Skip to main content

Immunology of Cryptosporidiosis

  • Chapter
  • First Online:
Cryptosporidium: parasite and disease

Abstract

Cryptosporidium spp. infect the gastrointestinal epithelium of vertebrate hosts. Intestinal species typically cause self-limiting diarrhea in immunocompetent individuals, suggesting an efficient host immune defense to eliminate the infection. Both innate and adaptive immunity are involved in host anti-parasite defense. Because of the “minimally invasive” nature of Cryptosporidium infection, mucosal epithelial cells are critical to the host’s anti-Cryptosporidium immunity. Epithelial cells not only provide the first and rapid defense against Cryptosporidium infection, but also mobilize immune effector cells to the infection site to activate adaptive immunity. Attachment to the apical cell surface by Cryptosporidium, as well as molecules inserted into host cells after attachment, can activate host cell signal pathways and thereby alter cell function. Pathogen recognition receptors (e.g., Toll-like receptors) in epithelial cells recognize Cryptosporidium and initiate downstream signaling pathways (e.g., NF-kappaB) which trigger a series of antimicrobial responses and activate adaptive immunity. Non-coding RNAs are critical regulators of mucosal immunity to infection, while release of exosomes from epithelial cells may be a relatively unexplored, important component of mucosal anti-parasite defense. Conversely, it appears that Cryptosporidium has also developed strategies of immune evasion to escape host immunity, at least at the early stage of infection. Immune responses contribute to the pathophysiologic features of cryptosporidiosis. A better understanding the immunology of cryptosporidiosis will provide a framework for the potential development of novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen MS, Templeton TJ, Enomoto S et al (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

    PubMed  CAS  Google Scholar 

  • Aji T, Flanigan T, Marshall R et al (1991) Ultrastructural study of asexual development of Cryptosporidium parvum in a human intestinal cell line. J Protozool 38:82S–84S

    PubMed  CAS  Google Scholar 

  • Anderson P (2008) Post-transcriptional control of cytokine production. Nat Immunol 9:353–359

    PubMed  CAS  Google Scholar 

  • Argenzio RA, Liacos JA, Levy ML et al (1990) Villous atrophy, crypt hyperplasia, cellular infiltration, and impaired glucose-Na absorption in enteric cryptosporidiosis of pigs. Gastroenterology 98:1129–1140

    PubMed  CAS  Google Scholar 

  • Argenzio RA, Rhoads JM, Armstrong M et al (1994) Glutamine stimulates prostaglandin-sensitive Na(+)-H+ exchange in experimental porcine cryptosporidiosis. Gastroenterology 106:1418–1428

    PubMed  CAS  Google Scholar 

  • Ashida H, Mimuro H, Ogawa M et al (2011) Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol 195:931–942

    PubMed  CAS  Google Scholar 

  • Asirvatham AJ, Gregorie CJ, Hu Z et al (2008) MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Mol Immunol 45:1995–2006

    PubMed  CAS  Google Scholar 

  • Azuma T, Yao S, Zhu G et al (2008) B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111:3635–3643

    PubMed  CAS  Google Scholar 

  • Baker SF, Yin Y, Runswick SK et al (2003) Peptidase allergen Der p 1 initiates apoptosis of epithelial cells independently of tight junction proteolysis. Mol Membr Biol 20:71–81

    PubMed  CAS  Google Scholar 

  • Barakat FM, McDonald V, Di Santo JP et al (2009a) Roles for NK cells and an NK cell-independent source of intestinal gamma interferon for innate immunity to Cryptosporidium parvum infection. Infect Immun 77:5044–5049

    PubMed  CAS  Google Scholar 

  • Barakat FM, McDonald V, Foster GR et al (2009b) Cryptosporidium parvum infection rapidly induces a protective innate immune response involving type I interferon. J Infect Dis 200:1548–1555

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    PubMed  CAS  Google Scholar 

  • Bedi B, Mead JR (2012) Cryptosporidium parvum antigens induce mouse and human dendritic cells to generate Th1-enhancing cytokines. Parasite Immunol 34:473–485

    PubMed  CAS  Google Scholar 

  • Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274:782–784

    PubMed  CAS  Google Scholar 

  • Berkes J, Viswanathan VK, Savkovic SD et al (2003) Intestinal epithelial responses to enteric pathogens: effects on the tight junction barrier, ion transport, and inflammation. Gut 52:439–451

    PubMed  CAS  Google Scholar 

  • Bhat N, Joe A, PereiraPerrin M et al (2007) Cryptosporidium p30, a galactose/N-acetylgalactosamine-specific lectin, mediates infection in vitro. J Biol Chem 282:34877–34887

    PubMed  CAS  Google Scholar 

  • Bhatnagar S, Schorey JS (2007) Exosomes released from infected macrophages contain mycobacterium avium glycopeptidolipids and are proinflammatory. J Biol Chem 282:25779–25789

    PubMed  CAS  Google Scholar 

  • Blikslager AT, Moeser AJ, Gookin JL et al (2007) Restoration of barrier function in injured intestinal mucosa. Physiol Rev 87:545–564

    PubMed  CAS  Google Scholar 

  • Bobrie A, Colombo M, Raposo G et al (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12:1659–1668

    PubMed  CAS  Google Scholar 

  • Bode KA, Schroder K, Hume DA et al (2007) Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology 122:596–606

    PubMed  CAS  Google Scholar 

  • Boehm U, Klamp T, Groot M et al (1997) Cellular responses to interferon-gamma. Ann Rev Immunol 15:749–795

    CAS  Google Scholar 

  • Bonnin A, Gut J, Dubremetz JF et al (1995) Monoclonal antibodies identify a subset of dense granules in Cryptosporidium parvum zoites and gamonts. J Eukaryot Microbiol 42:395–401

    PubMed  CAS  Google Scholar 

  • Borad A, Ward H (2010) Human immune responses in cryptosporidiosis. Future Microbiol 5:507–519

    PubMed  CAS  Google Scholar 

  • Buret A, Hardin JA, Olson ME et al (1992) Pathophysiology of small intestinal malabsorption in gerbils infected with Giardia lamblia. Gastroenterology 103:506–513

    PubMed  CAS  Google Scholar 

  • Buret AG, Chin AC, Scott KG (2003) Infection of human and bovine epithelial cells with Cryptosporidium andersoni induces apoptosis and disrupts tight junctional ZO-1: effects of epidermal growth factor. Int J Parasitol 33:1363–1371

    PubMed  CAS  Google Scholar 

  • Castellanos-Gonzalez A, Yancey LS, Wang HC et al (2008) Cryptosporidium infection of human intestinal epithelial cells increases expression of osteoprotegerin: a novel mechanism for evasion of host defenses. J Infect Dis 197:916–923

    PubMed  CAS  Google Scholar 

  • Cevallos AM, Bhat N, Verdon R et al (2000a) Mediation of Cryptosporidium parvum infection in vitro by mucin-like glycoproteins defined by a neutralizing monoclonal antibody. Infect Immun 68:5167–5175

    PubMed  CAS  Google Scholar 

  • Cevallos AM, Zhang X, Waldor MK et al (2000b) Molecular cloning and expression of a gene encoding Cryptosporidium parvum glycoproteins gp40 and gp15. Infect Immun 68:4108–4116

    PubMed  CAS  Google Scholar 

  • Chen XM, LaRusso NF (1999) Human intestinal and biliary cryptosporidiosis. World J Gastroenterol 5:424–429

    PubMed  Google Scholar 

  • Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20:465–470

    PubMed  CAS  Google Scholar 

  • Chen WX, Harp JA, Harmsen AG (1993) Requirements for CD4+ cells and gamma-interferon in resolution of established Cryptosporidium parvum infection in mice. Infect Immun 61:3928–3932

    PubMed  CAS  Google Scholar 

  • Chen XM, Levine SA, Tietz P et al (1998) Cryptosporidium parvum is cytopathic for cultured human biliary epithelia via an apoptotic mechanism. Hepatology 28:906–913

    PubMed  CAS  Google Scholar 

  • Chen XM, Gores GJ, Paya CV et al (1999) Cryptosporidium parvum induces apoptosis in biliary epithelia by a Fas/Fas ligand-dependent mechanism. Am J Physiol 277:G599–G608

    PubMed  CAS  Google Scholar 

  • Chen XM, Levine SA, Splinter PL et al (2001) Cryptosporidium parvum activates nuclear factor kappaB in biliary epithelia preventing epithelial cell apoptosis. Gastroenterology 120:1774–1783

    PubMed  CAS  Google Scholar 

  • Chen XM, Keithly JS, Paya CV et al (2002) Cryptosporidiosis. Engl J Med 346:1723–1731

    Google Scholar 

  • Chen WX, Harp JA, Harmsen AG (2003a) Cryptosporidium parvum infection in gene-targeted B cell-deficient mice. J Parasitol 89:391–393

    PubMed  Google Scholar 

  • Chen XM, Huang BQ, Splinter PL et al (2003b) Cryptosporidium parvum invasion of biliary epithelia requires host cell tyrosine phosphorylation of cortactin via c-Src. Gastroenterology 125:216–228

    PubMed  CAS  Google Scholar 

  • Chen XM, Splinter PL, Tietz PS et al (2004) Phosphatidylinositol 3-kinase and frabin mediate Cryptosporidium parvum cellular invasion via activation of Cdc42. J Biol Chem 279:31671–31678

    PubMed  CAS  Google Scholar 

  • Chen XM, O’Hara SP, Huang BQ et al (2005a) Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion. Proc Natl Acad Sci U S A 102:6338–6343

    PubMed  CAS  Google Scholar 

  • Chen XM, O’Hara SP, Nelson JB et al (2005b) Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-kappaB. J Immunol 175:7447–7456

    PubMed  CAS  Google Scholar 

  • Chen XM, Splinter PL, O’Hara SP et al (2007) A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem 282:28929–28938

    PubMed  CAS  Google Scholar 

  • Chen X, Song CH, Feng BS et al (2011) Intestinal epithelial cell-derived integrin alphabeta6 plays an important role in the induction of regulatory T cells and inhibits an antigen-specific Th2 response. J Leukoc Biol 90:751–759

    PubMed  CAS  Google Scholar 

  • Choi SM, McAleer JP, Zheng M et al (2013) Innate Stat3-mediated induction of the antimicrobial protein Reg3gamma is required for host defense against MRSA pneumonia. J Exp Med 210:551–561

    PubMed  CAS  Google Scholar 

  • Choudhry N, Korbel DS, Edwards LA et al (2009) Dysregulation of interferon-gamma-mediated signalling pathway in intestinal epithelial cells by Cryptosporidium parvum infection. Cell Microbiol 11:1354–1364

    PubMed  CAS  Google Scholar 

  • Clayburgh DR, Shen L, Turner JR (2004) A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 84:282–291

    PubMed  CAS  Google Scholar 

  • Cloos PAC, Christensen J, Agger K et al (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 22:1115–1140

    PubMed  CAS  Google Scholar 

  • Cozon G, Biron F, Jeannin M et al (1994) Secretory Iga antibodies to Cryptosporidium parvum in AIDS patients with chronic Cryptosporidiosis. J Infect Dis 169:696–699

    PubMed  CAS  Google Scholar 

  • Cryns V, Yuan JY (1998) Proteases to die for. Genes Dev 12:1551–1570

    PubMed  CAS  Google Scholar 

  • Dean JL, Sully G, Clark AR et al (2004) The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal 16:1113–1121

    PubMed  CAS  Google Scholar 

  • Deng M, Templeton TJ, London NR et al (2002) Cryptosporidium parvum genes containing thrombospondin type 1 domains. Infect Immun 70:6987–6995

    PubMed  CAS  Google Scholar 

  • Deselliers LP, Tan DT, Scott RB et al (1997) Effects of Giardia lamblia infection on gastrointestinal transit and contractility in Mongolian gerbils. Dig Dis Sci 42:2411–2419

    PubMed  CAS  Google Scholar 

  • Dokladny K, Moseley PL, Ma TY (2006) Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability. Am J Physiol 290:G204–G212

    CAS  Google Scholar 

  • Dommett R, Zilbauer M, George JT et al (2005) Innate immune defence in the human gastrointestinal tract. Mol Immunol 42:903–912

    PubMed  CAS  Google Scholar 

  • Dong H, Chen X (2006) Immunoregulatory role of B7-H1 in chronicity of inflammatory responses. Cell Mol Immunol 3:179–187

    PubMed  CAS  Google Scholar 

  • Dong HD, Zhu GF, Tamada K et al (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369

    PubMed  CAS  Google Scholar 

  • Eckmann L (2003) Mucosal defences against Giardia. Parasite Immunol 25:259–270

    PubMed  CAS  Google Scholar 

  • Ehigiator HN, Romagnoli P, Borgelt K et al (2005) Mucosal cytokine and antigen-specific responses to Cryptosporidium parvum in IL-12p40 KO mice. Parasite Immunol 27:17–28

    PubMed  CAS  Google Scholar 

  • Eichelberger MC, Suresh P, Rehg JE (2000) Protection from Cryptosporidium parvum infection by gamma delta T cells in mice that lack alpha beta T cells. Comp Med 50:270–276

    PubMed  CAS  Google Scholar 

  • Elliott DA, Coleman DJ, Lane MA et al (2001) Cryptosporidium parvum infection requires host cell actin polymerization. Infect Immun 69:5940–5942

    PubMed  CAS  Google Scholar 

  • Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    PubMed  CAS  Google Scholar 

  • Farthing MJ (2000) Clinical aspects of human cryptosporidiosis. Contrib Microbiol 6:50–74

    PubMed  CAS  Google Scholar 

  • Faubert G (2000) Immune response to Giardia duodenalis. Clin Microbiol Rev 13:35–54

    PubMed  CAS  Google Scholar 

  • Freeman GJ, Long LA, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    PubMed  CAS  Google Scholar 

  • Furuse M, Fujimoto K, Sato N et al (1996) Overexpression of occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures. J Cell Sci 109(Pt 2):429–435

    PubMed  CAS  Google Scholar 

  • Gong AY, Zhou R, Hu G et al (2010) Cryptosporidium parvum induces B7-H1 expression in cholangiocytes by down-regulating microRNA-513. J Infect Dis 201:160–169

    PubMed  CAS  Google Scholar 

  • Gong AY, Hu G, Zhou R et al (2011) MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection. Int J Parasitol 41:397–403

    PubMed  CAS  Google Scholar 

  • Gonzalez-Mariscal L, Betanzos A, Nava P et al (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    PubMed  CAS  Google Scholar 

  • Gookin JL, Allen J, Chiang S et al (2005) Local peroxynitrite formation contributes to early control of Cryptosporidium parvum infection. Infect Immun 73:3929–3936

    PubMed  CAS  Google Scholar 

  • Gookin JL, Chiang S, Allen J et al (2006) NF-kappaB-mediated expression of iNOS promotes epithelial defense against infection by Cryptosporidium parvum in neonatal piglets. Am J Physiol 290:G164–G174

    CAS  Google Scholar 

  • Graeff J, Kim D, Dobbin MM et al (2011) Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 91:603–649

    Google Scholar 

  • Harada K, Nakanuma Y (2012) Cholangiopathy with respect to biliary innate immunity. Int J Hepatol 2012:793569. doi:10.1155/2012/793569

    PubMed  Google Scholar 

  • Hashim A, Mulcahy G, Bourke B et al (2006) Interaction of Cryptosporidium hominis and Cryptosporidium parvum with primary human and bovine intestinal cells. Infect Immun 74:99–107

    PubMed  CAS  Google Scholar 

  • Hernandez J, Lackner A, Aye P et al (2007) Substance P is responsible for physiological alterations such as increased chloride ion secretion and glucose malabsorption in cryptosporidiosis. Infect Immun 75:1137–1143

    PubMed  CAS  Google Scholar 

  • Hershberg RM, Mayer LF (2000) Antigen processing and presentation by intestinal epithelial cells – polarity and complexity. Immunol Today 21:123–128

    PubMed  CAS  Google Scholar 

  • Hill BD, Blewett DA, Dawson AM et al (1990) Analysis of the kinetics, isotype and specificity of serum and coproantibody in lambs infected with Cryptosporidium-parvum. Res Vet Sci 48:76–81

    PubMed  CAS  Google Scholar 

  • Hollander D (1988) Crohn’s disease – a permeability disorder of the tight junction? Gut 29:1621–1624

    PubMed  CAS  Google Scholar 

  • Hu G, Zhou R, Liu J et al (2009) MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. J Immunol 183:1617–1624

    PubMed  CAS  Google Scholar 

  • Hu G, Zhou R, Liu J et al (2010) MicroRNA-98 and let-7 regulate expression of suppressor of cytokine signaling 4 in biliary epithelial cells in response to Cryptosporidium parvum infection. J Infect Dis 202:125–135

    PubMed  CAS  Google Scholar 

  • Hu G, Drescher KM, Chen XM (2012a) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 3:56. doi:10.3389/fgene.2012.00056

    PubMed  CAS  Google Scholar 

  • Hu G, Yao H, Chaudhuri AD et al (2012b) Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis 3:e381. doi:10.1038/cddis.2012.114

    PubMed  CAS  Google Scholar 

  • Hu G, Gong AY, Roth AL et al (2013) Release of luminal exosomes contributes to TLR4-mediated epithelial antimicrobial defense. PLoS Pathog 9:e1003261. doi:10.1371/journal.ppat.1003261

    PubMed  CAS  Google Scholar 

  • Huang DB, White AC (2006) An updated review on Cryptosporidium and Giardia. Gastroenterol Clin North Am 35:291–314

    PubMed  Google Scholar 

  • Huang BQ, Chen XM, LaRusso NF (2004) Cryptosporidium parvum attachment to and internalization by human biliary epithelia in vitro: a morphologic study. J Parasitol 90:212–221

    PubMed  Google Scholar 

  • Ishida YAY, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895

    PubMed  CAS  Google Scholar 

  • Jakobi V, Petry F (2008) Humoral immune response in IL-12 and IFN-gamma deficient mice after infection with Cryptosporidium parvum. Parasite Immunol 30:151–161

    PubMed  CAS  Google Scholar 

  • Joshi T, Rodriguez S, Perovic V et al (2009) B7-H1 blockade increases survival of dysfunctional CD8(+) T cells and confers protection against Leishmania donovani infections. PLoS Pathog 5:e1000431. doi:10.1371/journal.ppat.1000431

    PubMed  Google Scholar 

  • Juric V, Chen CC, Lau LF (2009) Fas-mediated apoptosis is regulated by the extracellular matrix protein CCN1 (CYR61) in vitro and in vivo. Mol Cell Biol 29:3266–3279

    PubMed  CAS  Google Scholar 

  • Kagnoff MF, Eckmann L (1997) Epithelial cells as sensors for microbial infection. J Clin Invest 100:S51–S55

    CAS  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    PubMed  CAS  Google Scholar 

  • Kennedy MJ, Ehlers MD (2011) Mechanisms and function of dendritic exocytosis. Neuron 69:856–875

    PubMed  CAS  Google Scholar 

  • Kolotuev I, Apaydin A, Labouesse M (2009) Secretion of Hedgehog-related peptides and WNT during Caenorhabditis elegans development. Traffic 10:803–810

    PubMed  CAS  Google Scholar 

  • Lacroix S, Mancassola R, Naciri M et al (2001) Cryptosporidium parvum-specific mucosal immune response in C57BL/6 neonatal and gamma interferon-deficient mice: role of tumor necrosis factor alpha in protection. Infect Immun 69:1635–1642

    PubMed  CAS  Google Scholar 

  • Lacroix-Lamande S, Mancassola R, Naciri M et al (2002) Role of gamma interferon in chemokine expression in the ileum of mice and in a murine intestinal epithelial cell line after Cryptosporidium parvum infection. Infect Immun 70:2090–2099

    PubMed  CAS  Google Scholar 

  • Ladel CH, Blum C, Dreher A et al (1995) Protective role of gamma/delta T-cells and alpha/beta T-cells in tuberculosis. Eur J Immunol 25:2877–2881

    PubMed  CAS  Google Scholar 

  • Laurent F, Eckmann L, Savidge TC et al (1997) Cryptosporidium parvum infection of human intestinal epithelial cells induces the polarized secretion of C-X-C chemokines. Infect Immun 65:5067–5073

    PubMed  CAS  Google Scholar 

  • Laurent F, Kagnoff MF, Savidge TC et al (1998) Human intestinal epithelial cells respond to Cryptosporidium parvum infection with increased prostaglandin H synthase 2 expression and prostaglandin E2 and F2alpha production. Infect Immun 66:1787–1790

    PubMed  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    PubMed  CAS  Google Scholar 

  • Leitch GJ, He Q (1994) Arginine-derived nitric oxide reduces fecal oocyst shedding in nude mice infected with Cryptosporidium parvum. Infect Immun 62:5173–5176

    PubMed  CAS  Google Scholar 

  • Leitch GJ, He Q (1999) Reactive nitrogen and oxygen species ameliorate experimental cryptosporidiosis in the neonatal BALB/c mouse model. Infect Immun 67:5885–5891

    PubMed  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    PubMed  CAS  Google Scholar 

  • Liegeois S, Benedetto A, Garnier JM et al (2006) The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173:949–961

    PubMed  CAS  Google Scholar 

  • Liu J, Enomoto S, Lancto CA et al (2008) Inhibition of apoptosis in Cryptosporidium parvum-infected intestinal epithelial cells is dependent on survivin. Infect Immun 76:3784–3792

    PubMed  CAS  Google Scholar 

  • Liu J, Deng M, Lancto CA et al (2009) Biphasic modulation of apoptotic pathways in Cryptosporidium parvum-infected human intestinal epithelial cells. Infect Immun 77:837–849

    PubMed  CAS  Google Scholar 

  • Luder CGK, Gross U, Lopes MF (2001) Intracellular protozoan parasites and apoptosis: diverse strategies to modulate parasite-host interactions. Trends Parasitol 17:480–486

    PubMed  CAS  Google Scholar 

  • Lumadue JA, Manabe YC, Moore RD et al (1998) A clinicopathologic analysis of AIDS-related cryptosporidiosis. AIDS 12:2459–2466

    PubMed  CAS  Google Scholar 

  • Lumb R, Smith K, O’Donoghue PJ et al (1988) Ultrastructure of the attachment of Cryptosporidium sporozoites to tissue culture cells. Parasitol Res 74:531–536

    PubMed  CAS  Google Scholar 

  • Mallegol J, Van Niel G, Lebreton C et al (2007) T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 132:1866–1876

    PubMed  CAS  Google Scholar 

  • Marin F, Luquet G, Marie B et al (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276

    PubMed  CAS  Google Scholar 

  • Matter CM, Chadjichristos CE, Meier P et al (2006) Role of endogenous Fas (CD95/Apo-1) ligand in balloon-induced apoptosis, inflammation, and neointima formation. Circulation 113:1879–1887

    PubMed  CAS  Google Scholar 

  • Maynard CL, Elson CO, Hatton RD et al (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–241

    PubMed  CAS  Google Scholar 

  • McCall CE, Yoza B, Liu TF et al (2010) Gene-specific epigenetic regulation in serious infections with systemic inflammation. J Innate Immun 2:395–405

    PubMed  Google Scholar 

  • McCole DF, Eckmann L, Laurent F et al (2000) Intestinal epithelial cell apoptosis following Cryptosporidium parvum infection. Infect Immun 68:1710–1713

    PubMed  CAS  Google Scholar 

  • McDonald V, Bancroft GJ (1994) Mechanisms of innate and acquired-resistance to Cryptosporidium parvum infection in SCID mice. Parasite Immunol 16:315–320

    PubMed  CAS  Google Scholar 

  • McDonald V, McCrossan MV, Petry F (1995) Localization of parasite antigens in Cryptosporidium parvum-infected epithelial cells using monoclonal antibodies. Parasitology 110:259–268

    PubMed  Google Scholar 

  • McDonald V, Pollok RC, Dhaliwal W et al (2006) A potential role for interleukin-18 in inhibition of the development of Cryptosporidium parvum. Clin Exp Immunol 145:555–562

    PubMed  CAS  Google Scholar 

  • McDonald V, Korbel DS, Barakat FM et al (2013) Innate immune responses against Cryptosporidium parvum infection. Parasite Immunol 35:55–64

    PubMed  CAS  Google Scholar 

  • Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826

    PubMed  CAS  Google Scholar 

  • Mombaerts P, Arnoldi J, Russ F et al (1993) Different roles of alpha-beta and gamma-delta T-cells in immunity against an intracellular bacterial pathogen. Nature 365:53–56

    PubMed  CAS  Google Scholar 

  • Muller WA (2009) Mechanisms of transendothelial migration of leukocytes. Circ Res 105:223–230

    PubMed  CAS  Google Scholar 

  • Nasu K, Narahara H (2010) Pattern recognition via the toll-like receptor system in the human female genital tract. Mediators Inflamm 2010:976024. doi:10.1155/2010/976024

    PubMed  Google Scholar 

  • Newton K, Dixit VM (2012) Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 4:a006049. doi:10.1101/cshperspect.a006049

    PubMed  Google Scholar 

  • O’Connor RM, Burns PB, Ha-Ngoc T et al (2009) Polymorphic mucin antigens CpMuc4 and CpMuc5 are integral to Cryptosporidium parvum infection in vitro. Eukaryot Cell 8:461–469

    PubMed  Google Scholar 

  • O’Hara JR, Buret AG (2008) Mechanisms of intestinal tight junctional disruption during infection. Front Biosci 13:7008–7021

    PubMed  Google Scholar 

  • O’Hara SP, Chen XM (2011) The cell biology of cryptosporidium infection. Microbes Infect 13:721–730

    PubMed  Google Scholar 

  • O’Hara SP, Yu JR, Lin JJ (2004) A novel Cryptosporidium parvum antigen, CP2, preferentially associates with membranous structures. Parasitol Res 92:317–327

    PubMed  Google Scholar 

  • O’Hara SP, Gajdos GB, Trussoni CE et al (2010a) Cholangiocyte myosin IIB is required for localized aggregation of sodium glucose cotransporter 1 to sites of Cryptosporidium parvum cellular invasion and facilitates parasite internalization. Infect Immun 78:2927–2936

    PubMed  Google Scholar 

  • O’Hara SP, Splinter PL, Gajdos GB et al (2010b) NFkappaB p50-CCAAT/enhancer-binding protein beta (C/EBPbeta)-mediated transcriptional repression of microRNA let-7i following microbial infection. J Biol Chem 285:216–225

    PubMed  Google Scholar 

  • Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12:695–708

    PubMed  CAS  Google Scholar 

  • Ohshima K, Inoue K, Fujiwara A et al (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5:e13247. doi:10.1371/journal.pone.0013247

    PubMed  Google Scholar 

  • Ojcius DM, Perfettini JL, Bonnin A et al (1999) Caspase-dependent apoptosis during infection with Cryptosporidium parvum. Microbes Infect 1:1163–1168

    PubMed  CAS  Google Scholar 

  • Okazawa A, Kanai T, Nakamaru K et al (2004) Human intestinal epithelial cell-derived interleukin (IL)-18, along with IL-2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes. Clin Exp Immunol 136:269–276

    PubMed  CAS  Google Scholar 

  • Orange JS, Levy O, Geha RS (2005) Human disease resulting from gene mutations that interfere with appropriate nuclear factor-kappaB activation. Immunol Rev 203:21–37

    PubMed  CAS  Google Scholar 

  • Ostrowski M, Carmo NB, Krumeich S et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–31

    PubMed  CAS  Google Scholar 

  • Pantenburg B, Dann SM, Wang HC et al (2008) Intestinal immune response to human Cryptosporidium sp. infection. Infect Immun 76:23–29

    PubMed  CAS  Google Scholar 

  • Pantenburg B, Castellanos-Gonzalez A, Dann SM et al (2010) Human CD8(+) T cells clear Cryptosporidium parvum from infected intestinal epithelial cells. Am J Trop Med Hyg 82:600–607

    PubMed  CAS  Google Scholar 

  • Paschos K, Allday MJ (2010) Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 18:439–447

    PubMed  CAS  Google Scholar 

  • Pautz A, Art J, Hahn S et al (2010) Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 23:75–93

    PubMed  CAS  Google Scholar 

  • Pedersen IM, Cheng G, Wieland S et al (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–922

    PubMed  CAS  Google Scholar 

  • Peeters JE, Villacorta I, Vanopdenbosch E et al (1992) Cryptosporidium parvum in calves – kinetics and immunoblot analysis of specific serum and local antibody-responses (immunoglobulin a [Iga], Igg, and Igm) after natural and experimental infections. Infect Immun 60:2309–2316

    PubMed  CAS  Google Scholar 

  • Perez-Cordon G, Nie W, Schmidt D et al (2011) Involvement of host calpain in the invasion of Cryptosporidium parvum. Microbes Infect 13:103–107

    PubMed  CAS  Google Scholar 

  • Perryman LE, Jasmer DP, Riggs MW et al (1996) A cloned gene of Cryptosporidium parvum encodes neutralization-sensitive epitopes. Mol Biochem Parasitol 80:137–147

    PubMed  CAS  Google Scholar 

  • Petersen C, Gut J, Doyle PS et al (1992) Characterization of a > 900,000-M(r) Cryptosporidium parvum sporozoite glycoprotein recognized by protective hyperimmune bovine colostral immunoglobulin. Infect Immun 60:5132–5138

    PubMed  CAS  Google Scholar 

  • Petry F, Jakobi V, Wagner S et al (2008) Binding and activation of human and mouse complement by Cryptosporidium parvum (Apicomplexa) and susceptibility of C1q- and MBL-deficient mice to infection. Mol Immunol 45:3392–3400

    PubMed  CAS  Google Scholar 

  • Petry F, Jakobi V, Tessema TS (2010) Host immune response to Cryptosporidium parvum infection. Exp Parasitol 126:304–309

    PubMed  CAS  Google Scholar 

  • Pollok RC, Farthing MJ, Bajaj-Elliott M et al (2001) Interferon gamma induces enterocyte resistance against infection by the intracellular pathogen Cryptosporidium parvum. Gastroenterology 120:99–107

    PubMed  CAS  Google Scholar 

  • Putignani L, Possenti A, Cherchi S et al (2008) The thrombospondin-related protein CpMIC1 (CpTSP8) belongs to the repertoire of micronemal proteins of Cryptosporidium parvum. Mol Biochem Parasitol 157:98–101

    PubMed  CAS  Google Scholar 

  • Reigstad CS, Lunden GO, Felin J et al (2009) Regulation of serum amyloid A3 (SAA3) in mouse colonic epithelium and adipose tissue by the intestinal microbiota. PLoS One 4:e5842. doi:10.1371/journal.pone.0005842

    PubMed  Google Scholar 

  • Reperant JM, Naciri M, Iochmann S et al (1994) Major antigens of Cryptosporidium parvum recognized by serum antibodies from different infected animal species and man. Vet Parasitol 55:1–13

    PubMed  CAS  Google Scholar 

  • Ricciardolo FL, Sterk PJ, Gaston B et al (2004) Nitric oxide in health and disease of the respiratory system. Physiol Rev 84:731–765

    PubMed  CAS  Google Scholar 

  • Riggs MW, Stone AL, Yount PA et al (1997) Protective monoclonal antibody defines a circumsporozoite-like glycoprotein exoantigen of Cryptosporidium parvum sporozoites and merozoites. J Immunol 158:1787–1795

    PubMed  CAS  Google Scholar 

  • Robert B, Antoine H, Dreze F et al (1994) Characterization of a high molecular weight antigen of Cryptosporidium parvum micronemes possessing epitopes that are cross-reactive with all parasitic life cycle stages. Vet Res 25:384–398

    PubMed  CAS  Google Scholar 

  • Robinson P, Okhuysen PC, Chappell CL et al (2003) Substance P expression correlates with severity of diarrhea in cryptosporidiosis. J Infect Dis 188:290–296

    PubMed  CAS  Google Scholar 

  • Roche JK, Martins CA, Cosme R et al (2000) Transforming growth factor beta1 ameliorates intestinal epithelial barrier disruption by Cryptosporidium parvum in vitro in the absence of mucosal T lymphocytes. Infect Immun 68:5635–5644

    PubMed  CAS  Google Scholar 

  • Roger T, Lugrin J, Le Roy D et al (2011) Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 117:1205–1217

    PubMed  CAS  Google Scholar 

  • Ruittenberg EJ, van Noorle Jansen LM (1975) Effect of Corynebacterium parvum on the course of a Listeria monocytogenes infection in normal and congenitally athymic (nude) mice. Zentralbl Bakteriol Orig A 231:197–205

    PubMed  CAS  Google Scholar 

  • Scaria V, Hariharan M, Maiti S et al (2006) Host-virus interaction: a new role for microRNAs. Retrovirology 3:68

    PubMed  Google Scholar 

  • Scott KG, Yu LC, Buret AG (2004) Role of CD8+ and CD4+ T lymphocytes in jejunal mucosal injury during murine giardiasis. Infect Immun 72:3536–3542

    PubMed  CAS  Google Scholar 

  • Seydel KB, Zhang T, Champion GA et al (1998) Cryptosporidium parvum infection of human intestinal xenografts in SCID mice induces production of human tumor necrosis factor alpha and interleukin-8. Infect Immun 66:2379–2382

    PubMed  CAS  Google Scholar 

  • Sheedy FJ, Palsson-McDermott E, Hennessy EJ et al (2010) Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol 11:141–147

    PubMed  CAS  Google Scholar 

  • Smalheiser NR (2007) Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2:35

    PubMed  Google Scholar 

  • Spano F, Putignani L, Naitza S et al (1998) Molecular cloning and expression analysis of a Cryptosporidium parvum gene encoding a new member of the thrombospondin family. Mol Biochem Parasitol 92:147–162

    PubMed  CAS  Google Scholar 

  • Stoecklin G, Anderson P (2006) Posttranscriptional mechanisms regulating the inflammatory response. Adv Immunol 89:1–37

    PubMed  CAS  Google Scholar 

  • Subramaniam D, Ramalingam S, May R et al (2008) Gastrin-mediated interleukin-8 and cyclooxygenase-2 gene expression: differential transcriptional and posttranscriptional mechanisms. Gastroenterology 134:1070–1082

    PubMed  CAS  Google Scholar 

  • Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477

    PubMed  Google Scholar 

  • Suzuki K, Verma IM (2008) Phosphorylation of SNAP-23 by IkappaB kinase 2 regulates mast cell degranulation. Cell 134:485–495

    PubMed  CAS  Google Scholar 

  • Takeuchi D, Jones VC, Kobayashi M et al (2008) Cooperative role of macrophages and neutrophils in host antiprotozoan resistance in mice acutely infected with Cryptosporidium parvum. Infect Immun 76:3657–3663

    PubMed  CAS  Google Scholar 

  • Tang YJ, Luo XB, Cui HJ et al (2009) MicroRNA-146a contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60:1065–1075

    PubMed  CAS  Google Scholar 

  • Tarver AP, Clark DP, Diamond G et al (1998) Enteric beta-defensin: molecular cloning and characterization of a gene with inducible intestinal epithelial cell expression associated with Cryptosporidium parvum infection. Infect Immun 66:1045–1056

    PubMed  CAS  Google Scholar 

  • Taylor BC, Zaph C, Troy AE et al (2009) TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J Exp Med 206:655–667

    PubMed  CAS  Google Scholar 

  • Tessema TS, Schwamb B, Lochner M et al (2009) Dynamics of gut mucosal and systemic Th1/Th2 cytokine responses in interferon-gamma and interleukin-12p40 knock out mice during primary and challenge Cryptosporidium parvum infection. Immunobiology 214:454–466

    PubMed  CAS  Google Scholar 

  • Thery C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 3:15. doi:10.3410/B3-15

    PubMed  Google Scholar 

  • Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    PubMed  CAS  Google Scholar 

  • Tomley FM, Soldati DS (2001) Mix and match modules: structure and function of microneme proteins in apicomplexan parasites. Trends Parasitol 17:81–88

    PubMed  CAS  Google Scholar 

  • Troeger H, Epple HJ, Schneider T et al (2007) Effect of chronic Giardia lamblia infection on epithelial transport and barrier function in human duodenum. Gut 56:328–335

    PubMed  CAS  Google Scholar 

  • Turksen K, Troy TC (2004) Barriers built on claudins. J Cell Sci 117:2435–2447

    PubMed  CAS  Google Scholar 

  • Ukabam SO, Clamp JR, Cooper BT (1983) Abnormal small intestinal permeability to sugars in patients with Crohn’s disease of the terminal ileum and colon. Digestion 27:70–74

    PubMed  CAS  Google Scholar 

  • Ungar BLP, Soave R, Fayer R et al (1986) Enzyme-immunoassay detection of immunoglobulin-M and immunoglobulin-G antibodies to Cryptosporidium in immunocompetent and immunocompromised persons. J Infect Dis 153:570–578

    PubMed  CAS  Google Scholar 

  • Ungar BLP, Kao TC, Burris JA et al (1991) Cryptosporidium infection in an adult-mouse model – independent roles for Ifn-gamma and Cd4+ lymphocytes-T in protective immunity. J Immunol 147:1014–1022

    PubMed  CAS  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    PubMed  CAS  Google Scholar 

  • van Niel G, Porto-Carreiro I, Simoes S et al (2006) Exosomes: a common pathway for a specialized function. J Biochem 140:13–21

    PubMed  Google Scholar 

  • Velmurugan K, Chen B, Miller JL et al (2007) Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3:e110. doi:10.1371/journal.ppat.0030110

    PubMed  Google Scholar 

  • Wang HC, Dann SM, Okhuysen PC et al (2007) High levels of CXCL10 are produced by intestinal epithelial cells in AIDS patients with active cryptosporidiosis but not after reconstitution of immunity. Infect Immun 75:481–487

    PubMed  CAS  Google Scholar 

  • Weaver CT, Harrington LE, Mangan PR et al (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24:677–688

    PubMed  CAS  Google Scholar 

  • Widmer G, Corey EA, Stein B et al (2000) Host cell apoptosis impairs Cryptosporidium parvum development in vitro. J Parasitol 86:922–928

    PubMed  CAS  Google Scholar 

  • Williams RO (1987) Measurement of class specific antibody against Cryptosporidium in serum and feces from experimentally infected calves. Res Vet Sci 43:264–265

    PubMed  CAS  Google Scholar 

  • Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    PubMed  CAS  Google Scholar 

  • Winzen R, Thakur BK, Dittrich-Breiholz O et al (2007) Functional analysis of KSRP interaction with the AU-rich element of interleukin-8 and identification of inflammatory mRNA targets. Mol Cell Biol 27:8388–8400

    PubMed  CAS  Google Scholar 

  • Witwer KW, Sisk JM, Gama L et al (2010) MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response. J Immunol 184:2369–2376

    PubMed  CAS  Google Scholar 

  • Wong P, Pamer EG (2003) CD8 T cell responses to infectious pathogens. Annu Rev Immunol 21:29–70

    PubMed  CAS  Google Scholar 

  • Worthley DL, Bardy PG, Mullighan CG (2005) Mannose-binding lectin: biology and clinical implications. Intern Med J 35:548–555

    PubMed  CAS  Google Scholar 

  • Yu LC, Flynn AN, Turner JR et al (2005) SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism? FASEB J 19:1822–1835

    PubMed  CAS  Google Scholar 

  • Yu LC, Turner JR, Buret AG (2006a) LPS/CD14 activation triggers SGLT-1-mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3. Exp Cell Res 312:3276–3286

    PubMed  CAS  Google Scholar 

  • Yu X, Harris SL, Levine AJ (2006b) The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 66:4795–4801

    PubMed  CAS  Google Scholar 

  • Yu LC, Huang CY, Kuo WT et al (2008) SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. Int J Parasitol 38:923–934

    PubMed  CAS  Google Scholar 

  • Zaalouk TK, Bajaj-Elliott M, George JT et al (2004) Differential regulation of beta-defensin gene expression during Cryptosporidium parvum infection. Infect Immun 72:2772–2779

    PubMed  CAS  Google Scholar 

  • Zhang Y, Lee B, Thompson M et al (2000) Lactulose-mannitol intestinal permeability test in children with diarrhea caused by rotavirus and cryptosporidium. Diarrhea Working Group, Peru. J Pediatr Gastroenterol Nutr 31:16–21

    PubMed  CAS  Google Scholar 

  • Zhou R, Hu G, Liu J et al (2009) NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog 5:e1000681. doi:10.1371/journal.ppat.1000681

    PubMed  Google Scholar 

  • Zhou R, Hu G, Gong AY et al (2010) Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 38:3222–3232

    PubMed  CAS  Google Scholar 

  • Zhou R, Gong AY, Eischeid AN et al (2012) miR-27b targets KSRP to coordinate TLR4-mediated epithelial defense against Cryptosporidium parvum infection. PLoS Pathog 8:e1002702. doi:10.1371/journal.ppat.1002702

    PubMed  CAS  Google Scholar 

  • Zhou R, Gong AY, Chen D et al (2013) Histone deacetylases and NF-kB signaling coordinate expression of CX3CL1 in epithelial cells in response to microbial challenge by suppressing miR-424 and miR-503. PLoS One 8:e65153. doi:10.1371/journal.pone.0065153

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the members of the Chen lab, particularly Rui Zhou, Ai-Yu Gong, Jun Liu, Dongqing Chen, Grace Yang and Alex N. Eischeid for their contributions towards understanding Cryptosporidium-epithelial cell interactions. Support from the National Institutes of Health (AI071321 and AI095532) and the Nebraska Biomedical Research Program (LB692) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Ming Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Hu, G., Feng, Y., O’Hara, S.P., Chen, XM. (2014). Immunology of Cryptosporidiosis. In: Cacciò, S., Widmer, G. (eds) Cryptosporidium: parasite and disease. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1562-6_10

Download citation

Publish with us

Policies and ethics