Skip to main content

Withstanding the Challenges of Host Immunity: Antigenic Variation and the Trypanosome Surface Coat

  • Chapter
  • First Online:
  • 1184 Accesses

Abstract

Prolonged survival in the face of host immunity has been a major force shaping the biology and evolution of the African trypanosomes, and nowhere are the effects of this force more apparent than in the antigenic variation of the trypanosome variant surface glycoprotein (VSG) coat. The coat protects the trypanosome within it from immune effectors, and spontaneous and stochastic events occurring at the molecular level cause individual trypanosomes to change the VSG variant they are expressing. The consequence of this switching at the population level is a diverse population that can pre-empt the specific immune responses that arise against VSG. The template for changes to VSG is an extensive archive of silent VSG genes and pseudogenes. VSG from the archive are activated not only as full-length genes but also through the combination of segments to form mosaic VSG genes, a process that augments the potential for antigenic variation by introducing combinatorial variation and allowing VSG pseudogenes to be used. The main part of the archive occupies subtelomeres and so is itself prone to mutation and rapid evolution, which are important features when superinfection or reinfection of partially immune hosts is necessary. The antigenic variation ‘diversity phenotype’ is thus a multifaceted one, enlisting and coordinating fundamental mechanisms of cell biology to bring about a process that unfolds across populations, thereby facilitating the success of the African trypanosomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aline RF, Stuart K (1989) Trypanosoma brucei: conserved sequence organization 3′ to telomeric variant surface glycoprotein genes. Exp Parasitol 68:57–66

    PubMed  CAS  Google Scholar 

  • Allen G, Gurnett LP (1983) Locations of the six disulphide bonds in a variant surface glycoprotein (VSG 117) from Trypanosoma brucei. Biochem J 209:481–487

    PubMed  CAS  Google Scholar 

  • Alsford S, duBois K, Horn D, Field MC (2012) Epigenetic mechanisms, nuclear architecture and the control of gene expression in trypanosomes. Expert Rev Mol Med 14:e13. doi:10.1017/erm.2012.7

    PubMed  Google Scholar 

  • Amiguet-Vercher A, Pérez-Morga D, Pays A et al (2004) Loss of the mono-allelic control of the VSG expression sites during the development of Trypanosoma brucei in the bloodstream. Mol Microbiol 51:1577–1588. doi:10.1111/j.1365-2958.2003.03937.x

    PubMed  CAS  Google Scholar 

  • Askonas BA, Corsini AC, Clayton CE, Ogilvie BM (1979) Functional depletion of T- and B-memory cells and other lymphoid cell subpopulations-during trypanosomiasis. Immunology 36:313–321

    PubMed  CAS  Google Scholar 

  • Aslett M, Aurrecoechea C, Berriman M et al (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38:D457–D462. doi:10.1093/nar/gkp851

    PubMed  CAS  Google Scholar 

  • Balmer O, Caccone A (2008) Multiple-strain infections of Trypanosoma brucei across Africa. Acta Trop 107:275–279. doi:10.1016/j.actatropica.2008.06.006

    PubMed  Google Scholar 

  • Barbour AG, Dai Q, Restrepo BI et al (2006) Pathogen escape from host immunity by a genome program for antigenic variation. Proc Natl Acad Sci USA 103:18290–18295. doi:10.1073/pnas.0605302103

    PubMed  CAS  Google Scholar 

  • Barnes RL, McCulloch R (2007) Trypanosoma brucei homologous recombination is dependent on substrate length and homology, though displays a differential dependence on mismatch repair as substrate length decreases. Nucleic Acids Res 35:3478–3493. doi:10.1093/nar/gkm249

    PubMed  CAS  Google Scholar 

  • Barry JD (1986) Antigenic variation during Trypanosoma vivax infections of different host species. Parasitology 92(Pt 1):51–65

    PubMed  Google Scholar 

  • Barry JD, McCulloch R (2001) Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol 49:1–70

    PubMed  CAS  Google Scholar 

  • Barry JD, Crowe JS, Vickerman K (1983) Instability of the Trypanosoma brucei rhodesiense metacyclic variable antigen repertoire. Nature 306:699–701

    PubMed  CAS  Google Scholar 

  • Barry JD, Graham SV, Fotheringham M et al (1998) VSG gene control and infectivity strategy of metacyclic stage Trypanosoma brucei. Mol Biochem Parasitol 91:93–105

    PubMed  CAS  Google Scholar 

  • Barry JD, Ginger ML, Burton P, McCulloch R (2003) Why are parasite contingency genes often associated with telomeres? Int J Parasitol 33:29–45

    PubMed  CAS  Google Scholar 

  • Barry JD, Marcello L, Morrison LJ et al (2005) What the genome sequence is revealing about trypanosome antigenic variation. Biochem Soc Trans 33:986–989. doi:10.1042/BST20050986

    PubMed  CAS  Google Scholar 

  • Barry JD, Hall JPJ, Plenderleith L (2012) Genome hyperevolution and the success of a parasite. Ann N Y Acad Sci 1267:11–17. doi:10.1111/j.1749-6632.2012.06654.x

    PubMed  CAS  Google Scholar 

  • Benmerzouga I, Concepción-Acevedo J, Kim H-S et al (2013) Trypanosoma brucei Orc1 is essential for nuclear DNA replication and affects both VSG silencing and VSG switching. Mol Microbiol 87:196–210. doi:10.1111/mmi.12093

    PubMed  CAS  Google Scholar 

  • Bernards A, Van der Ploeg LH, Frasch AC et al (1981) Activation of trypanosome surface glycoprotein genes involves a duplication-transposition leading to an altered 3′ end. Cell 27:497–505

    PubMed  CAS  Google Scholar 

  • Bernards A, Van der Ploeg LH, Gibson WC et al (1986) Rapid change of the repertoire of variant surface glycoprotein genes in trypanosomes by gene duplication and deletion. J Mol Biol 190:1–10

    PubMed  CAS  Google Scholar 

  • Berriman M, Ghedin E, Hertz-Fowler C et al (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422. doi:10.1126/science.1112642

    PubMed  CAS  Google Scholar 

  • Bitter W, Gerrits H, Kieft R, Borst P (1998) The role of transferrin-receptor variation in the host range of Trypanosoma brucei. Nature 391:499–502. doi:10.1038/35166

    PubMed  CAS  Google Scholar 

  • Black SJ, Guirnalda P, Frenkel D et al (2010) Induction and regulation of Trypanosoma brucei VSG-specific antibody responses. Parasitology 137:2041–2049

    PubMed  CAS  Google Scholar 

  • Blum ML, Down JA, Gurnett AM et al (1993) A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature 362:603–609. doi:10.1038/362603a0

    PubMed  CAS  Google Scholar 

  • Boothroyd CE, Dreesen O, Leonova T et al (2009) A yeast-endonuclease-generated DNA break induces antigenic switching in Trypanosoma brucei. Nature 459:278–281. doi:10.1038/nature07982

    PubMed  CAS  Google Scholar 

  • Brown CA, Murray AW, Verstrepen KJ (2010) Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr Biol 20:895–903. doi:10.1016/j.cub.2010.04.027

    PubMed  CAS  Google Scholar 

  • Bussler H, Linder M, Linder D, Reinwald E (1998) Determination of the disulfide bonds within a B domain variant surface glycoprotein from Trypanosoma congolense. J Biol Chem 273:32582–32586

    PubMed  CAS  Google Scholar 

  • Callejas S, Leech V, Reitter C, Melville S (2006) Hemizygous subtelomeres of an African trypanosome chromosome may account for over 75% of chromosome length. Genome Res 16:1109–1118. doi:10.1101/gr.5147406

    PubMed  CAS  Google Scholar 

  • Campbell DA, van Bree MP, Boothroyd JC (1984) The 5′-limit of transposition and upstream barren region of a trypanosome VSG gene: tandem 76 base-pair repeats flanking (TAA)90. Nucleic Acids Res 12:2759–2774

    PubMed  CAS  Google Scholar 

  • Caporale LH (2003) Natural selection and the emergence of a mutation phenotype: an update of the evolutionary synthesis considering mechanisms that affect genome variation. Annu Rev Microbiol 57:467–485. doi:10.1146/annurev.micro.57.030502.090855

    PubMed  CAS  Google Scholar 

  • Carrington M, Miller N, Blum ML et al (1991) Variant specific glycoprotein of Trypanosoma brucei consists of two domains each having an independently conserved pattern of cysteine residues. J Mol Biol 221:823–835

    PubMed  CAS  Google Scholar 

  • Caton AJ, Brownlee GG, Yewdell JW, Gerhard WU (1982) The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31:417–427

    PubMed  CAS  Google Scholar 

  • Chamond N, Cosson A, Blom-Potar MC et al (2010) Trypanosoma vivax infections: pushing ahead with mouse models for the study of Nagana. I. Parasitological, hematological and pathological parameters. PLoS Negl Trop Dis 4:e792

    PubMed  Google Scholar 

  • Chattopadhyay A, Jones NG, Nietlispach D et al (2005) Structure of the C-terminal domain from Trypanosoma brucei variant surface glycoprotein MITat1.2. J Biol Chem 280:7228–7235. doi:10.1074/jbc.M410787200

    PubMed  CAS  Google Scholar 

  • Cohen C, Reinhardt B, Parry DA et al (1984) Alpha-helical coiled-coil structures of Trypanosoma brucei variable surface glycoproteins. Nature 311:169–171

    PubMed  CAS  Google Scholar 

  • Conway C, Proudfoot C, Burton P et al (2002) Two pathways of homologous recombination in Trypanosoma brucei. Mol Microbiol 45:1687–1700

    PubMed  CAS  Google Scholar 

  • Coustou V, Guegan F, Plazolles N, Baltz T (2010) Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools. PLoS Negl Trop Dis 4:e618. doi:10.1371/journal.pntd.0000618

    PubMed  Google Scholar 

  • Coutte L, Botkin DJ, Gao L, Norris SJ (2009) Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection. PLoS Pathog 5:e1000293. doi:10.1371/journal.ppat.1000293

    PubMed  Google Scholar 

  • Cross GAM (1990) Cellular and genetic aspects of antigenic variation in trypanosomes. Annu Rev Immunol 8:83–110. doi:10.1146/annurev.iy.08.040190.000503

    PubMed  CAS  Google Scholar 

  • Cully DF, Ip HS, Cross GA (1985) Coordinate transcription of variant surface glycoprotein genes and an expression site associated gene family in Trypanosoma brucei. Cell 42:173–182. doi:10.1016/S0092-8674(85)80113-6

    PubMed  CAS  Google Scholar 

  • DuBois KN, Alsford S, Holden JM et al (2012) NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol 10:e1001287. doi:10.1371/journal.pbio.1001287

    PubMed  CAS  Google Scholar 

  • Duffy MF, Tham W-H (2007) Transcription and coregulation of multigene families in Plasmodium falciparum. Trends Parasitol 23:183–186. doi:10.1016/j.pt.2007.02.010, discussion 186–7

    PubMed  CAS  Google Scholar 

  • Engstler M, Pfohl T, Herminghaus S et al (2007) Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131:505–515. doi:10.1016/j.cell.2007.08.046

    PubMed  CAS  Google Scholar 

  • Ferguson M (1991) Lipid anchors on membrane proteins. Curr Opin Struct Biol 1:522–529

    CAS  Google Scholar 

  • Ferguson MA, Duszenko M, Lamont GS et al (1986) Biosynthesis of Trypanosoma brucei variant surface glycoproteins. N-glycosylation and addition of a phosphatidylinositol membrane anchor. J Biol Chem 261:356–362

    PubMed  CAS  Google Scholar 

  • Fernandez-Becerra C, Yamamoto MM, Vêncio RZN et al (2009) Plasmodium vivax and the importance of the subtelomeric multigene vir superfamily. Trends Parasitol 25:44–51. doi:10.1016/j.pt.2008.09.012

    PubMed  CAS  Google Scholar 

  • Ferrante A, Allison AC (1983) Alternative pathway activation of complement by African trypanosomes lacking a glycoprotein coat. Parasite Immunol 5:491–498

    PubMed  CAS  Google Scholar 

  • Field MC, Sergeenko T, Wang Y-N et al (2010) Chaperone requirements for biosynthesis of the trypanosome variant surface glycoprotein. PLoS One 5:e8468. doi:10.1371/journal.pone.0008468

    PubMed  Google Scholar 

  • Figueiredo LM, Janzen CJ, Cross GAM (2008) A histone methyltransferase modulates antigenic variation in African trypanosomes. PLoS Biol 6:e161. doi:10.1371/journal.pbio.0060161

    PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511. doi:10.1038/nature01097

    PubMed  CAS  Google Scholar 

  • Gibson W, Bailey M (2003) The development of Trypanosoma brucei within the tsetse fly midgut observed using green fluorescent trypanosomes. Kinetoplastid Biol Dis 2:1

    PubMed  Google Scholar 

  • Gjini E, Haydon DT, Barry JD, Cobbold CA (2010) Critical interplay between parasite differentiation, host immunity, and antigenic variation in trypanosome infections. Am Nat 176:424–439. doi:10.1086/656276

    PubMed  CAS  Google Scholar 

  • Gjini E, Haydon DT, Barry JD, Cobbold CA (2012a) Linking the antigen archive structure to pathogen fitness in African trypanosomes. Proc Roy Soc B Biol Sci 280:20122129. doi:10.1098/rspb.2012.2129

    Google Scholar 

  • Gjini E, Haydon DT, Barry JD, Cobbold CA (2012b) The impact of mutation and gene conversion on the local diversification of antigen genes in African trypanosomes. Mol Biol Evol 29:3321–3331. doi:10.1093/molbev/mss166

    PubMed  CAS  Google Scholar 

  • Graham SV, Barry JD (1995) Transcriptional regulation of metacyclic variant surface glycoprotein gene expression during the life cycle of Trypanosoma brucei. Mol Cell Biol 15:5945–5956

    PubMed  CAS  Google Scholar 

  • Graham VS, Barry JD (1996) Is point mutagenesis a mechanism for antigenic variation in Trypanosoma brucei? Mol Biochem Parasitol 79:35–45

    PubMed  CAS  Google Scholar 

  • Greif G, de Leon MP, Lamolle G et al (2013) Transcriptome analysis of the bloodstream stage from the parasite Trypanosoma vivax. BMC Genomics 14:149. doi:10.1186/1471-2164-14-149

    PubMed  Google Scholar 

  • Guirnalda P, Murphy NB, Nolan D, Black SJ (2007) Anti-Trypanosoma brucei activity in Cape buffalo serum during the cryptic phase of parasitemia is mediated by antibodies. Int J Parasitol 37:1391–1399. doi:10.1016/j.ijpara.2007.04.019

    PubMed  Google Scholar 

  • Hall JPJ, Wang H, Barry JD (2013) Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation. PLoS Pathog 9(7): e1003502. doi: 10.1371/journal.ppat.1003502

    PubMed  CAS  Google Scholar 

  • Hernandez-Rivas R, Mattei D, Sterkers Y et al (1997) Expressed var genes are found in Plasmodium falciparum subtelomeric regions. Mol Cell Biol 17:604–611

    PubMed  CAS  Google Scholar 

  • Hertz-Fowler C, Figueiredo LM, Quail MA et al (2008) Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS One 3:e3527. doi:10.1371/journal.pone.0003527

    PubMed  Google Scholar 

  • Horn D, Barry JD (2005) The central roles of telomeres and subtelomeres in antigenic variation in African trypanosomes. Chromosome Res 13:525–533. doi:10.1007/s10577-005-0991-8

    PubMed  CAS  Google Scholar 

  • Horn D, Cross GA (1997) Analysis of Trypanosoma brucei vsg expression site switching in vitro. Mol Biochem Parasitol 84:189–201

    PubMed  CAS  Google Scholar 

  • Horn D, McCulloch R (2010) Molecular mechanisms underlying the control of antigenic variation in African trypanosomes. Curr Opin Microbiol 13:700–705. doi:10.1016/j.mib.2010.08.009

    PubMed  CAS  Google Scholar 

  • Hudson RE, Aukema JE, Rispe C, Roze D (2002) Altruism, cheating, and anticheater adaptations in cellular slime molds. Am Nat 160:31–43. doi:10.1086/340613

    PubMed  Google Scholar 

  • Hughes K, Wand M, Foulston L et al (2007) A novel ISWI is involved in VSG expression site downregulation in African trypanosomes. EMBO J 26:2400–2410. doi:10.1038/sj.emboj.7601678

    PubMed  CAS  Google Scholar 

  • Hutchinson OC, Picozzi K, Jones NG et al (2007) Variant surface glycoprotein gene repertoires in Trypanosoma brucei have diverged to become strain-specific. BMC Genomics 8:234. doi:10.1186/1471-2164-8-234

    PubMed  Google Scholar 

  • Jackson DG, Owen MJ, Voorheis HP (1985) A new method for the rapid purification of both the membrane-bound and released forms of the variant surface glycoprotein from Trypanosoma brucei. Biochem J 230:195–202

    PubMed  CAS  Google Scholar 

  • Jackson AP, Berry A, Aslett M et al (2012) Antigenic diversity is generated by distinct evolutionary mechanisms in African trypanosome species. Proc Natl Acad Sci USA 109:3416. doi:10.1073/pnas.1117313109

    PubMed  CAS  Google Scholar 

  • Jones NG, Nietlispach D, Sharma R et al (2008) Structure of a glycosylphosphatidylinositol-anchored domain from a trypanosome variant surface glycoprotein. J Biol Chem 283:3584–3593. doi:10.1074/jbc.M706207200

    PubMed  CAS  Google Scholar 

  • Kamper SM, Barbet AF (1992) Surface epitope variation via mosaic gene formation is potential key to long-term survival of Trypanosoma brucei. Mol Biochem Parasitol 53:33–44

    PubMed  CAS  Google Scholar 

  • Kyes SA, Rowe JA, Kriek N, Newbold CI (1999) Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci USA 96:9333–9338

    PubMed  CAS  Google Scholar 

  • La Greca F, Magez S (2011) Vaccination against trypanosomiasis: can it be done or is the trypanosome truly the ultimate immune destroyer and escape artist? Hum Vaccin 7:1225–1233. doi:10.4161/hv.7.11.18203

    PubMed  Google Scholar 

  • Landeira D, Bart J-M, Van Tyne D, Navarro M (2009) Cohesin regulates VSG monoallelic expression in trypanosomes. J Cell Biol 186:243–254. doi:10.1083/jcb.200902119

    PubMed  CAS  Google Scholar 

  • Laurent M, Pays E, Van der Werf A et al (1984) Translocation alters the activation rate of a trypanosome surface antigen gene. Nucleic Acids Res 12:8319–8328

    PubMed  CAS  Google Scholar 

  • Lin Y, Hubert L, Wilson JH (2009) Transcription destabilizes triplet repeats. Mol Carcinog 48:350–361. doi:10.1002/mc.20488

    PubMed  CAS  Google Scholar 

  • Linardopoulou EV, Williams EM, Fan Y et al (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437:94–100. doi:10.1038/nature04029

    PubMed  CAS  Google Scholar 

  • Liu AY, Van der Ploeg LH, Rijsewijk FA, Borst P (1983) The transposition unit of variant surface glycoprotein gene 118 of Trypanosoma brucei. Presence of repeated elements at its border and absence of promoter-associated sequences. J Mol Biol 167:57–75

    PubMed  CAS  Google Scholar 

  • Liu AY, Michels PA, Bernards A, Borst P (1985) Trypanosome variant surface glycoprotein genes expressed early in infection. J Mol Biol 182:383–396

    PubMed  CAS  Google Scholar 

  • Lythgoe KA, Morrison LJ, Read AF, Barry JD (2007) Parasite-intrinsic factors can explain ordered progression of trypanosome antigenic variation. Proc Natl Acad Sci USA 104:8095–8100. doi:10.1073/pnas.0606206104

    PubMed  CAS  Google Scholar 

  • MacGregor P, Matthews KR (2012) Identification of the regulatory elements controlling the transmission stage-specific gene expression of PAD1 in Trypanosoma brucei. Nucleic Acids Res 40:7705–7717. doi:10.1093/nar/gks533

    PubMed  CAS  Google Scholar 

  • MacGregor P, Savill NJ, Hall D, Matthews KR (2011) Transmission stages dominate trypanosome within-host dynamics during chronic infections. Cell Host Microbe 9:310–318. doi:10.1016/j.chom.2011.03.013

    PubMed  CAS  Google Scholar 

  • MacGregor P, Szöőr B, Savill NJ, Matthews KR (2012) Trypanosomal immune evasion, chronicity and transmission: an elegant balancing act. Nat Rev Microbiol 10(6):431–438. doi:10.1038/nrmicro2779

    PubMed  CAS  Google Scholar 

  • Macleod A, Tait A, Turner CM (2001) The population genetics of Trypanosoma brucei and the origin of human infectivity. Philos Trans R Soc Lond B Biol Sci 356:1035–1044. doi:10.1098/rstb.2001.0892

    PubMed  CAS  Google Scholar 

  • Magez S, Schwegmann A, Atkinson R et al (2008) The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog 4:e1000122. doi:10.1371/journal.ppat.1000122

    PubMed  Google Scholar 

  • Marcello L, Barry JD (2007a) Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic gene expression is prominent in antigenic variation and is favored by archive substructure. Genome Res 17:1344–1352. doi:10.1101/gr.6421207

    PubMed  CAS  Google Scholar 

  • Marcello L, Barry JD (2007b) From silent genes to noisy populations-dialogue between the genotype and phenotypes of antigenic variation. J Eukaryot Microbiol 54:14–17. doi:10.1111/j.1550-7408.2006.00227.x

    PubMed  CAS  Google Scholar 

  • Martinsohn JT, Sousa AB, Guethlein LA, Howard JC (1999) The gene conversion hypothesis of MHC evolution: a review. Immunogenetics 50:168–200

    PubMed  CAS  Google Scholar 

  • McConnell J, Gurnett AM, Cordingley JS et al (1981) Biosynthesis of Trypanosoma brucei variant surface glycoprotein. I. Synthesis, size, and processing of an N-terminal signal peptide. Mol Biochem Parasitol 4:225–242

    PubMed  CAS  Google Scholar 

  • McCulloch R, Barry JD (1999) A role for RAD51 and homologous recombination in Trypanosoma brucei antigenic variation. Genes Dev 13:2875–2888

    PubMed  CAS  Google Scholar 

  • McCulloch R, Horn D (2009) What has DNA sequencing revealed about the VSG expression sites of African trypanosomes? Trends Parasitol 25:359–363. doi:10.1016/j.pt.2009.05.007

    PubMed  CAS  Google Scholar 

  • Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3:91–102. doi:10.1038/nrg727

    PubMed  CAS  Google Scholar 

  • Mehlert A, Bond CS, Ferguson MAJ (2002) The glycoforms of a Trypanosoma brucei variant surface glycoprotein and molecular modeling of a glycosylated surface coat. Glycobiology 12:607–612

    PubMed  CAS  Google Scholar 

  • Melville SE, Leech V, Navarro M, Cross GA (2000) The molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427. Mol Biochem Parasitol 111:261–273

    PubMed  CAS  Google Scholar 

  • Michels PA, Liu AY, Bernards A et al (1983) Activation of the genes for variant surface glycoproteins 117 and 118 in Trypanosoma brucei. J Mol Biol 166:537–556

    PubMed  CAS  Google Scholar 

  • Moraes Barros RR, Marini MM, Antônio CR et al (2012) Anatomy and evolution of telomeric and subtelomeric regions in the human protozoan parasite Trypanosoma cruzi. BMC Genomics 13:229. doi:10.1186/1471-2164-13-229

    PubMed  Google Scholar 

  • Morrison WI, Black SJ, Paris J et al (1982) Protective immunity and specificity of antibody responses elicited in cattle by irradiated Trypanosoma brucei. Parasite Immunol 4:395–407

    PubMed  CAS  Google Scholar 

  • Morrison LJ, Majiwa P, Read AF, Barry JD (2005) Probabilistic order in antigenic variation of Trypanosoma brucei. Int J Parasitol 35:961–972. doi:10.1016/j.ijpara.2005.05.004

    PubMed  CAS  Google Scholar 

  • Morrison LJ, Marcello L, McCulloch R (2009) Antigenic variation in the African trypanosome: molecular mechanisms and phenotypic complexity. Cell Microbiol 11:1724–1734. doi:10.1111/j.1462-5822.2009.01383.x

    PubMed  CAS  Google Scholar 

  • Mosser DM, Roberts JF (1982) Trypanosoma brucei: recognition in vitro of two developmental forms by murine macrophages. Exp Parasitol 54:310–316

    PubMed  CAS  Google Scholar 

  • Muñoz-Jordán JL, Davies KP, Cross GAM (1996) Stable expression of mosaic coats of variant surface glycoproteins in Trypanosoma brucei. Science 272:1795–1797

    PubMed  Google Scholar 

  • Navarro M, Gull K (2001) A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 414:759–763. doi:10.1038/414759a

    PubMed  CAS  Google Scholar 

  • Navarro M, Peñate X, Landeira D (2007) Nuclear architecture underlying gene expression in Trypanosoma brucei. Trends Microbiol 15:263–270. doi:10.1016/j.tim.2007.04.004

    PubMed  CAS  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152. doi:10.1146/annurev.genet.39.073003.112240

    PubMed  CAS  Google Scholar 

  • Njiokou F, Laveissière C, Simo G et al (2006) Wild fauna as a probable animal reservoir for Trypanosoma brucei gambiense in Cameroon. Infect Genet Evol 6:147–153. doi:10.1016/j.meegid.2005.04.003

    PubMed  CAS  Google Scholar 

  • O’Beirne C, Lowry CM, Voorheis HP (1998) Both IgM and IgG anti-VSG antibodies initiate a cycle of aggregation-disaggregation of bloodstream forms of Trypanosoma brucei without damage to the parasite. Mol Biochem Parasitol 91:165–193

    PubMed  Google Scholar 

  • Oberle M, Balmer O, Brun R, Roditi I (2010) Bottlenecks and the maintenance of minor genotypes during the life cycle of Trypanosoma brucei. PLoS Pathog 6:e1001023. doi:10.1371/journal.ppat.1001023

    PubMed  Google Scholar 

  • Overath P, Chaudhri M, Steverding D, Ziegelbauer K (1994) Invariant surface proteins in bloodstream forms of Trypanosoma brucei. Parasitol Today (Regul Ed) 10:53–58

    CAS  Google Scholar 

  • Overath P, Stierhof YD, Wiese M (1997) Endocytosis and secretion in trypanosomatid parasites – Tumultuous traffic in a pocket. Trends Cell Biol 7:27–33. doi:10.1016/S0962-8924(97)10046-0

    PubMed  CAS  Google Scholar 

  • Pal A, Hall BS, Jeffries TR, Field MC (2003) Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochem J 374:443–451. doi:10.1042/BJ20030469

    PubMed  CAS  Google Scholar 

  • Pan W, Ogunremi O, Wei G et al (2006) CR3 (CD11b/CD18) is the major macrophage receptor for IgM antibody-mediated phagocytosis of African trypanosomes: diverse effect on subsequent synthesis of tumor necrosis factor alpha and nitric oxide. Microbes Infect 8:1209–1218. doi:10.1016/j.micinf.2005.11.009

    PubMed  CAS  Google Scholar 

  • Parsons M, Nelson RG, Watkins KP, Agabian N (1984) Trypanosome mRNAs share a common 5′ spliced leader sequence. Cell 38:309–316

    PubMed  CAS  Google Scholar 

  • Pays E, Lheureux M, Steinert M (1981) Analysis of the DNA and RNA changes associated with the expression of isotypic variant-specific antigens of trypanosomes. Nucleic Acids Res 9:4225–4238

    PubMed  CAS  Google Scholar 

  • Pays E, Guyaux M, Aerts D et al (1985) Telomeric reciprocal recombination as a possible mechanism for antigenic variation in trypanosomes. Nature 316:562–564

    PubMed  CAS  Google Scholar 

  • Povelones ML, Gluenz E, Dembek M et al (2012) Histone H1 plays a role in heterochromatin formation and VSG expression site silencing in Trypanosoma brucei. PLoS Pathog 8:e1003010. doi:10.1371/journal.ppat.1003010

    PubMed  CAS  Google Scholar 

  • Radwanska M, Guirnalda P, De Trez C et al (2008) Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses. PLoS Pathog 4:e1000078. doi:10.1371/journal.ppat.1000078

    PubMed  Google Scholar 

  • Recker M, Buckee CO, Serazin A et al (2011) Antigenic variation in Plasmodium falciparum malaria involves a highly structured switching pattern. PLoS Pathog 7:e1001306. doi:10.1371/journal.ppat.1001306

    PubMed  CAS  Google Scholar 

  • Reece SE, Pollitt LC, Colegrave N, Gardner A (2011) The meaning of death: evolution and ecology of apoptosis in protozoan parasites. PLoS Pathog 7:e1002320. doi:10.1371/journal.ppat.1002320

    PubMed  CAS  Google Scholar 

  • Riethman H, Ambrosini A, Paul S (2005) Human subtelomere structure and variation. Chromosome Res 13:505–515. doi:10.1007/s10577-005-0998-1

    PubMed  CAS  Google Scholar 

  • Rivero FD, Saura A, Prucca CG et al (2010) Disruption of antigenic variation is crucial for effective parasite vaccine. Nat Med 16:551–557. doi:10.1038/nm.2141, 1p following 557

    PubMed  CAS  Google Scholar 

  • Robinson NP, Burman N, Melville SE, Barry JD (1999) Predominance of duplicative VSG gene conversion in antigenic variation in African trypanosomes. Mol Cell Biol 19:5839–5846

    PubMed  CAS  Google Scholar 

  • Rogers MB, Hilley JD, Dickens NJ et al (2011) Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res 21:2129–2142. doi:10.1101/gr.122945.111

    PubMed  CAS  Google Scholar 

  • Roth CW, Bringaud F, Layden RE et al (1989) Active late-appearing variable surface antigen genes in Trypanosoma equiperdum are constructed entirely from pseudogenes. Proc Natl Acad Sci USA 86:9375–9379

    PubMed  CAS  Google Scholar 

  • Salmon D, Vanwalleghem G, Morias Y et al (2012) Adenylate cyclases of Trypanosoma brucei inhibit the innate immune response of the host. Science 337:463–466. doi:10.1126/science.1222753

    PubMed  CAS  Google Scholar 

  • Scherf A, Lopez-Rubio JJ, Riviere L (2008) Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol 62:445–470. doi:10.1146/annurev.micro.61.080706.093134

    PubMed  CAS  Google Scholar 

  • Schwede A, Jones N, Engstler M, Carrington M (2011) The VSG C-terminal domain is inaccessible to antibodies on live trypanosomes. Mol Biochem Parasitol 175:201–204. doi:10.1016/j.molbiopara.2010.11.004

    PubMed  CAS  Google Scholar 

  • Seed JR, Sechelski J (1988) Growth of pleomorphic Trypanosoma brucei rhodesiense in irradiated inbred mice. J Parasitol 74:781–789

    PubMed  CAS  Google Scholar 

  • Seed JR, Seed JR, Wenck MA, Wenck MA (2003) Role of the long slender to short stumpy transition in the life cycle of the African trypanosomes. Kinetoplastid Biol Dis 2:3. doi:10.1186/1475-9292-2-3

    PubMed  Google Scholar 

  • Seyfang A, Mecke D, Duszenko M (1990) Degradation, recycling, and shedding of Trypanosoma brucei variant surface glycoprotein. J Protozool 37:546–552

    PubMed  CAS  Google Scholar 

  • Smith TK, Vasileva N, Gluenz E et al (2009) Blocking variant surface glycoprotein synthesis in Trypanosoma brucei triggers a general arrest in translation initiation. PLoS One 4:e7532. doi:10.1371/journal.pone.0007532

    PubMed  Google Scholar 

  • Stanne TM, Rudenko G (2010) Active VSG expression sites in Trypanosoma brucei are depleted of nucleosomes. Eukaryot Cell 9:136–147. doi:10.1128/EC.00281-09

    PubMed  CAS  Google Scholar 

  • Stringer JR, Keely SP (2001) Genetics of surface antigen expression in Pneumocystis carinii. Infect Immun 69:627–639. doi:10.1128/IAI.69.2.627-639.2001

    PubMed  CAS  Google Scholar 

  • Taylor JE, Rudenko G (2006) Switching trypanosome coats: what’s in the wardrobe? Trends Genet 22:614–620. doi:10.1016/j.tig.2006.08.003

    PubMed  CAS  Google Scholar 

  • Thon G, Baltz T, Giroud C, Eisen H (1990) Trypanosome variable surface glycoproteins: composite genes and order of expression. Genes Dev 4:1374–1383

    PubMed  CAS  Google Scholar 

  • Tiengwe C, Marcello L, Farr H et al (2012) Genome-wide analysis reveals extensive functional interaction between DNA replication initiation and transcription in the genome of Trypanosoma brucei. Cell Rep 2:185–197. doi:10.1016/j.celrep.2012.06.007

    PubMed  CAS  Google Scholar 

  • Timmers HT, De Lange T, Kooter JM, Borst P (1987) Coincident multiple activations of the same surface antigen gene in Trypanosoma brucei. J Mol Biol 194:81–90

    PubMed  CAS  Google Scholar 

  • Turner CMR (1997) The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiol Lett 153:227–231

    PubMed  CAS  Google Scholar 

  • Turner CMR (1999) Antigenic variation in Trypanosoma brucei infections: an holistic view. J Cell Sci 112(Pt 19):3187–3192

    PubMed  CAS  Google Scholar 

  • Turner C, Barry J (1989) High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology 99:67–75

    PubMed  Google Scholar 

  • Turner CM, Barry JD, Maudlin I, Vickerman K (1988) An estimate of the size of the metacyclic variable antigen repertoire of Trypanosoma brucei rhodesiense. Parasitology 97(Pt 2):269–276

    PubMed  Google Scholar 

  • Turner CM, Aslam N, Dye C (1995) Replication, differentiation, growth and the virulence of Trypanosoma brucei infections. Parasitology 111(Pt 3):289–300

    PubMed  Google Scholar 

  • Ulbert S, Chaves I, Borst P (2002) Expression site activation in Trypanosoma brucei with three marked variant surface glycoprotein gene expression sites. Mol Biochem Parasitol 120:225–235

    PubMed  CAS  Google Scholar 

  • Van Den Abbeele J, Claes Y, van Bockstaele D et al (1999) Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis. Parasitology 118(Pt 5):469–478

    Google Scholar 

  • Van der Ploeg LH, Cornelissen AW, Barry JD, Borst P (1984) Chromosomes of kinetoplastida. EMBO J 3:3109–3115

    PubMed  Google Scholar 

  • Van Meirvenne N, Magnus E, Buscher P (1995) Evaluation of variant specific trypanolysis tests for serodiagnosis of human infections with Trypanosoma brucei gambiense. Acta Trop 60:189–199

    PubMed  Google Scholar 

  • Vassella E, Reuner B, Yutzy B, Boshart M (1997) Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci 110(Pt 21):2661–2671

    PubMed  CAS  Google Scholar 

  • Vickerman K (1969) On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci 5:163–193

    PubMed  CAS  Google Scholar 

  • Wang Q-P, Kawahara T, Horn D (2010) Histone deacetylases play distinct roles in telomeric VSG expression site silencing in African trypanosomes. Mol Microbiol 77:1237–1245. doi:10.1111/j.1365-2958.2010.07284.x

    PubMed  CAS  Google Scholar 

  • Weiden M, Osheim YN, Beyer AL, Van der Ploeg LH (1991) Chromosome structure: DNA nucleotide sequence elements of a subset of the minichromosomes of the protozoan Trypanosoma brucei. Mol Cell Biol 11:3823–3834

    PubMed  CAS  Google Scholar 

  • West SA, Griffin AS, Gardner A, Diggle SP (2006) Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607. doi:10.1038/nrmicro1461

    PubMed  CAS  Google Scholar 

  • Wickstead B, Ersfeld K, Gull K (2004) The small chromosomes of Trypanosoma brucei involved in antigenic variation are constructed around repetitive palindromes. Genome Res 14:1014–1024. doi:10.1101/gr.2227704

    PubMed  CAS  Google Scholar 

  • Young R, Taylor JE, Kurioka A et al (2008) Isolation and analysis of the genetic diversity of repertoires of VSG expression site containing telomeres from Trypanosoma brucei gambiense, T. b. brucei and T. equiperdum. BMC Genomics 9:385

    PubMed  Google Scholar 

  • Zhuang Y, Futse JE, Brown WC et al (2007) Maintenance of antibody to pathogen epitopes generated by segmental gene conversion is highly dynamic during long-term persistent infection. Infect Immun 75:5185–5190. doi:10.1128/IAI.00913-07

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This chapter is based on theses deposited at the University of Glasgow (J. P. J. Hall 2012; L. Plenderleith 2013). We would like to thank Dave Barry for his support, guidance and advice throughout our studies. This work was supported by the Wellcome Trust (Grant numbers 083224 and 086415). The Wellcome Trust Centre for Molecular Parasitology is supported by core funding from the Wellcome Trust (Grant number 085349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Peter John Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Hall, J.P.J., Plenderleith, L. (2014). Withstanding the Challenges of Host Immunity: Antigenic Variation and the Trypanosome Surface Coat. In: Magez, S., Radwanska, M. (eds) Trypanosomes and Trypanosomiasis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1556-5_3

Download citation

Publish with us

Policies and ethics