Skip to main content

Cryptosporidium Metabolism

  • Chapter
  • First Online:
Cryptosporidium: parasite and disease

Abstract

Rather than the presence of unique metabolic pathways, it is the absence of many pathways that characterizes the metabolism of Cryptosporidium. In fact, this genus of parasites has lost its ability of synthesizing de novo virtually all nutrients such as amino acids, nucleotides and fatty acids, thus relying on a large number of transporters to scavenge nutrients from the host. Members of this genus lack an apicoplast and associated pathways that are present in other apicomplexans. They lack cytochrome-based respiration, and rely mainly on glycolysis for energy production. Core metabolic pathways are highly streamlined, and redundancy is rare. These features make Cryptosporidium different from other apicomplexans. This chapter summarizes these features based on the analysis of genome sequences and published biochemical data in the context of drug targets and drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA et al (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304(5669):441–445. doi:10.1126/science.1094786

    Article  PubMed  CAS  Google Scholar 

  • Anderson AC (2005) Targeting DHFR in parasitic protozoa. Drug Discov Today 10(2):121–128. doi:10.1016/S1359-6446(04)03308-2

    Article  PubMed  CAS  Google Scholar 

  • Bajszar G, Dekonenko A (2010) Stress-induced Hsp70 gene expression and inactivation of Cryptosporidium parvum oocysts by chlorine-based oxidants. Appl Environ Microbiol 76(6):1732–1739. doi:10.1128/AEM.02353-09

    Article  PubMed  CAS  Google Scholar 

  • Barnes DA, Bonnin A, Huang JX, Gousset L, Wu J, Gut J et al (1998) A novel multi-domain mucin-like glycoprotein of Cryptosporidium parvum mediates invasion. Mol Biochem Parasitol 96(1–2):93–110

    Article  PubMed  CAS  Google Scholar 

  • Barta JR, Thompson RC (2006) What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol 22(10):463–468. doi:10.1016/j.pt.2006.08.001

    Article  PubMed  Google Scholar 

  • Benitez AJ, McNair N, Mead J (2007) Modulation of gene expression of three Cryptosporidium parvum ATP-binding cassette transporters in response to drug treatment. Parasitol Res 101(6):1611–1616. doi:10.1007/s00436-007-0701-x

    Article  PubMed  Google Scholar 

  • Black PN, DiRusso CC (2007) Vectorial acylation: linking fatty acid transport and activation to metabolic trafficking. Novartis Found Symp 286:127–138, discussion 38–41, 62–3, 96–203

    PubMed  CAS  Google Scholar 

  • Bolstad DB, Bolstad ES, Frey KM, Wright DL, Anderson AC (2008) Structure-based approach to the development of potent and selective inhibitors of dihydrofolate reductase from Cryptosporidium. J Med Chem 51(21):6839–6852. doi:10.1021/jm8009124

    Article  PubMed  CAS  Google Scholar 

  • Bonafonte MT, Romagnoli PA, McNair N, Shaw AP, Scanlon M, Leitch GJ et al (2004) Cryptosporidium parvum: effect of multi-drug reversing agents on the expression and function of ATP-binding cassette transporters. Exp Parasitol 106(3–4):126–134. doi:10.1016/j.exppara.2004.03.012

    Article  PubMed  CAS  Google Scholar 

  • Brophy VH, Vasquez J, Nelson RG, Forney JR, Rosowsky A, Sibley CH (2000) Identification of Cryptosporidium parvum dihydrofolate reductase inhibitors by complementation in Saccharomyces cerevisiae. Antimicrob Agents Chemother 44(4):1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Herschap D, Zhu G (2005) Functional characterization of an evolutionarily distinct phosphopantetheinyl transferase in the apicomplexan Cryptosporidium parvum. Eukaryot Cell 4(7):1211–1220. doi:10.1128/EC.4.7.1211-1220.2005

    Article  PubMed  CAS  Google Scholar 

  • Cevallos AM, Bhat N, Verdon R, Hamer DH, Stein B, Tzipori S et al (2000a) Mediation of Cryptosporidium parvum infection in vitro by mucin-like glycoproteins defined by a neutralizing monoclonal antibody. Infect Immun 68(9):5167–5175

    Article  PubMed  CAS  Google Scholar 

  • Cevallos AM, Zhang X, Waldor MK, Jaison S, Zhou X, Tzipori S et al (2000b) Molecular cloning and expression of a gene encoding Cryptosporidium parvum glycoproteins gp40 and gp15. Infect Immun 68(7):4108–4116

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee A, Banerjee S, Steffen M, O’Connor RM, Ward HD, Robbins PW et al (2010) Evidence for mucin-like glycoproteins that tether sporozoites of Cryptosporidium parvum to the inner surface of the oocyst wall. Eukaryot Cell 9(1):84–96. doi:10.1128/EC.00288-09

    Article  PubMed  CAS  Google Scholar 

  • Cook WJ, Senkovich O, Chattopadhyay D (2009) An unexpected phosphate binding site in glyceraldehyde 3-phosphate dehydrogenase: crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme. BMC Struct Biol 9:9. doi:10.1186/1472-6807-9-9

    Article  PubMed  Google Scholar 

  • Coombs GH, Muller S (2002) Recent advances in the search for new anti-coccidial drugs. Int J Parasitol 32(5):497–508

    Article  PubMed  CAS  Google Scholar 

  • Crossnoe CR, Germanas JP, LeMagueres P, Mustata G, Krause KL (2002) The crystal structure of Trichomonas vaginalis ferredoxin provides insight into metronidazole activation. J Mol Biol 318(2):503–518. doi:10.1016/S0022-2836(02)00051-7

    Article  PubMed  CAS  Google Scholar 

  • Ctrnacta V, Ault JG, Stejskal F, Keithly JS (2006) Localization of pyruvate: NADP+ oxidoreductase in sporozoites of Cryptosporidium parvum. J Eukaryot Microbiol 53(4):225–231. doi:10.1111/j.1550-7408.2006.00099.x

    Article  PubMed  CAS  Google Scholar 

  • Ctrnacta V, Stejskal F, Keithly JS, Hrdy I (2007) Characterization of S-adenosylhomocysteine hydrolase from Cryptosporidium parvum. FEMS Microbiol Lett 273(1):87–95. doi:10.1111/j.1574-6968.2007.00795.x

    Article  PubMed  CAS  Google Scholar 

  • Ctrnacta V, Fritzler JM, Surinova M, Hrdy I, Zhu G, Stejskal F (2010) Efficacy of S-adenosylhomocysteine hydrolase inhibitors, D-eritadenine and (S)-DHPA, against the growth of Cryptosporidium parvum in vitro. Exp Parasitol 126(2):113–116. doi:10.1016/j.exppara.2010.04.007

    Article  PubMed  CAS  Google Scholar 

  • DiRusso CC, Black PN (1999) Long-chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process. Mol Cell Biochem 192(1–2):41–52

    Article  PubMed  CAS  Google Scholar 

  • Ehrenman K, Wanyiri JW, Bhat N, Ward HD, Coppens I (2013). Cryptosporidium parvum scavenges LDL-derived cholesterol and micellar cholesterol internalized into enterocytes. Cell Microbiol 15(7):1182–1197. doi:10.1111/cmi.12107

    Article  PubMed  CAS  Google Scholar 

  • Fritzler JM, Zhu G (2007) Functional characterization of the acyl-[acyl carrier protein] ligase in the Cryptosporidium parvum giant polyketide synthase. Int J Parasitol 37(3–4):307–316. doi:10.1016/j.ijpara.2006.10.014

    Article  PubMed  CAS  Google Scholar 

  • Fritzler JM, Zhu G (2012) Novel anti-Cryptosporidium activity of known drugs identified by high-throughput screening against parasite fatty acyl-CoA binding protein (ACBP). J Antimicrob Chemother 67(3):609–617. doi:10.1093/jac/dkr516

    Article  PubMed  CAS  Google Scholar 

  • Fritzler JM, Millership JJ, Zhu G (2007) Cryptosporidium parvum long-chain fatty acid elongase. Eukaryot Cell 6(11):2018–2028. doi:10.1128/EC.00210-07

    Article  PubMed  CAS  Google Scholar 

  • Gorla SK, Kavitha M, Zhang M, Liu X, Sharling L, Gollapalli DR et al (2012) Selective and potent urea inhibitors of Cryptosporidium parvum inosine 5′-monophosphate dehydrogenase. J Med Chem 55(17):7759–7771. doi:10.1021/jm3007917

    Article  PubMed  CAS  Google Scholar 

  • Habara-Ohkubo A, Shirahata T, Takikawa O, Yoshida R (1993) Establishment of an antitoxoplasma state by stable expression of mouse indoleamine 2,3-dioxygenase. Infect Immun 61(5):1810–1813

    PubMed  CAS  Google Scholar 

  • Harris JR, Adrian M, Petry F (2004) Amylopectin: a major component of the residual body in Cryptosporidium parvum oocysts. Parasitology 128(Pt 3):269–282

    Article  PubMed  CAS  Google Scholar 

  • Johnson CR, Gorla SK, Kavitha M, Zhang M, Liu X, Striepen B et al (2013) Phthalazinone inhibitors of inosine-5′-monophosphate dehydrogenase from Cryptosporidium parvum. Bioorg Med Chem Lett 23(4):1004–1007. doi:10.1016/j.bmcl.2012.12.037

    Article  PubMed  CAS  Google Scholar 

  • Kang JM, Cheun HI, Kim J, Moon SU, Park SJ, Kim TS et al (2008) Identification and characterization of a mitochondrial iron-superoxide dismutase of Cryptosporidium parvum. Parasitol Res 103(4):787–795. doi:10.1007/s00436-008-1041-1

    Article  PubMed  Google Scholar 

  • Keithly JS, Langreth SG, Buttle KF, Mannella CA (2005) Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and organelles. J Eukaryot Microbiol 52(2):132–140. doi:10.1111/j.1550-7408.2005.04-3317.x

    Article  PubMed  Google Scholar 

  • LaGier MJ, Zhu G, Keithly JS (2001) Characterization of a heavy metal ATPase from the apicomplexan Cryptosporidium parvum. Gene 266(1–2):25–34

    Article  PubMed  CAS  Google Scholar 

  • LaGier MJ, Keithly JS, Zhu G (2002) Characterisation of a novel transporter from Cryptosporidium parvum. Int J Parasitol 32(7):877–887

    Article  PubMed  CAS  Google Scholar 

  • LaGier MJ, Tachezy J, Stejskal F, Kutisova K, Keithly JS (2003) Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the apicomplexan Cryptosporidium parvum. Microbiology 149(Pt 12):3519–3530

    Article  PubMed  CAS  Google Scholar 

  • Lau H, Ferlan JT, Brophy VH, Rosowsky A, Sibley CH (2001) Efficacies of lipophilic inhibitors of dihydrofolate reductase against parasitic protozoa. Antimicrob Agents Chemother 45(1):187–195. doi:10.1128/AAC.45.1.187-195.2001

    Article  PubMed  CAS  Google Scholar 

  • Lei C, Rider SD Jr, Wang C, Zhang H, Tan X, Zhu G (2010) The apicomplexan Cryptosporidium parvum possesses a single mitochondrial-type ferredoxin and ferredoxin: NADP+ reductase system. Protein Sci 19(11):2073–2084. doi:10.1002/pro.487

    Article  PubMed  CAS  Google Scholar 

  • Leitsch D, Burgess AG, Dunn LA, Krauer KG, Tan K, Duchene M et al (2011) Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. J Antimicrob Chemother 66(8):1756–1765. doi:10.1093/jac/dkr192

    Article  PubMed  CAS  Google Scholar 

  • Li LC, Mun YF (2005) Partial characterization of genes encoding the ATP-binding cassette proteins of Cryptosporidium parvum. Trop Biomed 22(2):115–122

    PubMed  Google Scholar 

  • MacKenzie CR, Heseler K, Muller A, Daubener W (2007) Role of indoleamine 2,3-dioxygenase in antimicrobial defence and immuno-regulation: tryptophan depletion versus production of toxic kynurenines. Curr Drug Metab 8(3):237–244

    Article  PubMed  CAS  Google Scholar 

  • Madern D, Cai X, Abrahamsen MS, Zhu G (2004) Evolution of Cryptosporidium parvum lactate dehydrogenase from malate dehydrogenase by a very recent event of gene duplication. Mol Biol Evol 21(3):489–497. doi:10.1093/molbev/msh042

    Article  PubMed  CAS  Google Scholar 

  • Martucci WE, Udier-Blagovic M, Atreya C, Babatunde O, Vargo MA, Jorgensen WL et al (2009) Novel non-active site inhibitor of Cryptosporidium hominis TS-DHFR identified by a virtual screen. Bioorg Med Chem Lett 19(2):418–423. doi:10.1016/j.bmcl.2008.11.054

    Article  PubMed  CAS  Google Scholar 

  • Millership JJ, Zhu G (2002) Heterogeneous expression and functional analysis of two distinct replication protein A large subunits from Cryptosporidium parvum. Int J Parasitol 32(12):1477–1485

    Article  PubMed  CAS  Google Scholar 

  • Mogi T, Kita K (2010) Diversity in mitochondrial metabolic pathways in parasitic protists Plasmodium and Cryptosporidium. Parasitol Int 59(3):305–312. doi:10.1016/j.parint.2010.04.005

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TN, Abendroth J, Leibly DJ, Le KP, Guo W, Kelley A et al (2011) Structure of triosephosphate isomerase from Cryptosporidium parvum. Acta Crystallogr Sect F Struct Biol Cryst Commun 67(Pt 9):1095–1099. doi:10.1107/S1744309111019178

    Article  PubMed  CAS  Google Scholar 

  • O’Neil RH, Lilien RH, Donald BR, Stroud RM, Anderson AC (2003) Phylogenetic classification of protozoa based on the structure of the linker domain in the bifunctional enzyme, dihydrofolate reductase-thymidylate synthase. J Biol Chem 278(52):52980–52987. doi:10.1074/jbc.M310328200

    Article  PubMed  Google Scholar 

  • Perkins ME, Riojas YA, Wu TW, Le Blancq SM (1999) CpABC, a Cryptosporidium parvum ATP-binding cassette protein at the host-parasite boundary in intracellular stages. Proc Natl Acad Sci U S A 96(10):5734–5739

    Article  PubMed  CAS  Google Scholar 

  • Popov VM, Chan DC, Fillingham YA, Atom Yee W, Wright DL, Anderson AC (2006) Analysis of complexes of inhibitors with Cryptosporidium hominis DHFR leads to a new trimethoprim derivative. Bioorg Med Chem Lett 16(16):4366–4370. doi:10.1016/j.bmcl.2006.05.047

    Article  PubMed  CAS  Google Scholar 

  • Rider SD Jr, Zhu G (2008) Differential expression of the two distinct replication protein A subunits from Cryptosporidium parvum. J Cell Biochem 104(6):2207–2216. doi:10.1002/jcb.21784

    Article  PubMed  CAS  Google Scholar 

  • Rider SD Jr, Zhu G (2010) Cryptosporidium: genomic and biochemical features. Exp Parasitol 124(1):2–9. doi:10.1016/j.exppara.2008.12.014

    Article  PubMed  CAS  Google Scholar 

  • Rider SD Jr, Cai X, Sullivan WJ Jr, Smith AT, Radke J, White M et al (2005) The protozoan parasite Cryptosporidium parvum possesses two functionally and evolutionarily divergent replication protein A large subunits. J Biol Chem 280(36):31460–31469. doi:10.1074/jbc.M504466200

    Article  PubMed  CAS  Google Scholar 

  • Riordan CE, Ault JG, Langreth SG, Keithly JS (2003) Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet 44(3):138–147. doi:10.1007/s00294-003-0432-1

    Article  PubMed  CAS  Google Scholar 

  • Roberts CW, Roberts F, Henriquez FL, Akiyoshi D, Samuel BU, Richards TA et al (2004) Evidence for mitochondrial-derived alternative oxidase in the apicomplexan parasite Cryptosporidium parvum: a potential anti-microbial agent target. Int J Parasitol 34(3):297–308. doi:10.1016/j.ijpara.2003.11.002

    Article  PubMed  CAS  Google Scholar 

  • Rochelle PA, Upton SJ, Montelone BA, Woods K (2005) The response of Cryptosporidium parvum to UV light. Trends Parasitol 21(2):81–87. doi:10.1016/j.pt.2004.11.009

    Article  PubMed  CAS  Google Scholar 

  • Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W (2001) Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol 18(5):710–720

    Article  PubMed  CAS  Google Scholar 

  • Schmatz DM (1989) The mannitol cycle–a new metabolic pathway in the Coccidia. Parasitol Today 5(7):205–208

    Article  PubMed  CAS  Google Scholar 

  • Senkovich O, Speed H, Grigorian A, Bradley K, Ramarao CS, Lane B et al (2005) Crystallization of three key glycolytic enzymes of the opportunistic pathogen Cryptosporidium parvum. Biochim Biophys Acta 1750(2):166–172. doi:10.1016/j.bbapap.2005.04.009

    Article  PubMed  CAS  Google Scholar 

  • Senkovich O, Schormann N, Chattopadhyay D (2009) Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate. Acta Crystallogr D Biol Crystallogr 65(Pt 7):704–716. doi:10.1107/S090744490901230X

    Article  PubMed  CAS  Google Scholar 

  • Sharling L, Liu X, Gollapalli DR, Maurya SK, Hedstrom L, Striepen B (2010) A screening pipeline for antiparasitic agents targeting Cryptosporidium inosine monophosphate dehydrogenase. PLoS Negl Trop Dis 4(8):e794. doi:10.1371/journal.pntd.0000794

    Article  PubMed  Google Scholar 

  • Slapeta J, Keithly JS (2004) Cryptosporidium parvum mitochondrial-type HSP70 targets homologous and heterologous mitochondria. Eukaryot Cell 3(2):483–494

    Article  PubMed  CAS  Google Scholar 

  • Striepen B, Kissinger JC (2004) Genomics meets transgenics in search of the elusive Cryptosporidium drug target. Trends Parasitol 20(8):355–358. doi:10.1016/j.pt.2004.06.003

    Article  PubMed  CAS  Google Scholar 

  • Striepen B, White MW, Li C, Guerini MN, Malik SB, Logsdon JM Jr et al (2002) Genetic complementation in apicomplexan parasites. Proc Natl Acad Sci U S A 99(9):6304–6309. doi:10.1073/pnas.092525699

    Article  PubMed  CAS  Google Scholar 

  • Sun XE, Sharling L, Muthalagi M, Mudeppa DG, Pankiewicz KW, Felczak K et al (2010) Prodrug activation by Cryptosporidium thymidine kinase. J Biol Chem 285(21):15916–15922. doi:10.1074/jbc.M110.101543

    Article  PubMed  CAS  Google Scholar 

  • Templeton TJ, Enomoto S, Chen WJ, Huang CG, Lancto CA, Abrahamsen MS et al (2010) A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a Gregarine and Cryptosporidium. Mol Biol Evol 27(2):235–248. doi:10.1093/molbev/msp226

    Article  PubMed  CAS  Google Scholar 

  • Umejiego NN, Li C, Riera T, Hedstrom L, Striepen B (2004) Cryptosporidium parvum IMP dehydrogenase: identification of functional, structural, and dynamic properties that can be exploited for drug design. J Biol Chem 279(39):40320–40327. doi:10.1074/jbc.M407121200

    Article  PubMed  CAS  Google Scholar 

  • Umejiego NN, Gollapalli D, Sharling L, Volftsun A, Lu J, Benjamin NN et al (2008) Targeting a prokaryotic protein in a eukaryotic pathogen: identification of lead compounds against cryptosporidiosis. Chem Biol 15(1):70–77. doi:10.1016/j.chembiol.2007.12.010

    Article  PubMed  CAS  Google Scholar 

  • Vasquez JR, Gooze L, Kim K, Gut J, Petersen C, Nelson RG (1996) Potential antifolate resistance determinants and genotypic variation in the bifunctional dihydrofolate reductase-thymidylate synthase gene from human and bovine isolates of Cryptosporidium parvum. Mol Biochem Parasitol 79(2):153–165

    Article  PubMed  CAS  Google Scholar 

  • Wanyiri J, Ward H (2006) Molecular basis of Cryptosporidium-host cell interactions: recent advances and future prospects. Future Microbiol 1(2):201–208. doi:10.2217/17460913.1.2.201

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG et al (2004) The genome of Cryptosporidium hominis. Nature 431(7012):1107–1112. doi:10.1038/nature02977

    Article  PubMed  CAS  Google Scholar 

  • Yarlett N, Yarlett NC, Lloyd D (1986) Ferredoxin-dependent reduction of nitroimidazole derivatives in drug-resistant and susceptible strains of Trichomonas vaginalis. Biochem Pharmacol 35(10):1703–1708

    Article  PubMed  CAS  Google Scholar 

  • Yoon S, Park WY, Yu JR (2012) Recombinant thioredoxin peroxidase from Cryptosporidium parvum has more powerful antioxidant activity than that from Cryptosporidium muris. Exp Parasitol 131(3):333–338. doi:10.1016/j.exppara.2012.04.018

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Zhang H, Zhu G (2010) Plant-type trehalose synthetic pathway in Cryptosporidium and some other apicomplexans. PLoS One 5(9):e12593. doi:10.1371/journal.pone.0012593

    Article  PubMed  Google Scholar 

  • Zapata F, Perkins ME, Riojas YA, Wu TW, Le Blancq SM (2002) The Cryptosporidium parvum ABC protein family. Mol Biochem Parasitol 120(1):157–161

    Article  PubMed  CAS  Google Scholar 

  • Zeng B, Zhu G (2006) Two distinct oxysterol binding protein-related proteins in the parasitic protist Cryptosporidium parvum (Apicomplexa). Biochem Biophys Res Commun 346(2):591–599. doi:10.1016/j.bbrc.2006.05.165

    Article  PubMed  CAS  Google Scholar 

  • Zeng B, Cai X, Zhu G (2006) Functional characterization of a fatty acyl-CoA-binding protein (ACBP) from the apicomplexan Cryptosporidium parvum. Microbiology 152(Pt 8):2355–2363. doi:10.1099/mic.0.28944-0

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Guo F, Zhou H, Zhu G (2012) Transcriptome analysis reveals unique metabolic features in the Cryptosporidium parvum oocysts associated with environmental survival and stresses. BMC Genomics 13:647. doi:10.1186/1471-2164-13-647

    Article  PubMed  CAS  Google Scholar 

  • Zhu G (2004) Current progress in the fatty acid metabolism in Cryptosporidium parvum. J Eukaryot Microbiol 51(4):381–388

    Article  PubMed  CAS  Google Scholar 

  • Zhu G (2008) Biochemistry. In: Fayer R, Xiao L (eds) Cryptosporidium and cryptosporidiosis, 2nd edn. CRC Press, Boca Raton, pp 57–77

    Google Scholar 

  • Zhu G, Keithly JS (1997) Molecular analysis of a P-type ATPase from Cryptosporidium parvum. Mol Biochem Parasitol 90(1):307–316

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Keithly JS (2002) Alpha-proteobacterial relationship of apicomplexan lactate and malate dehydrogenases. J Eukaryot Microbiol 49(3):255–261

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Marchewka MJ, Keithly JS (1999) Cryptosporidium parvum possesses a short-type replication protein A large subunit that differs from its host. FEMS Microbiol Lett 176(2):367–372

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Keithly JS, Philippe H (2000a) What is the phylogenetic position of Cryptosporidium? Int J Syst Evol Microbiol 50(Pt 4):1673–1681

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Marchewka MJ, Keithly JS (2000b) Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146(Pt 2):315–321

    PubMed  CAS  Google Scholar 

  • Zhu G, Marchewka MJ, Woods KM, Upton SJ, Keithly JS (2000c) Molecular analysis of a Type I fatty acid synthase in Cryptosporidium parvum. Mol Biochem Parasitol 105(2):253–260

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, LaGier MJ, Stejskal F, Millership JJ, Cai X, Keithly JS (2002) Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase. Gene 298(1):79–89

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Li Y, Cai X, Millership JJ, Marchewka MJ, Keithly JS (2004) Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. Mol Biochem Parasitol 134(1):127–135

    Article  PubMed  CAS  Google Scholar 

  • Zhu G, Shi X, Cai X (2010) The reductase domain in a Type I fatty acid synthase from the apicomplexan Cryptosporidium parvum: restricted substrate preference towards very long chain fatty acyl thioesters. BMC Biochem 11:46. doi:10.1186/1471-2091-11-46

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. J. M. Fritzler at Weber State University and Dr. S. D. Rider at Wright State University for their critical reading of the manuscript. Studies derived from the author’s laboratory have been mainly supported by grants from the National Institute of Allergy and Infectious Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Zhu, G., Guo, F. (2014). Cryptosporidium Metabolism. In: Cacciò, S., Widmer, G. (eds) Cryptosporidium: parasite and disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1562-6_8

Download citation

Publish with us

Policies and ethics