Skip to main content

Adaptive Immunity and Trypanosomiasis-Driven B-Cell Destruction

  • Chapter
  • First Online:
  • 1170 Accesses

Abstract

African Trypanosomiasis is an excellent model system to study immune escape by invading extracellular pathogens. Being under continuous attack by the host humoral response, trypanosomes developed a system of antigenic variation of their surface coat in order to evade antibody-mediated immune destruction. In-depth studies on the mechanisms of antigenic variation have resulted in the understanding of both structural and genetic aspects of the surface coat organization of trypanosomes, and the variant-specific glycoproteins (VSG) itself, i.e., the protein that provides the interface between the parasite and the host immune system (see Chaps. 1 and 3). To date, the current hypothesis of VSG-mediated antibody escape implies that during infection the host is capable of mounting an ever changing antibody repertoire, which allows to target in a specific manner each new trypanosome wave. In this chapter, a number of recent and new insights will be discussed that highlight the complexity of this system. Indeed, experimental data obtained in rodent T. brucei models suggest that anti-VSG responses are very short lived, and no effective memory is mounted during infection against the successive waves of occurring VATs. In addition, active destruction of the host B-cell compartment occurs during infection, affecting both trypanosome specific and non-specific B-cell memory. These finding will be discussed in the context of the long string of vaccine failure results that have hampered the initiation of an effective vaccine program for trypanosomiasis. Finally, this chapter will also provide new insights into antibody engineering that allow interfering with trypanosome biology in ways that are not part of the natural evolutionary pressure. Hence, possible new tools can be developed that can help in a sustainable long-term battle against both human and animal trypanosomiasis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Askonas BA, Corsini AC, Clayton CE et al (1979) Functional depletion of T- and B-memory cells and other lymphoid cell subpopulations-during trypanosomiasis. Immunology 36:313–321

    PubMed  CAS  Google Scholar 

  • Authié E, Duvallet G, Robertson C et al (1993a) Antibody responses to a 33 kDa cysteine protease of Trypanosoma congolense: relationship to ‘trypanotolerance’ in cattle. Parasite Immunol 15(8):465–474

    Article  PubMed  Google Scholar 

  • Authié E, Muteti DK, Williams DJ (1993b) Antibody responses to invariant antigens of Trypanosoma congolense in cattle of differing susceptibility to trypanosomiasis. Parasite Immunol 15(2):101–111, Erratum in: Parasite Immunol. 15(3):185

    Article  PubMed  Google Scholar 

  • Authie E, Boulange A, Muteti D et al (2001) Immunisation of cattle with cysteine proteinases of Trypanosoma congolense: targeting the disease rather than the parasite. Int J Parasitol 31:1429–1433

    Article  PubMed  CAS  Google Scholar 

  • Baral TN, Magez S, Stijlemans B et al (2006) Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Med Sci 22:914–916

    Google Scholar 

  • Baral TN, De Baetselier P, Brombacher F, Magez S (2007) Control of Trypanosoma evansi infection is IgM mediated and does not require a type I inflammatory response. J Infect Dis 195:1513–1520

    Article  PubMed  CAS  Google Scholar 

  • Barry JD, Hajduk SL, Vickerman K et al (1979) Detection of multiple variable antigen types in metacyclic populations of Trypanosoma brucei. Trans R Soc Trop Med Hyg 73:205–208

    Article  PubMed  CAS  Google Scholar 

  • Barry JD, Crowe JS, Vickerman K (1983) Instability of the Trypanosoma brucei rhodesiense metacyclic variable antigen repertoire. Nature 306:699–701

    Article  PubMed  CAS  Google Scholar 

  • Barry JD, Graham SV, Fotheringham M et al (1998) VSG gene control and infectivity strategy of metacyclic stage Trypanosoma brucei. Mol Biochem Parasitol 91:93–105

    Article  PubMed  CAS  Google Scholar 

  • Bockstal V, Guirnalda P, Caljon G et al (2011) T. brucei infection reduces B lymphopoiesis in bone marrow and truncates compensatory splenic lymphopoiesis through transitional B-cell apoptosis. PLoS Pathog 7:e1002089

    Article  PubMed  CAS  Google Scholar 

  • Caljon G, Stijlemans B, Saerens D et al (2012) Affinity is an important determinant of the anti-trypanosome activity of nanobodies. PLoS Negl Trop Dis 6:e1902

    Article  PubMed  CAS  Google Scholar 

  • Clayton CE, Ogilvie BM, Askonas BA (1979) Trypanosoma brucei infection in nude mice: B lymphocyte function is suppressed in the absence of T lymphocytes. Parasite Immunol 1:39–48

    Article  PubMed  CAS  Google Scholar 

  • Cornelissen AW, Bakkeren GA, Barry JD et al (1985) Characteristics of trypanosome variant antigen genes active in the tsetse fly. Nucleic Acids Res 13:4661–4676

    Article  PubMed  CAS  Google Scholar 

  • Corsini AC, Clayton C, Askonas BA et al (1977) Suppressor cells and loss of B-cell potential in mice infected with Trypanosoma brucei. Clin Exp Immunol 29:122–131

    PubMed  CAS  Google Scholar 

  • Crowe JS, Barry JD, Luckins AG et al (1983) All metacyclic variable antigen types of Trypanosoma congolense identified using monoclonal antibodies. Nature 306:389–391

    Article  PubMed  CAS  Google Scholar 

  • Darji A, Beschin A, Sileghem M et al (1996) In vitro simulation of immunosuppression caused by Trypanosoma brucei: active involvement of gamma interferon and tumor necrosis factor in the pathway of suppression. Infect Immun 64:1937–1943

    PubMed  CAS  Google Scholar 

  • De Gee AL, Levine RF, Mansfield JM (1988) Genetics of resistance to the African trypanosomes. VI. Heredity of resistance and variable surface glycoprotein-specific immune responses. J Immunol 140:283–288

    PubMed  Google Scholar 

  • Engstler M, Pfohl T, Herminghaus S et al (2007) Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131:505–515

    Article  PubMed  CAS  Google Scholar 

  • Els Conrath K, Lauwereys M, Wyns L, Muyldermans S (2001) Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem 276(10):7346–7350

    Article  PubMed  CAS  Google Scholar 

  • Esser KM, Schoenbechler MJ, Gingrich JB (1982) Trypanosoma rhodesiense blood forms express all antigen specificities relevant to protection against metacyclic (insect form) challenge. J Immunol 129(4):1715–1718

    PubMed  CAS  Google Scholar 

  • Gaithuma AK, Karanja SM, Ngotho M et al (2012) Lipid metabolism and other metabolic changes in vervet monkeys experimentally infected with Trypanosoma brucei rhodesiense. J Med Primatol 41(2):75–81

    Article  PubMed  CAS  Google Scholar 

  • Gingrich JB, Ward RA, Macken LM et al (1981) Some phenomena associated with the development of Trypanosoma brucei rhodesiense infections in the tsetse fly, Glossina morsitans. Am J Trop Med Hyg 30:570–574

    PubMed  CAS  Google Scholar 

  • Greenwood BM, Whittle HC, Molyneux DH (1973) Immunosuppression in Gambian trypanosomiasis. Trans R Soc Trop Med Hyg 67:846–850

    Article  PubMed  CAS  Google Scholar 

  • Guirnalda P, Murphy NB, Nolan D et al (2007) Anti-Trypanosoma brucei activity in Cape buffalo serum during the cryptic phase of parasitemia is mediated by antibodies. Int J Parasitol 37:1391–1399

    Article  PubMed  Google Scholar 

  • Gull K (2003) Host-parasite interactions and trypanosome morphogenesis: a flagellar pocketful of goodies. Curr Opin Microbiol 6:365–370

    Article  PubMed  CAS  Google Scholar 

  • Hanotte O, Ronin Y, Agaba M et al (2003) Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N’Dama and susceptible East African Boran cattle. Proc Natl Acad Sci USA 100:7443–7448

    Article  PubMed  CAS  Google Scholar 

  • Higgins MK, Tkachenko O, Brown A, Reed J, Raper J, Carrington M (2013) Structure of the trypanosome haptoglobin-hemoglobin receptor and implications for nutrient uptake and innate immunity. Proc Natl Acad Sci USA 110(5):1905–1910. doi:10.1073/pnas.1214943110

    Article  PubMed  CAS  Google Scholar 

  • Holland WG, Do TT, Huong NT et al (2003) The effect of Trypanosoma evansi infection on pig performance and vaccination against classical swine fever. Vet Parasitol 111:115–123

    Article  PubMed  CAS  Google Scholar 

  • Hudson KM, Byner C, Freeman J et al (1976) Immunodepression, high IgM levels and evasion of the immune response in murine trypanosomiasis. Nature 264:256–258

    Article  PubMed  CAS  Google Scholar 

  • Jackson DG, Windle HJ, Voorheis HP (1993) The identification, purification, and characterization of two invariant surface glycoproteins located beneath the surface coat barrier of bloodstream forms of Trypanosoma brucei. J Biol Chem 268:8085–8095

    PubMed  CAS  Google Scholar 

  • Jarvinen JA, Dalmasso A (1977) Trypanosoma musculi infections in normocomplementemic, C5-deficient, and C3-depleted mice. Infect Immun 16:557–563

    PubMed  CAS  Google Scholar 

  • Kamanga-Sollo EI, Musoke AJ, Nantulya VM et al (1991) Differences between N’Dama and Boran cattle in the ability of their peripheral blood leucocytes to bind antibody-coated trypanosomes. Acta Trop 49(2):109–117

    Article  PubMed  CAS  Google Scholar 

  • Kateregga J, Lubega GW, Lindblad EB et al (2012) Effect of adjuvants on the humoral immune response to congopain in mice and cattle. BMC Vet Res 8:63

    Article  PubMed  Google Scholar 

  • Lalmanach G, Boulange A, Serveau C et al (2002) Congopain from Trypanosoma congolense: drug target and vaccine candidate. Biol Chem 383:739–749

    Article  PubMed  CAS  Google Scholar 

  • Le Ray D, Barry JD, Vickerman K (1978) Antigenic heterogeneity of metacyclic forms of Trypanosoma brucei. Nature 273(5660):300–302

    Article  PubMed  Google Scholar 

  • Levine RF, Mansfield JM (1984) Genetics of resistance to the african trypanosomes III variant-specific antibody responses of H-2-compatible resistant and susceptible mice. J Immunol 133:1564–1569

    PubMed  CAS  Google Scholar 

  • Lutje V, Taylor KA, Kennedy D et al (1996) Trypanosoma congolense: a comparison of T-cell-mediated responses in lymph nodes of trypanotolerant and trypanosusceptible cattle during primary infection. Exp Parasitol 84(3):320–329

    Article  PubMed  CAS  Google Scholar 

  • Lutz C, Ledermann B, Kosco-Vilbois MH et al (1998) IgD can largely substitute for loss of IgM function in B cells. Nature 393:797–801

    Article  PubMed  CAS  Google Scholar 

  • MacAskill JA, Holmes PH, Whitelaw DD et al (1980) Immunological clearance of 75Se-labelled Trypanosoma brucei in mice.II. Mechanisms in immune animals. Immunology 40:629–635

    PubMed  CAS  Google Scholar 

  • MacAskill JA, Holmes PH, Whitelaw DD et al (1983) Immune mechanisms in C57B1 mice genetically resistant to Trypanosoma congolense infection. II. Aspects of the humoral response. Parasite Immunol 5:577–586

    Article  PubMed  CAS  Google Scholar 

  • Magez S, Radwanska M (2009) African trypanosomiasis and antibodies: implications for vaccination, therapy and diagnosis. Future Microbiol 4:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • Magez S, Stijlemans B, Radwanska M et al (1998) The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. J Immunol 160:1949–1956

    PubMed  CAS  Google Scholar 

  • Magez S, Radwanska M, Beschin A et al (1999) Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun 67:3128–3132

    PubMed  CAS  Google Scholar 

  • Magez S, Radwanska M, Drennan M et al (2006) Interferon-gamma and nitric oxide in combination with antibodies are key protective host immune factors during trypanosoma congolense Tc13 Infections. J Infect Dis 193:1575–1583

    Article  PubMed  CAS  Google Scholar 

  • Magez S, Schwegmann A, Atkinson R et al (2008) The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog 4:e1000122

    Article  PubMed  Google Scholar 

  • Mitchell LA, Pearson TW (1983) Antibody responses induced by immunization of inbred mice susceptible and resistant to African trypanosomes. Infect Immun 40:894–902

    PubMed  CAS  Google Scholar 

  • Mkunza F, Olaho WM, Powell CN (1995) Partial protection against natural trypanosomiasis after vaccination with a flagellar pocket antigen from Trypanosoma brucei rhodesiense. Vaccine 13:151–154

    Article  PubMed  CAS  Google Scholar 

  • Morrison WI, Roelants GE, Mayor-Withey KS et al (1978) Susceptibility of inbred strains of mice to Trypanosoma congolense: correlation with changes in spleen lymphocyte populations. Clin Exp Immunol 32:25–40

    PubMed  CAS  Google Scholar 

  • Murray PK, Jennings FW, Murray M et al (1974a) The nature of immunosuppression in Trypanosoma brucei infections in mice. I. The role of the macrophage. Immunology 27:815–824

    PubMed  CAS  Google Scholar 

  • Murray PK, Jennings FW, Murray M et al (1974b) The nature of immunosuppression in Trypanosoma brucei infections in mice.II. The role of the T and B lymphocytes. Immunology 27:825–840

    PubMed  CAS  Google Scholar 

  • Muyldermans S, Baral TN, Retamozzo VC et al (2009) Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 128:178–183

    Article  PubMed  CAS  Google Scholar 

  • Mwangi DM, Munyua WK, Nyaga PN (1990) Immunosuppression in caprine trypanosomiasis: effects of acute Trypanosoma congolense infection on antibody response to anthrax spore vaccine. Trop Anim Health Prod 22:95–100

    Article  PubMed  CAS  Google Scholar 

  • Naessens J (2006) Bovine trypanotolerance: a natural ability to prevent severe anaemia and haemophagocytic syndrome? Int J Parasitol 36(5):521–528

    Article  PubMed  CAS  Google Scholar 

  • Naessens J, Leak SG, Kennedy DJ et al (2003) Responses of bovine chimaeras combining trypanosomosis resistant and susceptible genotypes to experimental infection with Trypanosoma congolense. Vet Parasitol 111:125–142

    Article  PubMed  Google Scholar 

  • Nantulya VM, Doyle JJ, Jenni L (1980) Studies on Trypanosoma (nannomonas) congolense III.Antigenic variation in three cyclically transmitted stocks. Parasitology 80:123–131

    Article  PubMed  CAS  Google Scholar 

  • Ngotho M, Kagira JM, Kariuki C et al (2011) Influence of trypanocidal therapy on the haematology of vervet monkeys experimentally infected with Trypanosoma brucei rhodesiense. Acta Trop 19(1):14–18

    Article  Google Scholar 

  • Nolan DP, Jackson DG, Windle HJ et al (1997) Characterization of a novel, stage-specific, invariant surface protein in Trypanosoma brucei containing an internal, serine-rich, repetitive motif. J Biol Chem 272:29212–29221

    Article  PubMed  CAS  Google Scholar 

  • O’Gorman GM, Park SD, Hill EW et al (2006) Cytokine mRNA profiling of peripheral blood mononuclear cells from trypanotolerant and trypanosusceptible cattle infected with Trypanosoma congolense. Physiol Genomics 28(1):53–61

    Article  PubMed  Google Scholar 

  • Pan W, Ogunremi O, Wei G et al (2006) CR3 (CD11b/CD18) is the major macrophage receptor for IgM antibody-mediated phagocytosis of African trypanosomes: diverse effect on subsequent synthesis of tumor necrosis factor alpha and nitric oxide. Microbes Infect 8:1209–1218

    Article  PubMed  CAS  Google Scholar 

  • Phillips JA, Romball CG, Hobbs M et al (1996) CD4+ T cell activation and tolerance induction in B cell knockout mice. J Exp Med 183:1339–1344

    Article  PubMed  CAS  Google Scholar 

  • Pinder M, Libeau G, Hirsch W et al (1984) Anti-trypanosome specific immune responses in bovids of differing susceptibility to African trypanosomiasis. Immunology 51:247–258

    PubMed  CAS  Google Scholar 

  • Radwanska M, Magez S, Dumont N et al (2000a) Antibodies raised against the flagellar pocket fraction of Trypanosoma brucei preferentially recognize HSP60 in cDNA expression library. Parasite Immunol 22:639–650

    Article  PubMed  CAS  Google Scholar 

  • Radwanska M, Magez S, Michel A et al (2000b) Comparative analysis of antibody responses against HSP60, invariant surface glycoprotein 70, and variant surface glycoprotein reveals a complex antigen-specific pattern of immunoglobulin isotype switching during infection by Trypanosoma brucei. Infect Immun 68:848–860

    Article  PubMed  CAS  Google Scholar 

  • Radwanska M, Guirnalda P, De Trez C (2008) Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses. PLoS Pathog 4:e1000078

    Article  PubMed  Google Scholar 

  • Reinitz DM, Mansfield JM (1990) T-cell-independent and T-cell-dependent B-cell responses toexposed variant surface glycoprotein epitopes in trypanosome-infected mice. Infect Immun 58:2337–2342

    PubMed  CAS  Google Scholar 

  • Rurangirwa FR, Musoke AJ, Nantulya VM (1983) Immune depression in bovine trypanosomiasis: effects of acute and chronic Trypanosoma congolense and chronic Trypanosoma vivax infections on antibody response to Brucella abortus vaccine. Parasite Immunol 5:267–276

    Article  PubMed  CAS  Google Scholar 

  • Sendashonga CN, Black SJ (1982) Humoral responses against Trypanosoma brucei variable surface antigen is induced by degenerating parasites. Parasite Immunol 4:245–257

    Article  PubMed  CAS  Google Scholar 

  • Sharpe RT, Langley AM, Mowat GN et al (1982) Immunosuppression in bovine trypanosomiasis: response of cattle infected with Trypanosoma congolense to foot-and-mouth disease vaccination and subsequent live virus challenge. Res Vet Sci 32:289–293

    PubMed  CAS  Google Scholar 

  • Shi M, Wei G, Pan W et al (2005) Impaired Kupffer cells in highly susceptible mice infected with Trypanosoma congolense. Infect Immun 73:8393–8396

    Article  PubMed  CAS  Google Scholar 

  • Sileghem M, Darji A, Hamers R et al (1989) Dual role of macrophages in the suppression of interleukin 2 production and interleukin 2 receptor expression in trypanosome-infected mice. Eur J Immunol 19:829–835

    Article  PubMed  CAS  Google Scholar 

  • Sileghem M, Flynn JN, Logan-Henfrey L et al (1994) Tumour necrosis factor production by monocytes from cattle infected with Trypanosoma (Duttonella) vivax and Trypanosoma (Nannomonas) congolense: possible association with severity of anaemia associated with the disease. Parasite Immunol 16:51–54

    Article  PubMed  CAS  Google Scholar 

  • Steverding D, Stierhof YD, Chaudhri M et al (1994) ESAG 6 and 7 products of Trypanosoma brucei form a transferrin binding protein complex. Eur J Cell Biol 64:78–87

    PubMed  CAS  Google Scholar 

  • Stijlemans B, Conrath K, Cortez-Retamozo V et al (2004) Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J Biol Chem 279:1256–1261

    Article  PubMed  CAS  Google Scholar 

  • Stijlemans B, Baral TN, Guilliams M et al (2007) A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology. J Immunol 179:4003–4014

    PubMed  CAS  Google Scholar 

  • Stijlemans B, Caljon G, Natesan SKA et al (2011) High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathog 7:e1002072

    Article  PubMed  CAS  Google Scholar 

  • Taylor KA (1998) Immune responses of cattle to African trypanosomes: protective or pathogenic? Int J Parasitol 28(2):219–240

    Article  PubMed  CAS  Google Scholar 

  • Taylor KA, Lutje V, Kennedy D et al (1996) Trypanosoma congolense: B-lymphocyte responses differ between trypanotolerant and trypanosusceptible cattle. Exp Parasitol 83:106–116

    Article  PubMed  CAS  Google Scholar 

  • Tran T, Claes F, Dujardin JC et al (2006) The invariant surface glycoprotein ISG75 gene family consists of two main groups in the Trypanozoon subgenus. Parasitology 133:613–621

    Article  PubMed  CAS  Google Scholar 

  • Tran T, Buscher P, Vandenbussche G et al (2008) Heterologous expression, purification and characterisation of the extracellular domain of trypanosome invariant surface glycoprotein ISG75. J Biotechnol 135:247–254

    Article  PubMed  CAS  Google Scholar 

  • Uzonna JE, Kaushik RS, Gordon JR et al (1999) Cytokines and antibody responses during Trypanosoma congolense infections in two inbred mouse strains that differ in resistance. Parasite Immunol 21:57–71

    Article  PubMed  CAS  Google Scholar 

  • Van Meirvenne N, Janssens PG, Magnus E (1975a) Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. I. Rationalization of the experimental approach. Ann Soc Belg Med Trop 55:1–23

    PubMed  Google Scholar 

  • Van Meirvenne N, Janssens PG, Magnus E et al (1975b) Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. II. Comparative studies on two antigenic-type collections. Ann Soc Belg Med Trop 55:25–30

    PubMed  Google Scholar 

  • Vanhollebeke B, De Muylder G, Nielsen MJ et al (2008) A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320:677–681

    Article  PubMed  CAS  Google Scholar 

  • Vickerman K (1985) Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull 41:105–114

    PubMed  CAS  Google Scholar 

  • Vincke C, Loris R, Saerens D et al (2009) General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284:3273–3284

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw DD, Scott JM, Reid HW et al (1979) Immunosuppression in bovine trypanosomiasis: studies with louping-ill vaccine. Res Vet Sci 26:102–107

    PubMed  CAS  Google Scholar 

  • Williams DJ, Taylor K, Newson J et al (1996) The role of anti-variable surface glycoprotein antibody responses in bovine trypanotolerance. Parasite Immunol 18(4):209–218

    Article  PubMed  CAS  Google Scholar 

  • Ziegelbauer K, Overath P (1992) Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei. J Biol Chem 267:10791–10796

    PubMed  CAS  Google Scholar 

  • Ziegelbauer K, Multhaup G, Overathn P (1992) Molecular characterization of two invariant surface glycoproteins specific for the bloodstream stage of Trypanosoma brucei. J Biol Chem 267:10797–10803

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Magez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Magez, S., Radwanska, M. (2014). Adaptive Immunity and Trypanosomiasis-Driven B-Cell Destruction. In: Magez, S., Radwanska, M. (eds) Trypanosomes and Trypanosomiasis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1556-5_5

Download citation

Publish with us

Policies and ethics