Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 546))

Abstract

Computer simulation has emerged as a powerful tool to investigate and design materials without ever making them. Predicting the properties and behavior of materials by computer simulation from the bottom-up perspective has long been a vision of computational materials scientists and, as computational power increases, modeling and simulation tools are becoming crucial to the investigation of material systems. The key to achieving this goal is using hierarchies of paradigms that seamlessly connect quantum mechanics to macroscopic systems. Particular progress has been made in relating molecular-scale chemistry to mesoscopic and macroscopic material properties essential to define the materiome. This chapter reviews large-scale atomistic and coarse-grain modeling methods commonly implemented to investigate the properties and behavior of natural and biological materials with nanostructured hierarchies. We present basic concepts of hierarchical multiscale modeling capable of providing a bottom-up description of chemically complex materials and some example applications related to the study of collagen material at different hierarchical levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system. Journal of Chemical Physics, 27(5):1208–1209, 1957.

    Article  CAS  Google Scholar 

  • B. J. Alder and T. E. Wainwright. Studies in molecular dynamics .1. general method. Journal of Chemical Physics, 31(2):459–466, 1959.

    Article  CAS  Google Scholar 

  • B. J. Alder and T. E. Wainwright. Studies in molecular dynamics .2. behavior of a small number of elastic spheres. Journal of Chemical Physics, 33(5):1439–1451, 1960.

    Article  CAS  Google Scholar 

  • R. M. Alexander. Elastic energy stores in running vertebrates. American Zoologist, 24(1):85–94, 1984.

    Google Scholar 

  • R.M. Alexander. Animal Mechanics. Blackwell Scientific, Oxford, UK, 2nd edition edition, 1983.

    Google Scholar 

  • K. Beck, V. C. Chan, N. Shenoy, A. Kirkpatrick, J. A. M. Ramshaw, and B. Brodsky. Destabilization of osteogenesis imperfecta collagenlike model peptides correlates with the identity of the residue replacing glycine. P. Natl. Acad. Sci. USA, 97(8):4273–4278, 2000.

    Article  CAS  Google Scholar 

  • G. I. Bell. Theoretical-models for the specific adhesion of cells to cells or to surfaces. Advances in Applied Probability, 12(3):566–567, 1980.

    Article  Google Scholar 

  • J. Bella, M. Eaton, B. Brodsky, and H. M. Berman. Crystal-structure and molecular-structure of a collagen-like peptide at 1.9-angstrom resolution. Science, 266(5182):75–81, 1994.

    Article  CAS  Google Scholar 

  • R. Bhowmik, K. S. Katti, and D. R. Katti. Mechanics of molecular collagen is influenced by hydroxyapatite in natural bone. Journal of Materials Science, 42(21):8795–8803, 2007.

    Article  CAS  Google Scholar 

  • R. Bhowmik, K. S. Katti, and D. R. Katti. Mechanisms of load-deformation behavior of molecular collagen in hydroxyapatite-tropocollagen molecular system: Steered molecular dynamics study. Journal of Engineering Mechanics-Asce, 135(5):413–421, 2009.

    Article  Google Scholar 

  • B. Brodsky and J. A. M. Ramshaw. The collagen triple-helix structure. Matrix Biology, 15(8-9):545–554, 1997.

    Article  CAS  Google Scholar 

  • M. J. Buehler and S. Keten. Colloquium: Failure of molecules, bones, and the earth itself. Reviews of Modern Physics, 82(2):1459–1487, 2010.

    Article  Google Scholar 

  • M.J. Buehler. Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture and self-assembly. J. Mater. Res., 21(8): 1947–1961, 2006a.

    Article  CAS  Google Scholar 

  • M.J. Buehler. Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. P. Natl. Acad. Sci. USA, 103(33):1228512290, 2006b.

    Article  Google Scholar 

  • M.J. Buehler and S.Y. Wong. Entropic elasticity controls nanomechanics of single tropocollagen molecules. Biophysical Journal, 93(1):37–43, 2007.

    Article  CAS  Google Scholar 

  • P. Chamberlain, R. Drewello, L. Korn, W. Bauer, T. Gough, A. Al-Fouzan, M. Collins, N. Van Doorn, O. Craig, and C. Heron. Construction of the khoja zaynuddin mosque: use of animal glue modified with urine. Archaeometry, 53:830–841, 2011.

    Article  CAS  Google Scholar 

  • P. Y. Chou and G. D. Fasman. Prediction of protein conformation. Biochemistry, 13(2):222–245, 1974.

    Article  CAS  Google Scholar 

  • S. W. Cranford and M. J. Buehler. Biomateriomics, volume 165 of Springer Series in Materials Science. Springer Netherlands, 2012.

    Book  Google Scholar 

  • S. W. Cranford, J. de Boer, C. van Blitterswijk, and M. J. Buehler. Materiomics: An -omics approach to biomaterials research. Adv Mater, 2013.

    Google Scholar 

  • J.D. Currey. Bones: Structure and Mechanics. Princeton University Press, Princeton, NJ, 2002.

    Google Scholar 

  • A. A. Deniz, S. Mukhopadhyay, and E. A. Lemke. Single-molecule biophysics: at the interface of biology, physics and chemistry. Journal of the Royal Society Interface, 5(18):15–45, 2008.

    Article  CAS  Google Scholar 

  • S. J. Eppell, B. N. Smith, H. Kahn, and R. Ballarini. Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. Journal Of The Royal Society Interface, 3(6):117–121, 2006.

    Article  CAS  Google Scholar 

  • D. R. Eyre, M. A. Weis, and J. J. Wu. Advances in collagen cross-link analysis. Methods, 45:65–74, 2008.

    Article  CAS  Google Scholar 

  • P. Fratzl. Collagen: Structure and Mechanics. Springer, 2008.

    Google Scholar 

  • P. Fratzl and R. Weinkamer. Nature’s hierarchical materials. Progress in Material Science, 52:1263–1334, 2007.

    Article  CAS  Google Scholar 

  • P. Fratzl, N. Fratzlzelman, and K. Klaushofer. Collagen packing and mineralization - an x-ray-scattering investigation of turkey leg tendon. Biophysical Journal, 64(1):260–266, 1993.

    Article  CAS  Google Scholar 

  • P. Fratzl, K. Misof, I. Zizak, G. Rapp, H. Amenitsch, and S. Bernstorff. Fibrillar structure and mechanical properties of collagen. Journal of Structural Biology, 122(1-2):119–122, 1998.

    Article  CAS  Google Scholar 

  • Y. C. Fung. Elasticity of soft tissues in simple elongation. Am J Physiol, 213(6):1532–44, 1967.

    CAS  Google Scholar 

  • A. Gautieri, S. Vesentini, F. M. Montevecchi, and A. Redaelli. Mechanical properties of physiological and pathological models of collagen peptides investigated via steered molecular dynamics simulations. Journal of Biomechanics, 41(14):3073–3077, 2008.

    Article  Google Scholar 

  • A. Gautieri, M. J. Buehler, and A. Redaelli. Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. Journal of the Mechanical Behavior of Biomedical Materials, 2(2):130–137, 2009.

    Article  Google Scholar 

  • A. Gautieri, A. Russo, S. Vesentini, A. Redaelli, and M. J. Buehler. Coarsegrained model of collagen molecules using an extended martini force field. Journal of Chemical Theory and Computation, 6(4):1210–1218, 2010.

    Article  CAS  Google Scholar 

  • A. Gautieri, S. Vesentini, A. Redaelli, and M. J. Buehler. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Letters, 11(2):757–766, 2011.

    Article  CAS  Google Scholar 

  • A. Gautieri, S. Vesentini, A. Redaelli, and M. J. Buehler. Viscoelastic properties of model segments of collagen molecules. Matrix Biology, 31 (2):141–149, 2012.

    Article  CAS  Google Scholar 

  • B. R. Gelin and M. Karplus. Sidechain torsional potentials and motion of amino-acids in proteins - bovine pancreatic trypsin-inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 72 (6):2002–2006, 1975.

    Article  CAS  Google Scholar 

  • H. S. Gupta, W. Wagermaier, G. A. Zickler, D. R. B. Aroush, S. S. Funari, P. Roschger, H. D. Wagner, and P. Fratzl. Nanoscale deformation mechanisms in bone. Nano Letters, 5(10):2108–2111, 2005.

    Article  CAS  Google Scholar 

  • R. Harley, D. James, A. Miller, and J. W. White. Phonons and the elastic moduli of collagen and muscle. Nature, 267(5608):285–7, 1977.

    Article  CAS  Google Scholar 

  • R. C. Haut and R. W. Little. A constitutive equation for collagen fibers. J Biomech, 5(5):423–30, 1972.

    Article  CAS  Google Scholar 

  • K. E. Kadler, C. Baldock, J. Bella, and R. P. Boot-Handford. Collagens at a glance. Journal of Cell Science, 120(12):1955–1958, 2007.

    Article  CAS  Google Scholar 

  • M. Levitt and A. Warshel. Computer-simulation of protein folding. Nature, 253(5494):694–698, 1975.

    Article  CAS  Google Scholar 

  • C. A. Lopez, A. J. Rzepiela, A. H. de Vries, L. Dijkhuizen, P. H. Hunenberger, and S. J. Marrink. Martini coarse-grained force field: Extension to carbohydrates. Journal of Chemical Theory and Computation, 5(12): 3195–3210, 2009.

    Article  CAS  Google Scholar 

  • A. C. Lorenzo and E. R. Caffarena. Elastic properties, young’s modulus determination and structural stability of the tropocollagen molecule: a computational study by steered molecular dynamics. Journal Of Biomechanics, 38(7):1527–1533, 2005.

    Article  Google Scholar 

  • A. D. Mackerell. Empirical force fields for biological macromolecules: Overview and issues. Journal of Computational Chemistry, 25(13):1584–1604, 2004.

    Article  CAS  Google Scholar 

  • A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus. All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 102(18):3586–3616, 1998.

    Article  CAS  Google Scholar 

  • S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries. The martini force field: coarse grained model for biomolecular simulations. Journal of Physical Chemistry B, 111(27):7812–24, 2007.

    Article  CAS  Google Scholar 

  • J. A. Mccammon, B. R. Gelin, and M. Karplus. Dynamics of folded proteins. Nature, 267(5612):585–590, 1977.

    Article  CAS  Google Scholar 

  • N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6):1087–1092, 1953.

    Article  CAS  Google Scholar 

  • L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, and S. J. Marrink. The martini coarse-grained force field: Extension to proteins. Journal of Chemical Theory and Computation, 4(5):819–834, 2008.

    Article  CAS  Google Scholar 

  • K. Nakajima and T. Nishi. Nanoscience of single polymer chains revealed by nanofishing. Chemical Record, 6(5):249–258, 2006.

    Article  CAS  Google Scholar 

  • M. T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. V. Kale, R. D. Skeel, and K. Schulten. Namd: A parallel, object oriented molecular dynamics program. International Journal Of Supercomputer Applications And High Performance Computing, 10(4):251–268, 1996.

    Article  Google Scholar 

  • F. H. M. Nestler, S. Hvidt, J. D. Ferry, and A. Veis. Flexibility of collagen determined from dilute-solution viscoelastic measurements. Biopolymers, 22(7):1747–1758, 1983.

    Article  CAS  Google Scholar 

  • J.P.R.O. Orgel, T.C. Irving, A. Miller, and T. J. Wess. Microfibrillar structure of type i collagen in situ. P. Natl. Acad. Sci. USA, 103(24):9001–9005, 2006.

    Article  CAS  Google Scholar 

  • D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham, S. Debolt, D. Ferguson, G. Seibel, and P. Kollman. Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1-3):1–41, 1995.

    Article  CAS  Google Scholar 

  • E. Pena, J. A. Pena, and M. Doblare. On modelling nonlinear viscoelastic effects in ligaments. Journal of Biomechanics, 41(12):2659–2666, 2008.

    Article  CAS  Google Scholar 

  • J. A. Petruska and A. J. Hodge. Subunit model for tropocollagen macromolecule. Proceedings of the National Academy of Sciences of the United States of America, 51(5):871–&, 1964.

    Article  CAS  Google Scholar 

  • S. Plimpton. Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117(1):1–19, 1995.

    Article  CAS  Google Scholar 

  • J. W. Ponder and D. A. Case. Force fields for protein simulations, volume 66 of Advances In Protein Chemistry, pages 27–+. 2003.

    Google Scholar 

  • R. Puxkandl, I. Zizak, O. Paris, J. Keckes, W. Tesch, S. Bernstorff, P. Purslow, and P. Fratzl. Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philosophical Transactions Of The Royal Society Of London Series B-Biological Sciences, 357(1418):191–197, 2002.

    Article  CAS  Google Scholar 

  • Z. Qin and M. J. Buehler. Molecular dynamics simulation of the alphahelix to beta-sheet transition in coiled protein filaments: Evidence for a critical filament length scale. Physical Review Letters, 104(19), 2010.

    Google Scholar 

  • A. Rahman and Stilling.Fh. Molecular dynamics study of liquid water. Journal of Chemical Physics, 55(7):3336–&, 1971.

    Article  CAS  Google Scholar 

  • Kartha G. Ramachandran, G.N. Structure of collagen. Nature, 176:593595, 1955.

    Google Scholar 

  • A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff. Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. Journal of the American Chemical Society, 114(25):10024–10035, 1992.

    Article  CAS  Google Scholar 

  • F. Rauch and F. H. Glorieux. Osteogenesis imperfecta. The Lancet, 363: 1377–85, 2004.

    Article  CAS  Google Scholar 

  • A. Redaelli, S. Vesentini, M. Soncini, P. Vena, S. Mantero, and F. M. Montevecchi. Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons - a computational study from molecular to microstructural level. Journal Of Biomechanics, 36(10): 1555–1569, 2003.

    Article  CAS  Google Scholar 

  • A. Rich and F.H.C. Crick. The structure of collagen. Nature, 176:915–916, 1955.

    Article  CAS  Google Scholar 

  • B. J. Rigby, N. Hirai, J. D. Spikes, and H. Eyring. The mechanical properties of rat tail tendon. J Gen Physiol, 43(2):265–83, 1959.

    Article  CAS  Google Scholar 

  • T. Saito, N. Iso, H. Mizuno, N. Onda, H. Yamato, and H. Odashima. Semi-flexibility of collagens in solution. Biopolymers, 21(4):715–728, 1982.

    Article  CAS  Google Scholar 

  • M. S. Sansom, K. A. Scott, and P. J. Bond. Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochemical Society Transactions, 36(Pt 1):27–32, 2008.

    Article  CAS  Google Scholar 

  • N. Sasaki and S. Odajima. Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. Journal Of Biomechanics, 29(9):1131–1136, 1996.

    Article  CAS  Google Scholar 

  • N. Sasaki, N. Shukunami, N. Matsushima, and Y. Izumi. Time-resolved x-ray diffraction from tendon collagen during creep using synchrotron radiation. Journal of Biomechanics, 32(3):285–292, 1999.

    Article  CAS  Google Scholar 

  • H. A. Scheraga, M. Khalili, and A. Liwo. Protein-folding dynamics: Overview of molecular simulation techniques. Annual Review of Physical Chemistry, 58:57–83, 2007.

    Article  CAS  Google Scholar 

  • H. R. C. Screen, A. Anssari-Benam, and D. L. Bader. A combined experimental and modelling approach to aortic valve viscoelasticity in tensile deformation. Journal of Materials Science-Materials in Medicine, 22(2): 253–262, 2011.

    Article  Google Scholar 

  • Z. L. Shen, M. R. Dodge, H. Kahn, R. Ballarini, and S. J. Eppell. Stressstrain experiments on individual collagen fibrils. Biophysical Journal, 95 (8):3956–3963, 2008.

    Article  CAS  Google Scholar 

  • Z. L. Shen, H. Kahn, R. Ballarini, and S. J. Eppell. Viscoelastic properties of isolated collagen fibrils. Biophys J, 100(12):3008–15, 2011.

    Article  CAS  Google Scholar 

  • Z. L. L. Shen, M. R. Dodge, H. Kahn, R. Ballarini, and S. J. Eppell. In vitro fracture testing of submicron diameter collagen fibril specimens. Biophysical Journal, 99(6):1986–1995, 2010.

    Article  CAS  Google Scholar 

  • F. H. Silver, D. L. Christiansen, P. B. Snowhill, and Y. Chen. Transition from viscous to elastic-based dependency of mechanical properties of selfassembled type i collagen fibers. Journal of Applied Polymer Science, 79 (1):134–142, 2001.

    Article  CAS  Google Scholar 

  • M. Srinivasan, S. G. M. Uzel, A. Gautieri, S. Keten, and M. J. Buehler. Alport syndrome mutations in type iv tropocollagen alter molecular structure and nanomechanical properties. Journal of Structural Biology, 168 (3):503–510, 2009.

    Article  CAS  Google Scholar 

  • Y. L. Sun, Z. P. Luo, A. Fertala, and K. N. An. Direct quantification of the flexibility of type i collagen monomer. Biochemical And Biophysical Research Communications, 295(2):382–386, 2002.

    Article  CAS  Google Scholar 

  • R. B. Svensson, T. Hassenkam, P. Hansen, and S. P. Magnusson. Viscoelastic behavior of discrete human collagen fibrils. Journal of the Mechanical Behavior of Biomedical Materials, 3(1):112–115, 2010a.

    Article  Google Scholar 

  • Ren B. Svensson, Tue Hassenkam, Colin A. Grant, and S. Peter Magnusson. Tensile properties of human collagen fibrils and fascicles are insensitive to environmental salts. Biophysical Journal, 99(12):4020–4027, 2010b.

    Article  Google Scholar 

  • V. Tozzini. Coarse-grained models for proteins. Current Opinion in Structural Biology, 15(2):144–150, 2005.

    Article  CAS  Google Scholar 

  • H. Utiyama, K. Sakato, K. Ikehara, T. Setsuiye, and M. Kurata. Flexibility of tropocollagen from sedimentation and viscosity. Biopolymers, 12(1): 53–64, 1973.

    Article  CAS  Google Scholar 

  • Joost A. J. van der Rijt, Kees O. van der Werf, Martin L. Bennink, Pieter J. Dijkstra, and Jan Feijen. Micromechanical testing of individual collagen fibrils. Macromolecular Bioscience, 6(9):697–702, 2006.

    Article  Google Scholar 

  • D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen. Gromacs: Fast, flexible, and free. Journal of Computational Chemistry, 26(16):1701–1718, 2005.

    Article  Google Scholar 

  • W. Wang, O. Donini, C. M. Reyes, and P. A. Kollman. Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annual Review of Biophysics and Biomolecular Structure, 30:211–243, 2001.

    Article  CAS  Google Scholar 

  • X. T. Wang and R. F. Ker. Creep-rupture of wallaby tail tendons. Journal of Experimental Biology, 198(3):831–845, 1995.

    CAS  Google Scholar 

  • S. Weiner and H. D. Wagner. The material bone: Structure mechanical function relations. Annual Review Of Materials Science, 28:271–298, 1998.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 CISM, Udine

About this chapter

Cite this chapter

Gautieri, A., Buehler, M.J. (2013). Multi-scale modeling of biomaterials and tissues. In: Buehler, M.J., Ballarini, R. (eds) Materiomics: Multiscale Mechanics of Biological Materials and Structures. CISM International Centre for Mechanical Sciences, vol 546. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1574-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1574-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1573-2

  • Online ISBN: 978-3-7091-1574-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics