Skip to main content

Subdermal Tissue Regeneration

  • Chapter
  • First Online:
Dermal Replacements in General, Burn, and Plastic Surgery
  • 1910 Accesses

Abstract

The integrity of the skin is a condition precedent for health. Any lesion of the integument, caused by trauma or pathologic disorder, compromises the well-being of the individual and grows fatal when large areas of skin are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham GA, Murray J, Billiar K, Sullivan SJ (2000) Evaluation of the porcine intestinal collagen layer as a biomaterial. J Biomed Mater Res 51:442–452

    Article  PubMed  CAS  Google Scholar 

  • Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587–3593

    Article  PubMed  CAS  Google Scholar 

  • Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20:109–116

    Article  PubMed  CAS  Google Scholar 

  • Badylak SF, Wu CC, Bible M, McPherson E (2003) Host protection against deliberate bacterial contamination of an extracellular matrix bioscaffold versus Dacron mesh in a dog model of orthopedic soft tissue repair. J Biomed Mater Res B Appl Biomater 67:648–654

    Article  PubMed  Google Scholar 

  • Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14:1835–1842

    Article  PubMed  CAS  Google Scholar 

  • Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5:1–13

    Article  PubMed  CAS  Google Scholar 

  • Booth C, Korossis SA, Wilcox HE, Watterson KG, Kearney JN, Fisher J et al (2002) Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 11:457–462

    Google Scholar 

  • Boyce A, Atherton DD, Tang R, Jawad M (2010) The use of Matriderm in the management of an exposed Achilles tendon secondary to a burns injury. J Plast Reconstr Aesthet Surg 63:e206–e207

    Article  PubMed  Google Scholar 

  • Brown BN, Barnes CA, Kasick RT, Michel R, Gilbert TW, Beer-Stolz D et al (2010) Surface characterization of extracellular matrix scaffolds. Biomaterials 31:428–437

    Article  PubMed  CAS  Google Scholar 

  • Chen RN, Ho HO, Tsai YT, Sheu MT (2004) Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 25:2679–2686

    Article  PubMed  CAS  Google Scholar 

  • Daamen WF, Nillesen ST, Wismans RG, Reinhardt DP, Hafmans T, Veerkamp JH et al (2008) A b iomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification. Tissue Eng Part A 14:349–360

    Article  PubMed  CAS  Google Scholar 

  • Dantzer E, Braye FM (2001) Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg 54:659–664

    Article  PubMed  CAS  Google Scholar 

  • Flynn LE, Prestwich GD, Semple JL, Woodhouse KA (2008) Proliferation and differentiation of adipose-derived stem cells on naturally derived scaffolds. Biomaterials 29:1862–1871

    Article  PubMed  CAS  Google Scholar 

  • Flynn L, Prestwich GD, Semple JL, Woodhouse KA (2009) Adipose tissue engineering in vivo with adipose-derived stem cells on naturally derived scaffolds. J Biomed Mater Res A 89:929–941

    PubMed  CAS  Google Scholar 

  • Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK et al (1994) Biodegradable polymer scaffolds for tissue engineering. Biotechnology (N Y) 12:689–693

    Article  CAS  Google Scholar 

  • Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF (2008a) Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 29:1630–1637

    Article  PubMed  CAS  Google Scholar 

  • Freytes DO, Tullius RS, Valentin JE, Stewart-Akers AM, Badylak SF (2008b) Hydrated versus lyophilized forms of porcine extracellular matrix derived from the urinary bladder. J Biomed Mater Res A 87:862–872

    PubMed  Google Scholar 

  • Gamboa-Bobadilla GM (2006) Implant breast reconstruction using acellular dermal matrix. Ann Plast Surg 56:22–25

    Article  PubMed  CAS  Google Scholar 

  • Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683

    PubMed  CAS  Google Scholar 

  • Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, Badylak SF (2007) Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg Am 89:621–630

    Article  PubMed  Google Scholar 

  • Golinski PA, Zoller N, Kippenberger S, Menke H, Bereiter-Hahn J, Bernd A (2009) Development of an engraftable skin equivalent based on matriderm with human keratinocytes and fibroblasts. Handchir Mikrochir Plast Chir 41:327–332

    Article  PubMed  CAS  Google Scholar 

  • Gouk SS, Lim TM, Teoh SH, Sun WQ (2008) Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodeling. J Biomed Mater Res B Appl Biomater 84:205–217

    PubMed  Google Scholar 

  • Grauss RW, Hazekamp MG, Oppenhuizen F, van Munsteren CJ, Gittenberger-de Groot AC, DeRuiter MC (2005) Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 27:566–571

    Article  PubMed  Google Scholar 

  • Green WT Jr (1977) Articular cartilage repair. Behavior of rabbit chondrocytes during tissue culture and subsequent allografting. Clin Orthop Relat Res 237–50

    Google Scholar 

  • Guillot PV, Cui W, Fisk NM, Polak DJ (2007) Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med 11:935–944

    Article  PubMed  CAS  Google Scholar 

  • Hafeez YM, Zuki AB, Yusof N, Asnah H, Loqman MY, Noordin MM et al (2005) Effect of freeze-drying and gamma irradiation on biomechanical properties of bovine pericardium. Cell Tissue Bank 6:85–89

    Article  PubMed  CAS  Google Scholar 

  • Haslik W, Kamolz LP, Manna F, Hladik M, Rath T, Frey M (2009) Management of full-thickness skin defects in the hand and wrist region: first long-term experiences with the dermal matrix Matriderm. J Plast Reconstr Aesthet Surg 63:360–364

    Article  Google Scholar 

  • He F, Pei M (2011) Extracellular matrix enhances differentiationof adipose stem cells from infrapatellar fat pad toward chondrogenesis. J Tissue Eng Regen Med. doi:10.1002/term.505

    Google Scholar 

  • Ho HO, Tsai YT, Chen RN, Sheu MT (2004) Viscoelastic characterizations of acellular dermal matrix (ADM) preparations for use as injectable implants. J Biomed Mater Res A 70:83–96

    Article  PubMed  Google Scholar 

  • Hodde J, Record R, Tullius R, Badylak S (2002) Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix. Biomaterials 23:1841–1848

    Article  PubMed  CAS  Google Scholar 

  • Holton LH 3rd, Chung T, Silverman RP, Haerian H, Goldberg NH, Burrows WM et al (2007) Comparison of acellular dermal matrix and synthetic mesh for lateral chest wall reconstruction in a rabbit model. Plast Reconstr Surg 119:1238–1246

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 26:7616–7627

    Article  PubMed  CAS  Google Scholar 

  • Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55:203–216

    Article  PubMed  CAS  Google Scholar 

  • Kleinman HK, Philp D, Hoffman MP (2003) Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 14:526–532

    Article  PubMed  CAS  Google Scholar 

  • Kolker AR, Brown DJ, Redstone JS, Scarpinato VM, Wallack MK (2005) Multilayer reconstruction of abdominal wall defects with acellular dermal allograft (AlloDerm) and component separation. Ann Plast Surg 55:36–41; discussion −2

    Article  PubMed  CAS  Google Scholar 

  • Lamme EN, Van Leeuwen RT, Brandsma K, Van Marle J, Middelkoop E (2000) Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation. J Pathol 190:595–603

    Article  PubMed  CAS  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  • Lavik E, Teng YD, Snyder E, Langer R (2002) Seeding neural stem cells on scaffolds of PGA, PLA, and their copolymers. Methods Mol Biol 198:89–97

    PubMed  Google Scholar 

  • Lawrence BJ, Madihally SV (2008) Cell colonization in degradable 3D porous matrices. Cell Adh Migr 2:9–16

    Article  PubMed  Google Scholar 

  • Lee SJ, Lee IW, Lee YM, Lee HB, Khang G (2004) Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(D, L-lactide-co-glycolide) for tissue-engineered bone. J Biomater Sci Polym Ed 15:1003–1017

    Article  PubMed  CAS  Google Scholar 

  • Li F, Li W, Johnson S, Ingram D, Yoder M, Badylak S (2004) Low-molecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. Endothelium 11:199–206

    Article  PubMed  CAS  Google Scholar 

  • Li J, Li L, Ren BC (2007) Experimental study of the eyelid reconstruction in situ with the acellular xenogeneic dermal matrix. Zhonghua Zheng Xing Wai Ke Za Zhi 23:154–157

    PubMed  Google Scholar 

  • Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233

    Article  PubMed  CAS  Google Scholar 

  • Malmsten M, Davoudi M, Schmidtchen A (2006) Bacterial killing by heparin-binding peptides from PRELP and thrombospondin. Matrix Biol 25:294–300

    Article  PubMed  CAS  Google Scholar 

  • McDevitt CA, Wildey GM, Cutrone RM (2003) Transforming growth factor-beta1 in a sterilized tissue derived from the pig small intestine submucosa. J Biomed Mater Res A 67:637–640

    Article  PubMed  Google Scholar 

  • Meyer W, Schopf R, Menke H (2009) Subkutane Implantation einer Kollagen-Elastin-Matrix - Einfluss auf Zellproliferation und dermale Architektur. Plast Chir 9:24–25

    Google Scholar 

  • Meyer W, Schopf R, Meyer CU, Menke H (2010) Laminar implantation of a collagen-elastin matrix improves infraorbital contour in aesthetic facial surgery. Plast Reconstr Surg 126(5):1756–1760

    Article  PubMed  CAS  Google Scholar 

  • Namnoum JD (2009) Expander/implant reconstruction with AlloDerm: recent experience. Plast Reconstr Surg 124:387–394

    Article  PubMed  CAS  Google Scholar 

  • Pattison MA, Wurster S, Webster TJ, Haberstroh KM (2005) Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 26:2491–2500

    Article  PubMed  CAS  Google Scholar 

  • Record RD, Hillegonds D, Simmons C, Tullius R, Rickey FA, Elmore D et al (2001) In vivo ­degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials 22:2653–2659

    Article  PubMed  CAS  Google Scholar 

  • Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol 199:174–180

    Article  PubMed  CAS  Google Scholar 

  • Shainer R, Gaberman E, Levdansky L, Gorodetsky R (2010) Efficient isolation and chondrogenic differentiation of adult mesenchymal stem cells with fibrin microbeads and micronized collagen sponges. Regen Med 5:255–265

    Article  PubMed  CAS  Google Scholar 

  • Spilker MH, Asano K, Yannas IV, Spector M (2001) Contraction of collagen-glycosaminoglycan matrices by peripheral nerve cells in vitro. Biomaterials 22:1085–1093

    Article  PubMed  CAS  Google Scholar 

  • Stahl JE, Vacanti JP, Gazelle S (2007) Assessing emerging technologies–the case of organ replacement technologies: volume, durability, cost. Int J Technol Assess Health Care 23:331–336

    Article  PubMed  Google Scholar 

  • Stankus JJ, Freytes DO, Badylak SF, Wagner WR (2008) Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed 19:635–652

    Article  PubMed  CAS  Google Scholar 

  • Taylor PM, Allen SP, Dreger SA, Yacoub MH (2002) Human cardiac valve interstitial cells in ­collagen sponge: a biological three-dimensional matrix for tissue engineering. J Heart Valve Dis 11:298–306; discussion −7

    PubMed  Google Scholar 

  • Turner AE, Flynn LE (2012) Design and characterization of tissue-specific extracellular matrix- derived microcarriers. Tissue Eng Part C Methods 18(3):186–197

    Article  PubMed  CAS  Google Scholar 

  • Valentin JE, Badylak JS, McCabe GP, Badylak SF (2006) Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am 88:2673–2686

    Article  PubMed  Google Scholar 

  • van Zuijlen PP, Lamme EN, van Galen MJ, van Marle J, Kreis RW, Middelkoop E (2002) Long-term results of a clinical trial on dermal substitution. A light microscopy and Fourier analysis based evaluation. Burns 28:151–160

    Article  PubMed  Google Scholar 

  • VandeVondele S, Voros J, Hubbell JA (2003) RGD-grafted poly-L-lysine-graft-(polyethylene ­glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol Bioeng 82:784–790

    Article  PubMed  CAS  Google Scholar 

  • Vogel V, Baneyx G (2003) The tissue engineeting puzzle: a molecular perspective. Annu Rev Biomed Eng 5:441–463

    Article  PubMed  CAS  Google Scholar 

  • Xiao S, Zhu S, Ma B, Xia ZF, Yang J, Wang G (2008) A new system for cultivation of human keratinocytes on acellular dermal matrix substitute with the use of human fibroblast feeder layer. Cells Tissues Organs 187:123–130

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Goto M, Ise H, Cho CS, Akaike T (2002) Galactosylated alginate as a scaffold for ­hepatocytes entrapment. Biomaterials 23:471–479

    Article  PubMed  CAS  Google Scholar 

  • Yannas IV, Burke JF (1980) Design of an artificial skin. I. Basic design principles. J Biomed Mater Res 14:65–81

    Article  PubMed  CAS  Google Scholar 

  • Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Deng Z, Wang H, Yang Z, Guo W, Li Y et al (2009) Expansion and delivery of human fibroblasts on micronized acellular dermal matrix for skin regeneration. Biomaterials 30:2666–2674

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiltrud Meyer MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Meyer, W. (2013). Subdermal Tissue Regeneration. In: Kamolz, LP., Lumenta, D. (eds) Dermal Replacements in General, Burn, and Plastic Surgery. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1586-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1586-2_14

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1585-5

  • Online ISBN: 978-3-7091-1586-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics