim Biophys Acta. 1633: 43–50

    Article  CAS  PubMed  Google Scholar 

  102. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med. 53: 409–435

    Article  CAS  PubMed  Google Scholar 

  103. Wang YX, Zhang CL, Yu RT (2004) Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol. 2: e294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Schuler M, Ali F, Chambon C (2006) PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. 4: 407–414

    Article  CAS  PubMed  Google Scholar 

  105. Pilegaard H, Richter EA (2008) PGC-1α: important for exercise performance? J Appl Physiol. 104: 1264–1265

    Article  PubMed  Google Scholar 

  106. Jamshidi Y, Montgomery HE, Hense HW (2002) Peroxisome proliferator–activated receptor alpha gene regulates left ventricular growth in response to exercise and hypertension. Circulation. 105: 950–955

    Article  CAS  PubMed  Google Scholar 

  107. Uthurralt J, Gordish-Dressman H, Bradbury M (2007) PPARalpha L162V underlies variation in serum triglycerides and subcutaneous fat volume in young males. BMC Med Genet. 8: 55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Russell AP, Feilchenfeldt J, Schreiber S (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 52: 2874–2881

    Article  CAS  PubMed  Google Scholar 

  109. Kagaya Y, Kanno Y, Takeyama D (1990) Effects of long-term pressure overload on regional myocardial glucose and free fatty acid uptake in rats. A quantitative autoradiographic study. Circulation. 81: 1353–1361

    Article  CAS  PubMed  Google Scholar 

  110. Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol Heart Circ Physiol. 267: 742–750

    Google Scholar 

  111. Barger PM, Brandt JM, Leone TC, Weinheimer CJ, Kelly DP (2000) Deactivation of peroxisome proliferator-activated receptor a during cardiac hypertrophic frowth. J Clin Invest. 105: 1723–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang YX, Lee CH, Tiep S (2003) Peroxisomeproliferator-activated receptor d activates fat metabolism to prevent obesity. Cell. 113: 159–170

    Article  CAS  PubMed  Google Scholar 

  113. Tanaka T, Yamamoto J, Iwasaki S (2003) Activation of peroxisome proliferator-activated receptor d induces fatty acid b-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA. 100: 15924–15929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dressel U, Allen TL, Pippal JB (2003) The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol;17: 2477–2493

    Article  CAS  PubMed  Google Scholar 

  115. Amri EZ, Bonino F, Ailhaud G, Abumrad NA, Grimaldi PA (1995) Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. J Biol Chem. 270: 2367–2371

    Article  CAS  PubMed  Google Scholar 

  116. Ahmetov II, Astranenkova IV, Rogozkin VA (2007) Association of PPARD gene polymorphism with human physical performance. Mol Biol (Mosk). 41: 852–857

    Article  CAS  Google Scholar 

  117. Auwerx J (1999) PPARgamma, the ultimate thrifty gene. Diabetologia. 42: 1033–1049

    Article  CAS  PubMed  Google Scholar 

  118. Masud S, Ye S, SAS Group (2003) Effect of the peroxisome proliferator activated receptor-gamma gene Pro12Ala variant on body mass index: a meta-analysis. J Med Genet. 40: 773–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vänttinen M, Nuutila P, Pihlajamäki J (2005) The effect of the Ala12 allele of the peroxisome proliferator-activated receptor-gamma2 gene on skeletal muscle glucose uptake uepends on obesity: a positron emission tomography study. J Clin Endocrinol Metab. 90: 4249–4254

    Article  PubMed  CAS  Google Scholar 

  120. Nelson TL, Fingerlin TE, Moss LK, Barmada MM, Ferrell RE, Norris JM (2007) Association of the peroxisome proliferator-activated receptor gamma gene with type 2 diabetes mellitus varies by physical activity among non-Hispanic whites from Colorado. Metabolism. 56: 388–393

    Article  CAS  PubMed  Google Scholar 

  121. North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH (1999) A common nonsense mutation results in alphaactinin-3 deficiency in the general population. Nat Genet. 21: 353–354

    Article  CAS  PubMed  Google Scholar 

  122. Yang N, MacArthur DG, Wolde B (2007) The ACTN3 R577X polymorphism in East and West African athletes. Med Sci Sports Exerc. 39: 1985–1988

    Article  PubMed  Google Scholar 

  123. Ahmetov II, Druzhevskaya AM, Astratenkova IV, Popov DV, Vinogradova OL, Rogozkin VA (2010) The ACTN3 R577X polymorphism in Russian endurance athletes. Br J Sports Med. 44: 649–652

    Article  CAS  PubMed  Google Scholar 

  124. Niemi AK, Majamaa K (2005) Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet. 13: 965–969

    Article  CAS  PubMed  Google Scholar 

  125. Papadimitriou ID, Papadopoulos C, Kouvatsi A, Triantaphyllidis C (2008) The ACTN3 gene in elite Greek track and field athletes. Int J Sports Med. 29: 352–355

    Article  CAS  PubMed  Google Scholar 

  126. MacArthur DG, Seto JT, Chan S (2008) An Actn3 knockout mouse provides mechanistic insights into the association between α-actinin-3 deficiency and human athletic performance. Hum Mol Genet. 17: 1076–1086

    Article  CAS  PubMed  Google Scholar 

  127. Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev. 72: 449–489

    CAS  PubMed  Google Scholar 

  128. Eckardt KU (2001) After 15 years of success––perspectives of erythropoietin therapy. Nephrol Dial Transplant. 16: 1745–1749

    Article  CAS  PubMed  Google Scholar 

  129. Gaffney GR, Parisotto R (2007) Gene doping: a review of performance-enhancing genetics. Pediatr Clin North Am. 54: 807–822

    Article  PubMed  Google Scholar 

  130. Regulier E, Schneider BL, Deglon N, Beuzard Y, Aebischer P (1998) Continuous delivery of human and mouse erythropoietin in mice by genetically engineered polymer encapsulated myoblasts. Gene Ther. 5: 1014–1022

    Article  CAS  PubMed  Google Scholar 

  131. Chenuaud P, Larcher T, Rabinowitz JE (2004) Autoimmune anemia in macaques following erythropoietin gene therapy. Blood. 103: 3303–3304

    Article  CAS  PubMed  Google Scholar 

  132. Gao G, Lebherz C, Weiner DJ (2004) Erythropoietin gene therapy leads to autoimmune anemia in macaques. ]Blood. 103: 3300–3302

    Article  CAS  PubMed  Google Scholar 

  133. de la Chapelle A, Sistonen P, Lehvaslaiho H, Ikkala E, Juvonen E (1993) Familial erythrocytosis genetically linked to erythropoietin receptor gene. Lancet. 341: 82–84

    Article  PubMed  Google Scholar 

  134. Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM (2000) VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation. 102: 898–901

    Article  CAS  PubMed  Google Scholar 

  135. Walgenbach KJ, Gratas C, Shestak KC, Becker D (1995) Ischaemia-induced expression of bFGF in normal skeletal muscle: a potential paracrine mechanism for mediating angiogenesis in ischaemic skeletal muscle. Nat Med. 1: 453–459

    Article  CAS  PubMed  Google Scholar 

  136. Bray MS (2008) Implications of gene-behavior interactions: prevention and intervention for obesity. Obesity (Silver Spring). 16: S72–S78

    Article  CAS  Google Scholar 

  137. Stefan N, Vozarova B, Del Parigi A (2002) The Gln223Arg polymorphism of the leptin receptor in Pima Indians: influence on energy expenditure, physical activity and lipid metabolism. Int J Obes Relat Metab Disord. 26: 1629–1632

    Article  CAS  PubMed  Google Scholar 

  138. Meier U, Gressner AM (2004) Endocrine Regulation of Energy Metabolism: Review of Pathobiochemical and Clinical Chemical Aspects of Leptin, Ghrelin, Adiponectin, and Resistin. Clin Chem. 50: 1511–1525

    Article  CAS  PubMed  Google Scholar 

  139. Pistilli EE, Gordish-Dressman H, Seip RL (2007) Resistin Polymorphisms Are Associated with Muscle, Bone, and Fat Phenotypes in White Men and Women. Obesity (Silver Spring). 15: 392–402

    Article  CAS  Google Scholar 

  140. Richert L, Chevalley T, Manen D, Bonjour JP, Rizzoli R, Ferrari S (2007) Substitution in the Leptin Receptor Bone Mass in Prepubertal Boys Is Associated with a Gln223Arg Amino Acid. J Clin Endocrinol Metab. 92: 4380–4386

    Article  CAS  PubMed  Google Scholar 

  141. Frayn KN, Arner P, Yki-Järvinen H (2006) Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 42: 89–103

    Article  CAS  PubMed  Google Scholar 

  142. Dyck DJ, Heigenhauser GJ, Bruce CR (2006) The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol (Oxf). 186: 5–16

    Article  CAS  Google Scholar 

  143. Bruce CR, Dyck DJ. Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor alpha. Am J Physiol Endocrinol Metab. 2004;287:E616–E621

    Article  CAS  PubMed  Google Scholar 

  144. Junkin KA, Dyck DJ, Mullen KL, Chabowski A, Thrush AB (2009) Resistin acutely impairs insulin-stimulated glucose transport in rodent muscle in the presence, but not absence, of palmitate. Am J Physiol Regul Integr Comp Physiol. 296: R944–R951

    Article  CAS  PubMed  Google Scholar 

  145. Yamauchi T, Kamon J, Waki H (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 7: 941–946

    Article  CAS  PubMed  Google Scholar 

  146. Singh MK, Krisan AD, Crain AM, Collins DE, Yaspelkis BB, 3rd (2003) High-fat diet and leptin treatment alter skeletal muscle insulin-stimulated phosphatidylinositol 3-kinase activity and glucose transport. Metabolism. 52: 1196–1205

    Article  CAS  PubMed  Google Scholar 

  147. Yaspelkis BB, 3rd, Singh MK, Krisan AD (2004) Chronic leptin treatment enhances insulin-stimulated glucose disposal in skeletal muscle of high-fat fed rodentss. Life Sci. 74: 1801–1816

    Article  CAS  PubMed  Google Scholar 

  148. Dyck DJ (2009) Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl Physiol Nutr Metab. 34: 396–402

    Article  CAS  PubMed  Google Scholar 

  149. Fischer H, Esbjornsson M, Sabina RL, Stromberg A, Peyrard-Janvid M, Norman B (2007). AMP deaminase deficiency is associated with lower sprint cycling performance in healthy subjects. J Appl Physiol. 103: 315–322

    Article  CAS  PubMed  Google Scholar 

  150. Norman B, Glenmark B, Jansson E (1995) Muscle AMP deaminase deficiency in 2% of a healthy population. Muscle Nerve. 18: 239–241

    Article  CAS  PubMed  Google Scholar 

  151. Verzijl HT, van Engelen BG, Luyten JA (1998) Genetic characteristics of myoadenylate deaminase deficiency. Ann Neurol. 44: 140–143

    Article  CAS  PubMed  Google Scholar 

  152. Morisaki T, Gross M, Morisaki H, Pongratz D, Zollner N, Holmes EW (1992) Molecular basis of AMP deaminase deficiency in skeletal muscle. Proc Natl Acad Sci. 89: 6457–6461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sabina RL, Fishbein WN, Pezeshkpour G, Clarke PR, Holmes EW (1992) Molecular analysis of the myoadenylate deaminase deficiencies. Neurology. 42: 170–179

    Article  CAS  PubMed  Google Scholar 

  154. Sabina RL, Swain JL, Olanow CW (1984) Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle. J Clin Invest. 73: 720–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. De Ruiter CJ, May AM, van Engelen BG, Wevers RA, Steenbergen-Spanjers GC, de Haan A (2002) Muscle function during repetitive moderateintensity muscle contractions in myoadenylate deaminase-deficient Dutch subjects. Clin Sci (Lond). 102: 531–539

    Article  CAS  Google Scholar 

  156. Rico-Sanz J, Rankinen T, Joanisse DR (2003) Associations between cardiorespiratory responses to exercise and the C34T AMPD1 gene polymorphism in the HERITAGE Family Study. Physiol Genomics. 14: 161–166

    Article  CAS  PubMed  Google Scholar 

  157. Rubio JC, Martin MA, Rabadan M (2005) Frequency of the C34T mutation of the AMPD1 gene in world-class endurance athletes: does this mutation impair performance? J Appl Physiol. 98: 2108–2112

    Article  CAS  PubMed  Google Scholar 

  158. Lucia A, Martin MA, Esteve-Lanao J (2006) C34T mutation of the AMPD1 gene in an elite white runner. Br J Sports Med. 40: e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sinkeler SP, Binkhorst RA, Joosten EM, Wevers RA, Coerwinkei MM, Oei TL (1987) AMP deaminase deficiency: study of the human skeletal muscle purine metabolism during ischaemic isometric exercise. Clin Sci (Colch). 72: 475–482

    Article  CAS  Google Scholar 

  160. De Ruiter CJ, Van EBG, Wevers RA, De Haan A (2000) Muscle functionv during fatigue in myoadenylate deaminase-deficient Dutch subjects. Clin Sci (Colch). 98: 579–585

    Article  CAS  Google Scholar 

  161. Norman B, Sabina RL, Jansson E (2001) Regulation of skeletal muscle ATP catabolism by AMPD1 genotype during sprint exercise in asymptomatic subjects. J Appl Physiol. 91: 258–264

    CAS  PubMed  Google Scholar 

  162. Tarnopolsky MA, Parise G, Gibala MJ, Graham TE, Rush JW (2001) Myoadenylate deaminase deficiency does not affect muscle anaplerosis during exhaustive exercise in humans. J Physiol. 553: 881–889

    Article  Google Scholar 

  163. Pollin TI, Damcott CM, Shen HQ (2008) A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science. 322: 1702–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yoshitomi H, Yamashita K, Abe S, Tanak I (1998) Differential regulation of mouse uncoupling proteins among brown adipose tissue, white adipose tissue, and skeletal muscle in chronic beta 3 adrenergic receptor agonist treatment. Biochem Biophys Res Commun. 253: 85–91

    Article  CAS  PubMed  Google Scholar 

  165. Gleeson M, Blannin AK, Walsh NP, Field CN, Pritchard JC (1998) Effect of exercise-induced muscle damage on the blood lactate response to incremental exercise in humans. Eur J Appl Physiol Occup Physiol. 77: 292–295

    Article  CAS  PubMed  Google Scholar 

  166. Boss O, Hagen T, Lowell BB (2000) Uncoupling proteins 2 and 3: potential regulators of mitochondrial energy metabolism. Diabetes. 49: 143–156

    Article  CAS  PubMed  Google Scholar 

  167. Hawley JA, Brouns F, Jeukendrup A (1998) Strategies to enhance fat utilisation during exercise. Sports Med. 25: 241–257

    Article  CAS  PubMed  Google Scholar 

  168. Klaus S, Casteilla L, Bouillaud F, Ricquier D (1991) The uncouplingprotein UCP: a membraneous mitochondrial ion carrier exclusively expressed in brown adipose tissue. Int J Biochem. 23: 791–801

    Article  CAS  PubMed  Google Scholar 

  169. Monemdjou S, Hofmann WE, Kozak LP, Harper ME (2000) Increased mitochondrial proton leak in skeletal muscle mitochondria of UCP1-deficient mice. Am J Physiol Endocrinol Metab. 279: E941–E946

    CAS  PubMed  Google Scholar 

  170. Erlanson-Albertsson C (2003) The role of uncoupling proteins in the regulation of metabolism. Acta Physiol Scand. 178: 405–412

    Article  CAS  PubMed  Google Scholar 

  171. Klaus S, Rudolph B, Dohrmann C, Wehr R (2005) Expression of uncoupling protein 1 in skeletal muscle decreases muscle energy efficiency and affects thermoregulation and substrate oxidation. Physiol Genomics. 21: 193–200

    Article  CAS  PubMed  Google Scholar 

  172. Garruti G, Ricquier D (1992) Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. Int J Obes Relat Metab Disord. 16: 383–390

    CAS  PubMed  Google Scholar 

  173. Astrup A, Toubro S, Dalgaard LT, Urhammer SA, Sùrensen TIA, Pedersen O (1999) Impact of the v/v 55 polymorphism of the uncoupling protein 2 gene on 24-h energy expenditure and substrate oxidation. Int J Obes Relat Metab Disord. 23: 1030–1034

    Article  CAS  PubMed  Google Scholar 

  174. Buemann B, Schierning B, Toubro S (2001) The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. Int J Obes Relat Metab Disord. 25: 467–471

    Article  CAS  PubMed  Google Scholar 

  175. Ahmetov II, Hakimullina AM, Shikhova JV, Rogozkin VA (2008) The ability to become an elite endurance athlete depends on the carriage of high number of endurance-related alleles. Eur J Hum Gene. 16: 341

    Google Scholar 

  176. Cagliani R, Fumagalli M, Pozzoli U (2009) Diverse evolutionary histories for beta-adrenoreceptor genes in humans. Am J Hum Genet. 85: 64–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kurnik D, Muszkat M, Li C (2006) Variations in the alpha2A-adrenergic receptor gene and their functional effects. Clin Pharmacol Ther. 79: 173–185

    Article  CAS  PubMed  Google Scholar 

  178. Chruscinski A, Brede ME, Meinel L, Lohse MJ, Kobilka BK, Hein L (2001) Differential distribution of beta-adrenergic receptor subtypes in blood vessels of knockout mice lacking beta(1)- or beta(2)-adrenergic receptors. Mol Pharmacol. 60: 955–962

    CAS  PubMed  Google Scholar 

  179. Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK (1999) Cardiovascular and metabolic alterations in mice lacking both beta1- and beta2-adrenergic receptors. J Biol Chem. 274: 16701–16708

    Article  CAS  PubMed  Google Scholar 

  180. Hoehe MR, Berrettini WH, Lentes KU (1988) Dra I identifies a two allele DNA polymorphism in the human alpha 2-adrenergic receptor gene (ADRAR), using a 5.5 kb probe (p ADRAR). Nucleic Acids Res. 16: 9070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wolfarth B, Rivera MA, Oppert JM (2000) A polymorphism in the alpha2a-adrenoceptor gene and endurance athlete status. Med Sci Sports Exerc. 32: 1709–1712

    Article  CAS  PubMed  Google Scholar 

  182. Rao DC, Province MA, Leppert MF () A genome-wide affected sibpair linkage analysis of hypertension: the HyperGEN network. Am J Hypertens. 2003;16:148–150

    Article  PubMed  Google Scholar 

  183. Province MA, Kardia SL, Ranade K (2003) A meta-analysis of genome-wide linkage scans for hypertension: the National Heart, Lung and Blood Institute Family Blood Pressure Program. Am J Hypertens. 16: 144–147

    Article  PubMed  Google Scholar 

  184. Wilk JB, Myers RH, Pankow JS (2006) Adrenergic receptor polymorphisms associated with resting heart rate: the HyperGEN Study. Ann Hum Genet. 70: 566–573

    Article  CAS  PubMed  Google Scholar 

  185. Heinonen P, Koulu M, Pesonen U (1999) Identification of a three-amino acid deletion in the alpha2B-adrenergic receptor that is associated with reduced basal metabolic rate in obese subjects. J Clin Endocrinol Metab. 84: 2429–2433

    CAS  PubMed  Google Scholar 

  186. Ueno LM, Frazzatto ES, Batalha LT (2006) Alpha2B-adrenergic receptor deletion polymorphism and cardiac autonomic nervous system responses to exercise in obese women. Int J Obes (Lond). 30: 214–220

    Article  CAS  Google Scholar 

  187. Small KM, Wagoner LE, Levin AM, Kardia SL, Liggett SB (2002) Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med. 47: 1135–1142

    Article  Google Scholar 

  188. Podlowski S, Wenzel K, Luther HP (2000) Beta1-adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy? J Mol Med. 78: 87–93

    Article  CAS  PubMed  Google Scholar 

  189. Stanton T, Inglis GC, Padmanabhan S, Dominiczak AF, Jardine AG, Connell JM (2002) Variation at the beta-1 adrenoceptor gene locus affects left ventricular mass in renal failure. J Nephrol. 15: 512–518

    CAS  PubMed  Google Scholar 

  190. Sandilands AJ, Parameshwar J, Large S, Brown MJ, O'Shaughnessy KM (2005) Confirmation of a role for the 389R>G beta-1 adrenoceptor polymorphism on exercise capacity in heart failure. Heart. 91: 1613–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Borjesson M, Magnusson Y, Hjalmarson A, Andersson B (2000) A novel polymorphism in the gene coding for the beta(1)-adrenergic receptor associated with survival in patients with heart failure. Eur Heart J. 21: 1853–1858

    Article  CAS  PubMed  Google Scholar 

  192. Ranade K, Jorgenson E, Sheu WH (2002) A polymorphism in the beta1 adrenergic receptor is associated with resting heart rate. Am J Hum Genet. 70: 935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Defoor J, Martens K, Zielinska D (2006) The CAREGENE study: polymorphisms of the beta1-adrenoceptor gene and aerobic power in coronary artery disease. Eur Heart J. 27: 808–816

    Article  CAS  PubMed  Google Scholar 

  194. Reihsaus E, Innis M, MacIntyre N, Liggett SB (1993) Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol. 8: 334–339

    Article  CAS  PubMed  Google Scholar 

  195. Bruck H, Leineweber K, Beilfuss A (2003) Genotype-dependent time course of lymphocyte beta 2-adrenergic receptor down-regulation. Clin Pharmacol Ther. 74: 255–263

    Article  CAS  PubMed  Google Scholar 

  196. Meirhaeghe A, Helbecque N, Cottel D, Amouyel P (1999) Beta2-adrenoceptor gene polymorphism, body weight, and physical activity. Lancet. 353: 896

    Article  CAS  PubMed  Google Scholar 

  197. Meirhaeghe A, Helbecque N, Cottel D, Amouyel P (2000) Impact of polymorphisms of the human beta2-adrenoceptor gene on obesity in a French population. Int J Obes Relat Metab Disord. 24: 382–387

    Article  CAS  PubMed  Google Scholar 

  198. Meirhaeghe A, Luan J, Selberg-Franks P () The effect of the Gly16Arg polymorphism of the beta(2)-adrenergic receptor gene on plasma free fatty acid levels is modulated by physical activity. J Clin Endocrinol Metab. 2001;86:5881–5887

    CAS  PubMed  Google Scholar 

  199. Wolfarth B, Rankinen T, Mühlbauer S (2007) Association between a beta2-adrenergic receptor polymorphism and elite endurance performance. Metabolism. 56: 1649–1651

    Article  CAS  PubMed  Google Scholar 

  200. Giacobino JP (1995) Beta 3-adrenoceptor: an update. Eur J Endocrinol. 132: 377–385

    Article  CAS  PubMed  Google Scholar 

  201. Katzmarzyk PT, Perusse L, Bouchard C (1999) Genetics of abdominal visceral fat levels. Am J Human Biol. 11: 225–235

    Article  Google Scholar 

  202. Widen E, Lehto M, Kanninen T, Walston J, Shuldiner AR, Groop LC (1995) Association of a polymorphism in the beta 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med. 333: 348–351

    Article  CAS  PubMed  Google Scholar 

  203. Kahara T, Takamura T, Hayakawa T (2002) Prediction of exercise-mediated changes in metabolic markers by gene polymorphism. Diabetes Res Clin Pract.57: 105–110

    Article  CAS  PubMed  Google Scholar 

  204. Allison DB, Heo M, Faith MS, Pietrobelli A (1998) Meta-analysis of the association of the Trp64Arg polymorphism in the beta3 adrenergic receptor with body mass index. Int J Obes Relat Metab Disord. 22: 559–566

    Article  CAS  PubMed  Google Scholar 

  205. Fujisawa T, Ikegami H, Kawaguchi Y, Ogihara T (1998) Meta-analysis of the association of Trp64Arg polymorphism of beta 3-adrenergic receptor gene with body mass index. J Clin Endocrinol Metab. 83: 2441–2444

    CAS  PubMed  Google Scholar 

  206. Kurokawa N, Nakai K, Kameo S, Liu ZM, Satoh H (2001) Association of BMI with the beta3-adrenergic receptor gene polymorphism in Japanese: meta-analysis. Obes Res. 9: 741–745

    Article  CAS  PubMed  Google Scholar 

  207. Folland JP, Mc Cauley TM, Phypers C, Hanson B, Mastana SS (2012) The relationship of testosterone and AR CAG repeat genotype with knee extensor muscle function of young and older men. Exp. Gerontol. 47(6): 437–43

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Blume .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Wien

About this chapter

Cite this chapter

Blume, K., Pitsiladis, Y., Wang, G., Wolfarth, B. (2018). Genetik der Leistungsfähigkeit und Trainierbarkeit. In: Bachl, N., Löllgen, H., Tschan, H., Wackerhage, H., Wessner, B. (eds) Molekulare Sport- und Leistungsphysiologie. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1591-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1591-6_17

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1590-9

  • Online ISBN: 978-3-7091-1591-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics