Skip to main content

The Intervertebral Disc: Overview of Disc Mechanics

  • Chapter
  • First Online:
The Intervertebral Disc

Abstract

The intervertebral disc is the soft tissue between the vertebral bodies. The disc function is to transmit multi-directional loads through the spine and to allow relative motion between the vertebral bodies. The intervertebral disc is composed of three distinct tissues: nucleus pulposus, annulus fibrosus, and the cartilaginous endplates. Each of these tissues has a characteristic composition and structure which provide them with unique mechanical properties. The interaction between these tissues enables the intervertebral disc to perform its function. The objective of this chapter is to describe the mechanical behavior of the individual disc tissues and then discuss how they work together in physiological loading scenarios. In addition, the effects of degeneration on the mechanics at the tissue and disc level are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acaroglu ER, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M (1995) Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine (Phila Pa 1976) 20(24):2690–2701

    Article  CAS  Google Scholar 

  • Adams MA, Dolan P (1991) A technique for quantifying the bending moment acting on the lumbar spine in vivo. J Biomech 24(2):117–126

    Article  PubMed  CAS  Google Scholar 

  • Adams MA, Dolan P (2011) Biomechanics of vertebral compression fractures and clinical application. Arch Orthop Trauma Surg 131(12):1703–1710

    Article  PubMed  Google Scholar 

  • Adams MA, Hutton WC (1980) The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J Bone Joint Surg Br 62(3):358–362

    PubMed  CAS  Google Scholar 

  • Adams MA, Hutton WC (1981) The relevance of torsion to the mechanical derangement of the lumbar spine. Spine (Phila Pa 1976) 6(3):241–248

    Article  CAS  Google Scholar 

  • Adams P, Muir H (1976) Qualitative changes with age of proteoglycans of human lumbar discs. Ann Rheum Dis 35(4):289–296

    Article  PubMed  CAS  Google Scholar 

  • Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31(18):2151–2161

    Article  Google Scholar 

  • Adams MA, Bogduk N, Burton K, Dolan P (2006) The biomechanics of back pain, 2nd edn. Churchill Livingstone Elsevier, London, pp 29–48

    Google Scholar 

  • Ateshian GA, Ellis BJ, Weiss JA (2007) Equivalence between short-time biphasic and incompressible elastic material responses. J Biomech Eng 129(3):405–412

    Article  PubMed  Google Scholar 

  • Ateshian GA, Rajan V, Chahine NO, Canal CE, Hung CT (2009) Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng 131(6):061003

    Article  PubMed  Google Scholar 

  • Aultman CD, Scannell J, McGill SM (2005) The direction of progressive herniation in porcine spine motion segments is influenced by the orientation of the bending axis. Clin Biomech (Bristol, Avon) 20(2):126–129

    Article  Google Scholar 

  • Azeloglu EU, Albro MB, Thimmappa VA, Ateshian GA, Costa KD (2008) Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am J Physiol Heart Circ Physiol 294(3):H1197–H1205

    Article  PubMed  CAS  Google Scholar 

  • Baranto A, Ekstrom L, Hellstrom M, Lundin O, Holm S, Sward L (2005) Fracture patterns of the adolescent porcine spine: an experimental loading study in bending-compression. Spine (Phila Pa 1976) 30(1):75–82

    Google Scholar 

  • Bass EC, Ashford FA, Segal MR, Lotz JC (2004) Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation. Ann Biomed Eng 32(9):1231–1242

    Google Scholar 

  • Battié MC, Videman T, Levälahti E, Gill K, Kaprio J (2008) Genetic and environmental effects on disc degeneration by phenotype and spinal level: a multivariate twin study. Spine (Phila Pa 1976) 33(25):2801–8. doi: 10.1097/BRS.0b013e31818043b7

  • Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) 20(11):1307–1314

    CAS  Google Scholar 

  • Callaghan JP, McGill SM (2001) Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech (Bristol, Avon) 16(1):28–37

    Article  CAS  Google Scholar 

  • Canal Guterl C, Hung CT, Ateshian GA (2010) Electrostatic and non-electrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. J Biomech 43(7):1343–1350

    Article  PubMed  Google Scholar 

  • Cassidy JJ, Hiltner A, Baer E (1989) Hierarchical structure of the intervertebral disc. Connect Tissue Res 23(1):75–88

    Article  PubMed  CAS  Google Scholar 

  • Cavalcante FS, Ito S, Brewer K, Sakai H, Alencar AM, Almeida MP et al (2005) Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue. J Appl Physiol 98(2):672–679

    Article  PubMed  CAS  Google Scholar 

  • Chuang SY, Popovich JM Jr, Lin LC, Hedman TP (2010) The effects of exogenous crosslinking on hydration and fluid flow in the intervertebral disc subjected to compressive creep loading and unloading. Spine (Phila Pa 1976) 35(24):E1362–E1366

    Article  Google Scholar 

  • Chuong CJ, Fung YC (1986) On residual stresses in arteries. J Biomech Eng 108(2):189–192

    Article  PubMed  CAS  Google Scholar 

  • Comper WD, Laurent TC (1978) Physiological function of connective tissue polysaccharides. Physiol Rev 58(1):255–315

    PubMed  CAS  Google Scholar 

  • Cortes DH, Elliott DM (2012) Extra-fibrillar matrix mechanics of annulus fibrosus in tension and compression. Biomech Model Mechanobiol 11(6):781–790

    Article  PubMed  Google Scholar 

  • Costi JJ, Stokes IA, Gardner-Morse M, Laible JP, Scoffone HM, Iatridis JC (2007) Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom: motions that place disc tissue at risk of injury. J Biomech 40(11):2457–66

    Google Scholar 

  • Costi JJ, Stokes IA, Gardner-Morse M, Laible JP, Scoffone HM, Iatridis JC (2008) Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom: motions that place disc tissue at risk of injury. J Biomech 40(11):2457–66

    Google Scholar 

  • Costi JJ et al (2011) Intervertebral disc properties: challenges for biodevices. Expert Rev Med Devices 8(3):357–376

    Article  PubMed  Google Scholar 

  • Das DB, Welling A, Urban JP, Boubriak OA (2009) Solute transport in intervertebral disc: experiments and finite element modeling. Ann N Y Acad Sci 1161:44–61

    Article  PubMed  CAS  Google Scholar 

  • Diamant J, Keller A, Baer E, Litt M, Arridge RG (1972) Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proc R Soc Lond B Biol Sci 180(60):293–315

    Article  PubMed  CAS  Google Scholar 

  • Drake JD, Aultman CD, McGill SM, Callaghan JP (2005) The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model. Clin Biomech (Bristol, Avon) 20(10):1038–1045

    Article  Google Scholar 

  • Drost MR, Willems P, Snijders H, Huyghe JM, Janssen JD, Huson A (1995) Confined compression of canine annulus fibrosus under chemical and mechanical loading. J Biomech Eng 117(4):390–396

    Article  PubMed  CAS  Google Scholar 

  • Elliott DM, Setton LA (2001) Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J Biomech Eng 123(3):256–263

    Article  PubMed  CAS  Google Scholar 

  • Eyre DR (1979) Biochemistry of the intervertebral disc. Int Rev Connect Tissue Res 8:227–291

    PubMed  CAS  Google Scholar 

  • Eyre DR, Muir H (1976) Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem J 157(1):267–270

    PubMed  CAS  Google Scholar 

  • Ferguson SJ, Ito K, Nolte LP (2004) Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech 37(2):213–221

    Article  PubMed  Google Scholar 

  • Fields AJ, Lee GL, Keaveny TM (2010) Mechanisms of initial endplate failure in the human vertebral body. J Biomech 43(16):3126–3131

    Article  PubMed  Google Scholar 

  • Fujita Y, Wagner DR, Biviji AA, Duncan NA, Lotz JC (2000) Anisotropic shear behavior of the annulus fibrosus: effect of harvest site and tissue prestrain. Med Eng Phys 22(5):349–357

    Article  PubMed  CAS  Google Scholar 

  • Gallagher S (2002) Letters. Spine (Phila Pa 1976) 27(12):1378

    Article  Google Scholar 

  • Gregory DE, Callaghan JP (2011) A comparison of uniaxial and biaxial mechanical properties of the annulus fibrosus: a porcine model. J Biomech Eng 133(2):024503

    Article  PubMed  Google Scholar 

  • Gu WY, Mao XG, Foster RJ, Weidenbaum M, Mow VC, Rawlins BA (1999) The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. Spine (Phila Pa 1976) 24(23):2449–2455

    Article  CAS  Google Scholar 

  • Guerin HA, Elliott DM (2006a) Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load. J Biomech 39(8):1410–1418

    Article  PubMed  Google Scholar 

  • Guerin HA, Elliott DM (2006b) Structure and properties of soft tissues in the spine. In: Kurtz SM, Edidin AA (eds) SPINE: technology handbook. Elsevier Academic Press, Amsterdam/Boston

    Google Scholar 

  • Guerin HL, Elliott DM (2007) Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J Orthop Res 25(4):508–516

    Article  PubMed  Google Scholar 

  • Guo Z, Shi X, Peng X, Caner F (2012) Fibre-matrix interaction in the human annulus fibrosus. J Mech Behav Biomed Mater 5(1):193–205

    Article  PubMed  CAS  Google Scholar 

  • Hardingham TE, Muir H, Kwan MK, Lai WM, Mow VC (1987) Viscoelastic properties of proteoglycan solutions with varying proportions present as aggregates. J Orthop Res 5(1):36–46

    Article  PubMed  CAS  Google Scholar 

  • Heneghan P, Riches PE (2008a) The strain-dependent osmotic pressure and stiffness of the bovine nucleus pulposus apportioned into ionic and non-ionic contributors. J Biomech 41(11):2411–2416

    Article  PubMed  Google Scholar 

  • Heneghan P, Riches PE (2008b) Determination of the strain-dependent hydraulic permeability of the compressed bovine nucleus pulposus. J Biomech 41(4):903–906

    Article  PubMed  Google Scholar 

  • Heuer F, Schmidt H, Wilke HJ (2008) The relation between intervertebral disc bulging and annular fiber associated strains for simple and complex loading. J Biomech 41(5):1086–1094

    Article  PubMed  Google Scholar 

  • Hickey DS, Hukins DW (1980) Relation between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Spine (Phila Pa 1976) 5(2):106–116

    Article  CAS  Google Scholar 

  • Hollingsworth NT, Wagner DR (2011) Modeling shear behavior of the annulus fibrosus. J Mech Behav Biomed Mater 4(7):1103–1114

    Article  PubMed  Google Scholar 

  • Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8(2):101–119

    Article  PubMed  CAS  Google Scholar 

  • Hsu K, Zucherman J, Shea W, Kaiser J, White A, Schofferman J et al (1990) High lumbar disc degeneration. Incidence and etiology. Spine (Phila Pa 1976) 15(7):679–682

    Article  CAS  Google Scholar 

  • Huyghe JM (2010) Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations. An Acad Bras Cienc 82(1):145–151

    Article  PubMed  Google Scholar 

  • Iatridis JC, Weidenbaum M, Setton LA, Mow VC (1996) Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine (Phila Pa 1976) 21(10):1174–1184

    Article  CAS  Google Scholar 

  • Iatridis JC, Setton LA, Weidenbaum M, Mow VC (1997a) The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J Biomech 30(10):1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Iatridis JC, Setton LA, Weidenbaum M, Mow VC (1997b) Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J Orthop Res 15(2):318–322

    Article  PubMed  CAS  Google Scholar 

  • Iatridis JC, Kumar S, Foster RJ, Weidenbaum M, Mow VC (1999) Shear mechanical properties of human lumbar annulus fibrosus. J Orthop Res 17(5):732–737

    Article  PubMed  CAS  Google Scholar 

  • Iencean SM (2000) Lumbar intervertebral disc herniation following experimental intradiscal pressure increase. Acta Neurochir (Wien) 142(6):669–676

    Article  CAS  Google Scholar 

  • Jackson AR, Yuan TY, Huang CY, Travascio F, Yong Gu W (2008) Effect of compression and anisotropy on the diffusion of glucose in annulus fibrosus. Spine (Phila Pa 1976) 33(1):1–7

    Article  Google Scholar 

  • Jackson AR, Huang CY, Gu WY (2011) Effect of endplate calcification and mechanical deformation on the distribution of glucose in intervertebral disc: a 3D finite element study. Comput Methods Biomech Biomed Engin 14(2):195–204

    Article  PubMed  Google Scholar 

  • Jacobs NT, Smith LJ, Han WM, Morelli J, Yoder JH, Elliott DM (2011) Effect of orientation and targeted extracellular matrix degradation on the shear mechanical properties of the annulus fibrosus. J Mech Behav Biomed Mater 4(8):1611–1619

    Article  PubMed  CAS  Google Scholar 

  • Jacobs NT, Cortes DH, Vresilovic EJ, Elliott DM (2013) Biaxial tension of fibrous tissue: using finite element methods to address experimental challenges arising from boundary conditions and anisotropy. J Biomech Eng 135(2):021004. doi:10.1115/1.4023503

    Google Scholar 

  • Johannessen W, Elliott DM (2005) Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine (Phila Pa 1976) 30(24):E724–E729

    Article  Google Scholar 

  • Kastelic J, Baer E (1980) Deformation in tendon collagen. Symp Soc Exp Biol 34:397–435

    PubMed  CAS  Google Scholar 

  • Kastelic J, Galeski A, Baer E (1978) The multicomposite structure of tendon. Connect Tissue Res 6(1):11–23

    Article  PubMed  CAS  Google Scholar 

  • Kiani C, Chen L, Wu YJ, Yee AJ, Yang BB (2002) Structure and function of aggrecan. Cell Res 12(1):19–32

    Article  PubMed  Google Scholar 

  • Klisch SM, Lotz JC (2000) A special theory of biphasic mixtures and experimental results for human annulus fibrosus tested in confined compression. J Biomech Eng 122(2):180–188

    Article  PubMed  CAS  Google Scholar 

  • Lanir Y (2009) Mechanisms of residual stress in soft tissues. J Biomech Eng 131(4):044506

    Article  PubMed  Google Scholar 

  • Maroudas A, Bannon C (1981) Measurement of swelling pressure in cartilage and comparison with the osmotic pressure of constituent proteoglycans. Biorheology 18(3–6):619–632

    PubMed  CAS  Google Scholar 

  • Massey CJ, van Donkelaar CC, Vresilovic E, Zavaliangos A, Marcolongo M (2011) Effects of aging and degeneration on the human intervertebral disc during the diurnal cycle: a finite element study. J Orthop Res 30(1):122–128

    Article  PubMed  Google Scholar 

  • Mauck RL, Baker BM, Nerurkar NL, Burdick JA, Li WJ, Tuan RS et al (2009) Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng Part B Rev 15(2):171–193

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Ghosh P, Taylor TK (2001) A comparative analysis of the differential spatial and temporal distributions of the large (aggrecan, versican) and small (decorin, biglycan, fibromodulin) proteoglycans of the intervertebral disc. J Anat 198(Pt 1):3–15

    Article  PubMed  CAS  Google Scholar 

  • Moon SM, Yoder JH, Wright AC, Smith LJ, Vresilovic EJ, Elliott DM (2013) Evaluation of intervertebral disc cartilaginous endplate structure using magnetic resonance imaging. Eur Spine J doi:10.1007/s00586-013-2798-1

  • Michalek AJ, Gardner-Mose MG, Iatridis JC (2012). Large residual strains are present in the intervertebral disc annulus fibrosus in the unloaded state. J Biomech 45(7):1227–1231

    Google Scholar 

  • Mimura M, Panjabi MM, Oxland TR, Crisco JJ, Yamamoto I, Vasavada A (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine (Phila Pa 1976) 19(12):1371–1380

    Article  CAS  Google Scholar 

  • Nachemson A (1963) The influence of spinal movements on the lumbar intradiscal pressure and on the tensil stresses in the annulus fibrosus. Acta Orthop Scand 33:183–207

    Article  PubMed  CAS  Google Scholar 

  • Nachemson AL (1981) Disc pressure measurements. Spine (Phila Pa 1976) 6(1):93–97

    Article  CAS  Google Scholar 

  • Nerurkar NL, Elliott DM, Mauck RL (2010) Mechanical design criteria for intervertebral disc tissue engineering. J Biomech 43(6):1017–1030

    Article  PubMed  Google Scholar 

  • O’Connell GD, Johannessen W, Vresilovic EJ, Elliott DM (2007) Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging. Spine (Phila Pa 1976) 32(25):2860–2868

    Article  Google Scholar 

  • O’Connell GD, Guerin HL, Elliott DM (2009) Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J Biomech Eng 131(11)

    Google Scholar 

  • O’Connell GD, Vresilovic EJ, Elliott DM (2010) Human intervertebral disc internal strain in compression: the effect of disc region, loading position, and degeneration. J Orthop Res 29(4):547–555

    Article  PubMed  Google Scholar 

  • O’Connell GD, Jacobs NT, Sen S, Vresilovic EJ, Elliott DM (2011) Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration. J Mech Behav Biomed Mater 4(7):933–942

    Article  PubMed  Google Scholar 

  • O’Connell GD, Sen S, Elliott DM (2012) Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration. Biomech Model Mechanobiol 11(3–4):493–503

    Article  PubMed  Google Scholar 

  • Ordway NR, Lu YM, Zhang X, Cheng CC, Fang H, Fayyazi AH (2007) Correlation of cervical endplate strength with CT measured subchondral bone density. Eur Spine J 16(12):2104–2109

    Article  PubMed  Google Scholar 

  • Overbeek JT (1956) The Donnan equilibrium. Prog Biophys Biophys Chem 6:57–84

    PubMed  CAS  Google Scholar 

  • Panjabi M, Brown M, Lindahl S, Irstam L, Hermens M (1988) Intrinsic disc pressure as a measure of integrity of the lumbar spine. Spine (Phila Pa 1976) 13(8):913–917

    Article  CAS  Google Scholar 

  • Pearcy M, Portek I, Shepherd J (1984) Three-dimensional x-ray analysis of normal movement in the lumbar spine. Spine (Phila Pa 1976) 9(3):294–297

    Article  CAS  Google Scholar 

  • Perie D, Korda D, Iatridis JC (2005) Confined compression experiments on bovine nucleus pulposus and annulus fibrosus: sensitivity of the experiment in the determination of compressive modulus and hydraulic permeability. J Biomech 38(11):2164–2171

    Article  PubMed  Google Scholar 

  • Perie D, Iatridis JC, Demers CN, Goswami T, Beaudoin G, Mwale F et al (2006a) Assessment of compressive modulus, hydraulic permeability and matrix content of trypsin-treated nucleus pulposus using quantitative MRI. J Biomech 39(8):1392–1400

    Article  PubMed  CAS  Google Scholar 

  • Perie DS, Maclean JJ, Owen JP, Iatridis JC (2006b) Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Ann Biomed Eng 34(5):769–777

    Article  PubMed  Google Scholar 

  • Potvin JR, McGill SM, Norman RW (1991) Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion. Spine (Phila Pa 1976) 16(9):1099–1107

    Article  CAS  Google Scholar 

  • Pye SR, Reid DM, Lunt M, Adams JE, Silman AJ, O’Neill TW (2007) Lumbar disc degeneration: association between osteophytes, end-plate sclerosis and disc space narrowing. Ann Rheum Dis 66(3):330–333

    Article  PubMed  Google Scholar 

  • Rannou F, Lee TS, Zhou RH, Chin J, Lotz JC, Mayoux-Benhamou MA et al (2004) Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. Am J Pathol 164(3):915–924

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Takahashi T, Miyahara K, Hirosea T (2001) Effects of chondroitinase ABC on intradiscal pressure in sheep: an in vivo study. Spine (Phila Pa 1976) 26(5):463–468

    Article  CAS  Google Scholar 

  • Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine (Phila Pa 1976) 24(23):2468–2474

    Article  CAS  Google Scholar 

  • Setton LA, Zhu W, Weidenbaum M, Ratcliffe A, Mow VC (1993) Compressive properties of the cartilaginous end-plate of the baboon lumbar spine. J Orthop Res 11(2):228–239

    Article  PubMed  CAS  Google Scholar 

  • Shirazi-Adl A, Ahmed AM, Shrivastava SC (1986) Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine (Phila Pa 1976) 11(9):914–927

    Article  CAS  Google Scholar 

  • Shirazi-Adl A, Taheri M, Urban JP (2010) Analysis of cell viability in intervertebral disc: effect of endplate permeability on cell population. J Biomech 43(7):1330–1336

    Article  PubMed  CAS  Google Scholar 

  • Simunic DI, Broom ND, Robertson PA (2001) Biomechanical factors influencing nuclear disruption of the intervertebral disc. Spine 26(11):1223–1230

    Article  PubMed  CAS  Google Scholar 

  • Smith LJ, Nerurkar NL, Choi KS, Harfe BD, Elliott DM (2011) Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech 4(1):31–41

    Article  PubMed  CAS  Google Scholar 

  • Soukane DM, Shirazi-Adl A, Urban JP (2007) Computation of coupled diffusion of oxygen, glucose and lactic acid in an intervertebral disc. J Biomech 40(12):2645–2654

    Article  PubMed  Google Scholar 

  • Spencer AJM (1984) Continuum theory of the mechanics of fibre-reinforced composites. Springer, Wien/New York

    Google Scholar 

  • Spenciner D, Greene D, Paiva J, Palumbo M, Crisco J (2006) The multidirectional bending properties of the human lumbar intervertebral disc. Spine J 6(3):248–257

    Article  PubMed  Google Scholar 

  • Travascio F, Gu WY (2011) Simultaneous measurement of anisotropic solute diffusivity and binding reaction rates in biological tissues by FRAP. Ann Biomed Eng 39(1):53–65

    Article  PubMed  Google Scholar 

  • Tsantrizos A, Ito K, Aebi M, Steffen T (2005) Internal strains in healthy and degenerated lumbar intervertebral discs. Spine 30(19):2129–2137

    Article  PubMed  Google Scholar 

  • Urban JP, Maroudas A (1981) Swelling of the intervertebral disc in vitro. Connect Tissue Res 9(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Urban JP, Holm S, Maroudas A (1978) Diffusion of small solutes into the intervertebral disc: as in vivo study. Biorheology 15(3–4):203–221

    PubMed  CAS  Google Scholar 

  • Urban JP, Maroudas A, Bayliss MT, Dillon J (1979) Swelling pressures of proteoglycans at the concentrations found in cartilaginous tissues. Biorheology 16(6):447–464

    PubMed  CAS  Google Scholar 

  • Urban JP, Holm S, Maroudas A, Nachemson A (1982) Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res 170:296–302

    PubMed  CAS  Google Scholar 

  • Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine (Phila Pa 1976) 29(23):2700–2709

    Article  Google Scholar 

  • van der Veen AJ, van Dieen JH, Nadort A, Stam B, Smit TH (2007) Intervertebral disc recovery after dynamic or static loading in vitro: is there a role for the endplate? J Biomech 40(10):2230–2235

    Article  PubMed  Google Scholar 

  • van Deursen DL, Snijders CJ, Kingma I, van Dieen JH (2001a) In vitro torsion-induced stress distribution changes in porcine intervertebral discs. Spine (Phila Pa 1976) 26(23):2582–2586

    Article  Google Scholar 

  • van Deursen DL, Snijders CJ, van Dieen JH, Kingma I, van Deursen LL (2001b) The effect of passive vertebral rotation on pressure in the nucleus pulposus. J Biomech 34(3):405–408

    Article  PubMed  Google Scholar 

  • Wade KR, Robertson PA, Broom ND (2011) A fresh look at the nucleus-endplate region: new evidence for significant structural integration. Eur Spine J 20(8):1225–1232

    Article  PubMed  Google Scholar 

  • Wagner DR, Lotz JC (2004) Theoretical model and experimental results for the nonlinear elastic behavior of human annulus fibrosus. J Orthop Res 22(4):901–909

    Article  PubMed  Google Scholar 

  • Wang C, Witschey W, Elliott MA, Borthakur A, Reddy R (2010) Measurement of intervertebral disc pressure with T 1rho MRI. Magn Reson Med 64(6):1721–1727

    Article  PubMed  Google Scholar 

  • Wilke HJ, Wolf S, Claes LE, Arand M, Wiesend A (1996) Influence of varying muscle forces on lumbar intradiscal pressure: an in vitro study. J Biomech 29(4):549–555

    Article  PubMed  CAS  Google Scholar 

  • Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 24(8):755–762

    Article  CAS  Google Scholar 

  • Wu HC, Yao RF (1976) Mechanical behavior of the human annulus fibrosus. J Biomech 9(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Yates JP, Giangregorio L, McGill SM (2010) The influence of intervertebral disc shape on the pathway of posterior/posterolateral partial herniation. Spine (Phila Pa 1976) 35(7):734–739

    Article  Google Scholar 

  • Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P (2009) Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44(2):372–379

    Article  PubMed  Google Scholar 

  • Zhu W, Mow VC, Koob TJ, Eyre DR (1993) Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J Orthop Res 11(6):771–781

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Chern KY, Mow VC (1994) Anisotropic viscoelastic shear properties of bovine meniscus. Clin Orthop Relat Res 306:34–45

    PubMed  Google Scholar 

Download references

Acknowledgments

This chapter is funded by research grants from the National Institutes of Health R01 AR 050052, R21 AR061751, and R01 EB 002425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn M. Elliott PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Cortes, D.H., Elliott, D.M. (2014). The Intervertebral Disc: Overview of Disc Mechanics. In: Shapiro, I., Risbud, M. (eds) The Intervertebral Disc. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1535-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1535-0_2

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1534-3

  • Online ISBN: 978-3-7091-1535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics