Skip to main content

Intervertebral Disc Herniation: Pathophysiology and Emerging Therapies

  • Chapter
  • First Online:
The Intervertebral Disc

Abstract

Approximately 2.6 % of the US population visits a physician for treatment of spinal disorders annually (Fraser 2009) with costs of $7.1 billion from lost work days alone (Ricci et al. 2006). “Herniation” of the intervertebral disc is one of the several spinal disorders that contribute to this very high incidence, with potential to cause significant pain, neurological deficit, and functional disability in affected individuals. Herniation presents as a protrusion or extrusion of discal tissue into the epidural cavity, resulting in nerve root impingement and disc tissue exposure (Fig. 19.1). Both mechanical compression and tissue exposure contribute to pain and disability associated with intervertebral disc herniation (Goupille et al. 1998; Mixter et al. 1934; Olmarker and Rydevik 1991). In areas innervated by the affected nerves, it is commonly seen as low back pain, radiating leg pain (i.e., radiculopathy or sciatica), muscle weakness, gait abnormality, muscle atrophy, asymmetric reflexes, or loss of function (Atlas et al. 2005; Frymoyer 1988; Hart et al. 1995). The incidence of sciatica related to intervertebral disc herniation peaks between the fourth and fifth decades of life and is most frequently associated with herniations between the L3 and S1 vertebral levels (Atlas et al. 2005; Awad and Moskovich 2006). The severity of herniation symptoms in the cervical or lumbar regions has been shown to relate to the size or nature of the herniated fragment, whether it is simply protruding into the neural cavity, extruded, or completely sequestered from the parent structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Kurihara T, Han W, Shinomiya K, Tanabe T (2002) Changes in expression of voltage-dependent ion channel subunits in dorsal root ganglia of rats with radicular injury and pain. Spine (Phila Pa 1976) 27:1517–1524; discussion 1525

    Google Scholar 

  • Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31:2151–2161

    Google Scholar 

  • Ahn SH, Cho YW, Ahn MW, Jang SH, Sohn YK, Kim HS (2002) mRNA expression of cytokines and chemokines in herniated lumbar intervertebral discs. Spine 27(9):911–917

    PubMed  Google Scholar 

  • Allen KD, Shamji MF, Mata BA, Gabr MA, Sinclair SM, Schmitt DO, Richardson WJ, Setton LA (2011) Kinematic and dynamic gait compensations in a rat model of lumbar radiculopathy and the effects of tumor necrosis factor-alpha antagonism. Arthritis Res Ther 13:R137

    PubMed  CAS  Google Scholar 

  • Allen KD, Mata BA, Gabr MA, Huebner JL, Adams SB Jr, Kraus VB, Schmitt DO, Setton LA (2012) Kinematic and dynamic gait compensations resulting from knee instability in a rat model of osteoarthritis. Arthritis Res Ther 14:R78

    PubMed  Google Scholar 

  • Aoki K, Rydevik B, Kikuchi S, Olmarker K (2002) Local application of disc-related cytokines on spinal nerve roots. Spine 27:1614–1617

    PubMed  Google Scholar 

  • Arai I, Mao GP, Otani K, Konno S, Kikuchi S, Olmarker K (2004) Indomethacin blocks the nucleus pulposus-induced effects on nerve root function. An experimental study in dogs with assessment of nerve conduction and blood flow following experimental disc herniation. Eur Spine J 13(8):691–694

    PubMed  Google Scholar 

  • Atcheson SG, Dymeck T (2004) Rapid resolution of chronic sciatica with intravenous infliximab after failed epidural steroid injections. Spine 29:E248–E250

    PubMed  Google Scholar 

  • Atlas SJ, Keller RB, Wu YA, Deyo RA, Singer DE (2005) Long-term outcomes of surgical and nonsurgical management of lumbar spinal stenosis: 8 to 10 year results from the maine lumbar spine study. Spine (Phila Pa 1976) 30:936–943

    Google Scholar 

  • Awad JN, Moskovich R (2006) Lumbar disc herniations: surgical versus nonsurgical treatment. Clin Orthop Relat Res 443:183–197

    PubMed  Google Scholar 

  • Bachmeier BE, Nerlich A, Mittermaier N, Weiler C, Lumenta C, Wuertz K, Boos N (2009) Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur Spine J 18:1573–1586

    PubMed  Google Scholar 

  • Battie MC, Videman T (2006) Lumbar disc degeneration: epidemiology and genetics. J Bone Joint Surg Am 88(Suppl 2):3–9

    PubMed  Google Scholar 

  • Battie MC, Videman T, Kaprio J, Gibbons LE, Gill K, Manninen H, Saarela J, Peltonen L (2009) The twin spine study: contributions to a changing view of disc degeneration. Spine J 9:47–59

    PubMed  Google Scholar 

  • Beare JE, Morehouse JR, DeVries WH, Enzmann GU, Burke DA, Magnuson DS, Whittemore SR (2009) Gait analysis in normal and spinal contused mice using the treadscan system. J Neurotrauma 26:2045–2056

    PubMed  Google Scholar 

  • Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain 133:433–447

    PubMed  Google Scholar 

  • Berryman ER, Harris RL, Moalli M, Bagi CM (2009) Digigait quantitation of gait dynamics in rat rheumatoid arthritis model. J Musculoskelet Neuronal Interact 9:89–98

    PubMed  CAS  Google Scholar 

  • Binshtok AM, Wang H, Zimmermann K, Amaya F, Vardeh D, Shi L, Brenner GJ, Ji RR, Bean BP, Woolf CJ, Samad TA (2008) Nociceptors are interleukin-1beta sensors. J Neurosci 28:14062–14073

    PubMed  CAS  Google Scholar 

  • Bostman OM (1993) Body mass index and height in patients requiring surgery for lumbar intervertebral disc herniation. Spine (Phila Pa 1976) 18:851–854

    CAS  Google Scholar 

  • Brisby H, Byrod G, Olmarker K, Miller VM, Aoki Y, Rydevik B (2000) Nitric oxide as a mediator of nucleus pulposus-induced effects on spinal nerve roots. J Orthop Res 18:815–820

    PubMed  CAS  Google Scholar 

  • Brisby H, Olmarker K, Larsson K, Nutu M, Rydevik B (2002) Proinflammatory cytokines in cerebrospinal fluid and serum in patients with disc herniation and sciatica. Eur Spine J 11:62–66

    PubMed  CAS  Google Scholar 

  • Buenaventura RM, Datta S, Abdi S, Smith HS (2009) Systematic review of therapeutic lumbar transforaminal epidural steroid injections. Pain Physician 12:233–251

    PubMed  Google Scholar 

  • Burke JG, Watson RW, McCormack D, Dowling FE, Walsh MG, Fitzpatrick JM (2002) Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J Bone Joint Surg Br 84:196–201

    PubMed  CAS  Google Scholar 

  • Byrod G, Otani K, Brisby H, Rydevik B, Olmarker K (2000) Methylprednisolone reduces the early vascular permeability increase in spinal nerve roots induced by epidural nucleus pulposus application. J Orthop Res 18:983–987

    PubMed  CAS  Google Scholar 

  • Cao H, Zhang YQ (2008) Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev 32:972–983

    PubMed  Google Scholar 

  • Chang YW, Winkelstein BA (2011) Schwann cell proliferation and macrophage infiltration are evident at day 14 after painful cervical nerve root compression in the rat. J Neurotrauma 28:2429–2438

    PubMed  Google Scholar 

  • Chaplan SR, Malmberg AB, Yaksh TL (1997) Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. J Pharmacol Exp Ther 280:829–838

    PubMed  CAS  Google Scholar 

  • Chou R, Huffman LH (2007) Medications for acute and chronic low back pain: a review of the evidence for an American Pain Society/American College of Physicians clinical practice guideline. Ann Intern Med 147:505–514

    PubMed  Google Scholar 

  • Cohen SP, Bogduk N, Dragovich A, Buckenmaier CC 3rd, Griffith S, Kurihara C, Raymond J, Richter PJ, Williams N, Yaksh TL (2009) Randomized, double-blind, placebo-controlled, dose–response, and preclinical safety study of transforaminal epidural etanercept for the treatment of sciatica. Anesthesiology 110:1116–1126

    PubMed  CAS  Google Scholar 

  • Colburn RW, Rickman AJ, DeLeo JA (1999) The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol 157:289–304

    PubMed  CAS  Google Scholar 

  • Cornefjord M, Olmarker K, Otani K, Rydevik B (2001) Effects of diclofenac and ketoprofen on nerve conduction velocity in experimental nerve root compression. Spine (Phila Pa 1976) 26(20):2193–2197

    CAS  Google Scholar 

  • Crawley JN (2007) What’s wrong with my mouse? Behavioral phenotyping of transgenic and knockout mice. Wiley-Interscience, Hoboken

    Google Scholar 

  • Cuellar JM, Montesano PX, Carstens E (2004) Role of TNF-alpha in sensitization of nociceptive dorsal horn neurons induced by application of nucleus pulposus to L5 dorsal root ganglion in rats. Pain 110:578–587

    PubMed  CAS  Google Scholar 

  • Cuellar JM, Montesano PX, Antognini JF, Carstens E (2005) Application of nucleus pulposus to L5 dorsal root ganglion in rats enhances nociceptive dorsal horn neuronal windup. J Neurophysiol 94:35–48

    PubMed  CAS  Google Scholar 

  • DeLeo JA, Yezierski RP (2001) The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90:1–6

    PubMed  CAS  Google Scholar 

  • DeLeo JA, Rutkowski MD, Stalder AK, Campbell IL (2000) Transgenic expression of TNF by astrocytes increases mechanical allodynia in a mouse neuropathy model. Neuroreport 11:599–602

    PubMed  CAS  Google Scholar 

  • DeLeo JA, Tanga FY, Tawfik VL (2004) Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. Neuroscientist 10:40–52

    PubMed  CAS  Google Scholar 

  • Demircan MN, Asir A, Cetinkal A, Gedik N, Kutlay AM, Colak A et al. (2007) Is there any relationship between proinflammatory mediator levels in disc material and myelopathy with cervical disc herniation and spondylosis? A non-randomized, prospective clinical study. Eur Spine J 16(7):983–986

    PubMed  Google Scholar 

  • Ding XL, Wang YH, Ning LP, Zhang Y, Ge HY, Jiang H, Wang R, Yue SW (2010) Involvement of TRPV4-NO-cGMP-PKG pathways in the development of thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res 208(1):194–201

    PubMed  CAS  Google Scholar 

  • Doita M, Kanatani T, Harada T, Mizuno K (1996) Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine 21:235–241

    PubMed  CAS  Google Scholar 

  • Dyck PJ, Lais AC, Giannini C, Engelstad JK (1990) Structural alterations of nerve during cuff compression. Proc Natl Acad Sci U S A 87:9828–9832

    PubMed  CAS  Google Scholar 

  • Fraser I (2009) Statistics on hospital-based care in the United States. Agency for Healthcare Research and Quality, Rockville

    Google Scholar 

  • Freemont AJ, Watkins A, Le Maitre C, Jeziorska M, Hoyland JA (2002) Current understanding of cellular and molecular events in intervertebral disc degeneration: implications for therapy. J Pathol 196:374–379

    PubMed  CAS  Google Scholar 

  • Frymoyer JW (1988) Back pain and sciatica. N Engl J Med 318:291–300

    PubMed  CAS  Google Scholar 

  • Fumihiko H, Nobuo M, Nobuo H (1996) Changes in responses of wide dynamic range neurons in the spinal dorsal horn after dorsal root or dorsal root ganglion compression. Spine (Phila Pa 1976) 21:1408–1414

    Google Scholar 

  • Gajendran VK, Reuter MW, Golish SR, Hanna LS, Scuderi GJ (2011) Is the fibronectin-aggrecan complex present in cervical disk disease? PM R 3:1030–1034

    PubMed  Google Scholar 

  • Garfin SR, Cohen MS, Massie JB, Abitbol JJ, Swenson MR, Myers RR, Rydevik BL (1990) Nerve-roots of the cauda equina. The effect of hypotension and acute graded compression on function. J Bone Joint Surg Am 72:1185–1192

    PubMed  CAS  Google Scholar 

  • Genevay S, Stingelin S, Gabay C (2004) Efficacy of etanercept in the treatment of acute, severe sciatica: a pilot study. Ann Rheum Dis 63:1120–1123

    PubMed  CAS  Google Scholar 

  • Gensel JC, Tovar CA, Hamers FP, Deibert RJ, Beattie MS, Bresnahan JC (2006) Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats. J Neurotrauma 23:36–54

    PubMed  Google Scholar 

  • Goupille P, Jayson MI, Valat JP, Freemont AJ (1998) The role of inflammation in disk herniation-associated radiculopathy. Semin Arthritis Rheum 28:60–71

    PubMed  CAS  Google Scholar 

  • Gronblad M, Virri J, Tolonen J, Seitsalo S, Kaapa E, Kankare J, Myllynen P, Karaharju EO (1994) A controlled immunohistochemical study of inflammatory cells in disc herniation tissue. Spine (Phila Pa 1976) 19:2744–2751

    CAS  Google Scholar 

  • Guertin AD, Zhang DP, Mak KS, Alberta JA, Kim HA (2005) Microanatomy of axon/glial signaling during Wallerian degeneration. J Neurosci 25:3478–3487

    PubMed  CAS  Google Scholar 

  • Hanai F, Matsui N, Hongo N (1996) Changes in responses of wide dynamic range neurons in the spinal dorsal horn after dorsal root or dorsal root ganglion compression. Spine 21:1408–1414; discussion 1414–1415

    PubMed  CAS  Google Scholar 

  • Hart LG, Deyo RA, Cherkin DC (1995) Physician office visits for low back pain. Frequency, clinical evaluation, and treatment patterns from a US national survey. Spine (Phila Pa 1976) 20:11–19

    CAS  Google Scholar 

  • Hashizume H, DeLeo JA, Colburn RW, Weinstein JN (2000a) Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine (Phila Pa 1976) 25:1206–1217

    CAS  Google Scholar 

  • Hashizume H, Rutkowski MD, Weinstein JN, DeLeo JA (2000b) Central administration of methotrexate reduces mechanical allodynia in an animal model of radiculopathy/sciatica. Pain 87(2):159–169

    PubMed  CAS  Google Scholar 

  • Hashizume H, Kawakami M, Yoshida M, Okada M, Enyo Y, Inomata Y (2007) Sarpogrelate hydrochloride, a 5-HT2a receptor antagonist, attenuates neurogenic pain induced by nucleus pulposus in rats. Spine (Phila Pa 1976) 32:315–320

    Google Scholar 

  • Heliovaara M (1987a) Body height, obesity, and risk of herniated lumbar intervertebral disc. Spine (Phila Pa 1976) 12:469–472

    CAS  Google Scholar 

  • Heliovaara M (1987b) Occupation and risk of herniated lumbar intervertebral disc or sciatica leading to hospitalization. J Chronic Dis 40:259–264

    PubMed  CAS  Google Scholar 

  • Heliovaara M, Impivaara O, Sievers K, Melkas T, Knekt P, Korpi J, Aromaa A (1987a) Lumbar disc syndrome in Finland. J Epidemiol Community Health 41:251–258

    PubMed  CAS  Google Scholar 

  • Heliovaara M, Knekt P, Aromaa A (1987b) Incidence and risk factors of herniated lumbar intervertebral disc or sciatica leading to hospitalization. J Chronic Dis 40:251–258

    PubMed  CAS  Google Scholar 

  • Hogan QH (2007) Role of decreased sensory neuron membrane calcium currents in the genesis of neuropathic pain. Croat Med J 48:9–21

    PubMed  CAS  Google Scholar 

  • Hou SX, Tang JG, Chen HS, Chen J (2003) Chronic inflammation and compression of the dorsal root contribute to sciatica induced by the intervertebral disc herniation in rats. Pain 105:255–264

    PubMed  Google Scholar 

  • Hu SJ, Xing JL (1998) An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat. Pain 77:15–23

    PubMed  CAS  Google Scholar 

  • Huang KY, Lin RM, Chen WY, Lee CL, Yan JJ, Chang MS (2008) IL-20 may contribute to the pathogenesis of human intervertebral disc herniation. Spine 33(19):2034–2040

    PubMed  Google Scholar 

  • Hubbard RD, Winkelstein BA (2005) Transient cervical nerve root compression in the rat induces bilateral forepaw allodynia and spinal glial activation: mechanical factors in painful neck injuries. Spine (Phila Pa 1976) 30:1924–1932

    Google Scholar 

  • Hubbard RD, Winkelstein BA (2008) Dorsal root compression produces myelinated axonal degeneration near the biomechanical thresholds for mechanical behavioral hypersensitivity. Exp Neurol 212:482–489

    PubMed  Google Scholar 

  • Hubbard RD, Chen Z, Winkelstein BA (2008a) Transient cervical nerve root compression modulates pain: load thresholds for allodynia and sustained changes in spinal neuropeptide expression. J Biomech 41:677–685

    PubMed  Google Scholar 

  • Hubbard RD, Quinn KP, Martinez JJ, Winkelstein BA (2008b) The role of graded nerve root compression on axonal damage, neuropeptide changes, and pain-related behaviors. Stapp Car Crash J 52:33–58

    PubMed  Google Scholar 

  • Hubbard RD, Martinez JJ, Burdick JA, Winkelstein BA (2009) Controlled release of GDNF reduces nerve root-mediated behavioral hypersensitivity. J Orthop Res 27:120–127

    PubMed  Google Scholar 

  • Hwang PY, Allen KD, Shamji MF, Jing L, Mata BA, Gabr MA, Huebner JL, Kraus VB, Richardson WJ, Setton LA (2012) Changes in midbrain pain receptor expression, gait and behavioral sensitivity in a rat model of radiculopathy. Open Orthop J 6:383–391. PubMed Central PMCID: PMC3434701

    Google Scholar 

  • Igarashi T, Kikuchi S, Shubayev V, Myers RR (2000) 2000 Volvo Award winner in Basic Science Studies: exogenous tumor necrosis factor-alpha mimics nucleus pulposus-induced neuropathology. Molecular, histologic, and behavioral comparisons in rats. Spine 25:2975–2980

    PubMed  CAS  Google Scholar 

  • Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210–226

    PubMed  CAS  Google Scholar 

  • Jancalek R, Dubovy P (2007) An experimental animal model of spinal root compression syndrome: an analysis of morphological changes of myelinated axons during compression radiculopathy and after decompression. Exp Brain Res 179:111–119

    PubMed  CAS  Google Scholar 

  • Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413:203–210

    PubMed  CAS  Google Scholar 

  • Kajander KC, Pollock CH, Berg H (1996) Evaluation of hindpaw position in rats during chronic constriction injury (CCI) produced with different suture materials. Somatosens Mot Res 13:95–101

    PubMed  CAS  Google Scholar 

  • Kallakuri S, Takebayashi T, Ozaktay AC, Chen C, Yang S, Wooley PH, Cavanaugh JM (2005) The effects of epidural application of allografted nucleus pulposus in rats on cytokine expression, limb withdrawal and nerve root discharge. Eur Spine J 14:956–964

    PubMed  Google Scholar 

  • Kanayama M, Hashimoto T, Shigenobu K, Yamane S (2003) Efficacy of serotonin receptor blocker for symptomatic lumbar disc herniation. Clin Orthop Relat Res (411):159–165

    Google Scholar 

  • Kang JD, Stefanovic-Racic M, McIntyre LA, Georgescu HI, Evans CH (1997) Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine 22(10):1065–1073

    PubMed  CAS  Google Scholar 

  • Karppinen J, Korhonen T, Malmivaara A, Paimela L, Kyllonen E, Lindgren KA, Rantanen P, Tervonen O, Niinimaki J, Seitsalo S, Hurri H (2003) Tumor necrosis factor-alpha monoclonal antibody, infliximab, used to manage severe sciatica. Spine 28:750–753; discussion 753–754

    PubMed  Google Scholar 

  • Kasimcan O, Kaptan H (2010) Efficacy of gabapentin for radiculopathy caused by lumbar spinal stenosis and lumbar disk hernia. Neurol Med Chir (Tokyo) 50:1070–1073

    Google Scholar 

  • Kawakami M, Weinstein JN, Chatani K, Spratt KF, Meller ST, Gebhart GF (1994a) Experimental lumbar radiculopathy. Behavioral and histologic changes in a model of radicular pain after spinal nerve root irritation with chromic gut ligatures in the rat. Spine (Phila Pa 1976) 19:1795–1802

    CAS  Google Scholar 

  • Kawakami M, Weinstein JN, Spratt KF, Chatani K, Traub RJ, Meller ST, Gebhart GF (1994b) Experimental lumbar radiculopathy. Immunohistochemical and quantitative demonstrations of pain induced by lumbar nerve root irritation of the rat. Spine (Phila Pa 1976) 19:1780–1794

    CAS  Google Scholar 

  • Kawakami M, Matsumoto T, Kuribayashi K, Tamaki T (1999) mRNA expression of interleukins, phospholipase A2, and nitric oxide synthase in the nerve root and dorsal root ganglion induced by autologous nucleus pulposus in the rat. J Orthop Res 17:941–946

    PubMed  CAS  Google Scholar 

  • Kawakami M, Matsumoto T, Tamaki T (2001) Roles of thromboxane A2 and leukotriene B4 in radicular pain induced by herniated nucleus pulposus. J Orthop Res 19(3):472–477

    PubMed  CAS  Google Scholar 

  • Kawakami M, Hashizume H, Nishi H, Matsumoto T, Tamaki T, Kuribayashi K (2003) Comparison of neuropathic pain induced by the application of normal and mechanically compressed nucleus pulposus to lumbar nerve roots in the rat. J Orthop Res 21:535–539

    PubMed  Google Scholar 

  • Kobayashi S, Yoshizawa H, Yamada S (2004a) Pathology of lumbar nerve root compression. Part 1: intraradicular inflammatory changes induced by mechanical compression. J Orthop Res 22:170–179

    PubMed  Google Scholar 

  • Kobayashi S, Yoshizawa H, Yamada S (2004b) Pathology of lumbar nerve root compression. Part 2: morphological and immunohistochemical changes of dorsal root ganglion. J Orthop Res 22:180–188

    PubMed  CAS  Google Scholar 

  • Kobayashi S, Baba H, Uchida K, Kokubo Y, Kubota C, Yamada S, Suzuki Y, Yoshizawa H (2005a) Effect of mechanical compression on the lumbar nerve root: localization and changes of intraradicular inflammatory cytokines, nitric oxide, and cyclooxygenase. Spine 30:1699–1705

    PubMed  Google Scholar 

  • Kobayashi S, Kokubo Y, Uchida K, Yayama T, Takeno K, Negoro K, Nakajima H, Baba H, Yoshizawa H (2005b) Effect of lumbar nerve root compression on primary sensory neurons and their central branches: changes in the nociceptive neuropeptides substance P and somatostatin. Spine (Phila Pa 1976) 30:276–282

    Google Scholar 

  • Kobayashi S, Meir A, Baba H, Uchida K, Hayakawa K (2005c) Imaging of intraneural edema by using gadolinium-enhanced MR imaging: experimental compression injury. AJNR Am J Neuroradiol 26:973–980

    PubMed  Google Scholar 

  • Kobayashi S, Sasaki S, Shimada S, Kaneyasu M, Mizukami Y, Kitade I, Ogawa M, Kawahara H, Baba H, Yoshizawa H (2005d) Changes of calcitonin gene-related peptide in primary sensory neurons and their central branch after nerve root compression of the dog. Arch Phys Med Rehabil 86:527–533

    PubMed  Google Scholar 

  • Kobayashi S, Uchida K, Kokubo Y, Takeno K, Yayama T, Miyazaki T, Nakajima H, Nomura E, Mwaka E, Baba H (2008) Synapse involvement of the dorsal horn in experimental lumbar nerve root compression: a light and electron microscopic study. Spine (Phila Pa 1976) 33:716–723

    Google Scholar 

  • Komori H, Shinomiya K, Nakai O, Yamaura I, Takeda S, Furuya K (1996) The natural history of herniated nucleus pulposus with radiculopathy. Spine (Phila Pa 1976) 21:225–229

    CAS  Google Scholar 

  • Korhonen T, Karppinen J, Paimela L, Malmivaara A, Lindgren KA, Jarvinen S, Niinimaki J, Veeger N, Seitsalo S, Hurri H (2005) The treatment of disc herniation-induced sciatica with infliximab: results of a randomized, controlled, 3-month follow-up study. Spine 30:2724–2728

    PubMed  Google Scholar 

  • Korhonen T, Karppinen J, Paimela L, Malmivaara A, Lindgren KA, Bowman C, Hammond A, Kirkham B, Jarvinen S, Niinimaki J, Veeger N, Haapea M, Torkki M, Tervonen O, Seitsalo S, Hurri H (2006) The treatment of disc-herniation-induced sciatica with infliximab: one-year follow-up results of first ii, a randomized controlled trial. Spine 31:2759–2766

    PubMed  Google Scholar 

  • Le Maitre CL, Freemont AJ, Hoyland JA (2005) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7(4):R732–R745

    PubMed  Google Scholar 

  • Le Maitre CL, Hoyland JA, Freemont AJ (2007) Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther 9:R77

    PubMed  Google Scholar 

  • Lindenlaub T, Teuteberg P, Hartung T, Sommer C (2000) Effects of neutralizing antibodies to TNF-alpha on pain-related behavior and nerve regeneration in mice with chronic constriction injury. Brain Res 866:15–22

    PubMed  CAS  Google Scholar 

  • Loupasis GA, Stamos K, Katonis PG, Sapkas G, Korres DS, Hartofilakidis G (1999) Seven- to 20-year outcome of lumbar discectomy. Spine (Phila Pa 1976) 24:2313–2317

    CAS  Google Scholar 

  • Marriott I (2004) The role of tachykinins in central nervous system inflammatory responses. Front Biosci 9:2153–2165

    PubMed  CAS  Google Scholar 

  • Maves TJ, Pechman PS, Gebhart GF, Meller ST (1993) Possible chemical contribution from chromic gut sutures produces disorders of pain sensation like those seen in man. Pain 54:57–69

    PubMed  CAS  Google Scholar 

  • McCarron RF, Wimpee MW, Hudkins PG, Laros GS (1987) The inflammatory effect of nucleus pulposus. A possible element in the pathogenesis of low-back pain. Spine (Phila Pa 1976) 12:760–764

    CAS  Google Scholar 

  • Mixter CG, Blumgart HL, Berlin DD (1934) Total ablation of the thyroid for angina pectoris and congestive heart failure: results of eighteen months’ experience. Ann Surg 100:570–577

    PubMed  CAS  Google Scholar 

  • Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51:240–264

    PubMed  CAS  Google Scholar 

  • Moore RJ, Vernon-Roberts B, Fraser RD, Osti OL, Schembri M (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine 21:2149–2155

    PubMed  CAS  Google Scholar 

  • Morishita Y, Hida S, Naito M, Arimizu J, Matsushima U, Nakamura A (2006) Measurement of the local pressure of the intervertebral foramen and the electrophysiologic values of the spinal nerve roots in the vertebral foramen. Spine (Phila Pa 1976) 31:3076–3080

    Google Scholar 

  • Mosconi T, Kruger L (1996) Fixed-diameter polyethylene cuffs applied to the rat sciatic nerve induce a painful neuropathy: ultrastructural morphometric analysis of axonal alterations. Pain 64:37–57

    PubMed  CAS  Google Scholar 

  • Mulleman D, Mammou S, Griffoul I, Watier H, Goupille P (2006a) Pathophysiology of disk-related low back pain and sciatica. II. Evidence supporting treatment with TNF-alpha antagonists. Joint Bone Spine 73:270–277

    PubMed  CAS  Google Scholar 

  • Mulleman D, Mammou S, Griffoul I, Watier H, Goupille P (2006b) Pathophysiology of disk-related sciatica. I – Evidence supporting a chemical component. Joint Bone Spine 73:151–158

    PubMed  Google Scholar 

  • Murata Y, Onda A, Rydevik B, Takahashi K, Olmarker K (2004a) Distribution and appearance of tumor necrosis factor-alpha in the dorsal root ganglion exposed to experimental disc herniation in rats. Spine (Phila Pa 1976) 29:2235–2241

    Google Scholar 

  • Murata Y, Onda A, Rydevik B, Takahashi K, Olmarker K (2004b) Selective inhibition of tumor necrosis factor-alpha prevents nucleus pulposus-induced histologic changes in the dorsal root ganglion. Spine 29:2477–2484

    PubMed  Google Scholar 

  • Myers RR, Yamamoto T, Yaksh TL, Powell HC (1993) The role of focal nerve ischemia and wallerian degeneration in peripheral nerve injury producing hyperesthesia. Anesthesiology 78:308–316

    PubMed  CAS  Google Scholar 

  • Nakamae T, Ochi M, Olmarker K (2011) Pharmacological inhibition of tumor necrosis factor may reduce pain behavior changes induced by experimental disc puncture in the rat: an experimental study in rats. Spine (Phila Pa 1976) 36:E232–E236

    Google Scholar 

  • Nicholson KJ, Quindlen JC, Winkelstein BA (2011) Development of a duration threshold for modulating evoked neuronal responses after nerve root compression injury. Stapp Car Crash J 55:1–24

    PubMed  Google Scholar 

  • Nicholson KJ, Guarino BB, Winkelstein BA (2012) Transient nerve root compression load and duration differentially mediate behavioral sensitivity and associated spinal astrocyte activation and mGLuR5 expression. Neuroscience 209:187–195

    PubMed  CAS  Google Scholar 

  • Nilsson E, Nakamae T, Olmarker K (2011) Pain behavior changes following disc puncture relate to nucleus pulposus rather than to the disc injury per se: an experimental study in rats. Open Orthop J 5:72–77

    PubMed  Google Scholar 

  • Nygaard OP, Mellgren SI, Osterud B (1997) The inflammatory properties of contained and noncontained lumbar disc herniation. Spine 22(21):2484–2488

    PubMed  CAS  Google Scholar 

  • Obata K, Tsujino H, Yamanaka H, Yi D, Fukuoka T, Hashimoto N, Yonenobu K, Yoshikawa H, Noguchi K (2002) Expression of neurotrophic factors in the dorsal root ganglion in a rat model of lumbar disc herniation. Pain 99:121–132

    PubMed  CAS  Google Scholar 

  • Obata K, Yamanaka H, Dai Y, Mizushima T, Fukuoka T, Tokunaga A, Noguchi K (2004) Activation of extracellular signal-regulated protein kinase in the dorsal root ganglion following inflammation near the nerve cell body. Neuroscience 126:1011–1021

    PubMed  CAS  Google Scholar 

  • O’Donnell JL, O’Donnell AL (1996) Prostaglandin E2 content in herniated lumbar disc disease. Spine 21(14):1653–1655; discussion 1655–1656

    PubMed  Google Scholar 

  • Ohtori S, Takahashi K, Aoki Y, Doya H, Ozawa T, Saito T, Moriya H (2004) Spinal neural cyclooxygenase-2 mediates pain caused in a rat model of lumbar disk herniation. J Pain 5(7):385–391

    PubMed  CAS  Google Scholar 

  • Olmarker K (2001) Radicular pain – recent pathophysiologic concepts and therapeutic implications. Schmerz 15:425–429

    PubMed  CAS  Google Scholar 

  • Olmarker K (2008) Puncture of a lumbar intervertebral disc induces changes in spontaneous pain behavior: an experimental study in rats. Spine 33:850–855

    PubMed  Google Scholar 

  • Olmarker K, Larsson K (1998) Tumor necrosis factor alpha and nucleus-pulposus-induced nerve root injury. Spine (Phila Pa 1976) 23:2538–2544

    CAS  Google Scholar 

  • Olmarker K, Myers R (1998) Pathogenesis of sciatic pain: role of herniated nucleus pulposus and deformation of spinal nerve root and dorsal root ganglion. Pain 78:99–105

    Google Scholar 

  • Olmarker K, Rydevik B (1991) Pathophysiology of sciatica. Orthop Clin North Am 22:223–234

    PubMed  CAS  Google Scholar 

  • Olmarker K, Rydevik B (2001) Selective inhibition of tumor necrosis factor-alpha prevents nucleus pulposus-induced thrombus formation, intraneural edema, and reduction of nerve conduction velocity: possible implications for future pharmacologic treatment strategies of sciatica. Spine 26:863–869

    PubMed  CAS  Google Scholar 

  • Olmarker K, Rydevik B, Holm S (1989) Edema formation in spinal nerve roots induced by experimental, graded compression. An experimental study on the pig cauda equina with special reference to differences in effects between rapid and slow onset of compression. Spine (Phila Pa 1976) 14:569–573

    CAS  Google Scholar 

  • Olmarker K, Rydevik B, Nordborg C (1993) Autologous nucleus pulposus induces neurophysiologic and histologic changes in porcine cauda equina nerve roots. Spine (Phila Pa 1976) 18:1425–1432

    CAS  Google Scholar 

  • Olmarker K, Byrod G, Cornefjord M, Nordborg C, Rydevik B (1994) Effects of methylprednisolone on nucleus pulposus-induced nerve root injury. Spine (Phila Pa 1976) 19:1803–1808

    CAS  Google Scholar 

  • Olmarker K, Brisby H, Yabuki S, Nordborg C, Rydevik B (1997) The effects of normal, frozen, and hyaluronidase-digested nucleus pulposus on nerve root structure and function. Spine 22:471–475; discussion 476

    PubMed  CAS  Google Scholar 

  • Olmarker K, Iwabuchi M, Larsson K, Rydevik B (1998) Walking analysis of rats subjected to experimental disc herniation. Eur Spine J 7:394–399

    PubMed  CAS  Google Scholar 

  • Olmarker K, Storkson R, Berge OG (2002) Pathogenesis of sciatic pain: a study of spontaneous behavior in rats exposed to experimental disc herniation. Spine 27:1312–1317

    PubMed  Google Scholar 

  • Olmarker K, Nutu M, Storkson R (2003) Changes in spontaneous behavior in rats exposed to experimental disc herniation are blocked by selective TNF-alpha inhibition. Spine 28:1635–1641; discussion 1642

    PubMed  Google Scholar 

  • Onda A, Hamba M, Yabuki S, Kikuchi S (2002) Exogenous tumor necrosis factor-alpha induces abnormal discharges in rat dorsal horn neurons. Spine (Phila Pa 1976) 27:1618–1624; discussion 1624

    Google Scholar 

  • Onda A, Murata Y, Rydevik B, Larsson K, Kikuchi S, Olmarker K (2004) Infliximab attenuates immunoreactivity of brain-derived neurotrophic factor in a rat model of herniated nucleus pulposus. Spine 29:1857–1861

    PubMed  Google Scholar 

  • Onda A, Murata Y, Rydevik B, Larsson K, Kikuchi S, Olmarker K (2005) Nerve growth factor content in dorsal root ganglion as related to changes in pain behavior in a rat model of experimental lumbar disc herniation. Spine (Phila Pa 1976) 30:188–193

    Google Scholar 

  • Otani K, Arai I, Mao GP, Konno S, Olmarker K, Kikuchi S (1997) Experimental disc herniation: evaluation of the natural course. Spine (Phila Pa 1976) 22:2894–2899

    CAS  Google Scholar 

  • Ozaktay AC, Cavanaugh JM, Asik I, DeLeo JA, Weinstein JN (2002) Dorsal root sensitivity to interleukin-1 beta, interleukin-6 and tumor necrosis factor in rats. Eur Spine J 11:467–475

    PubMed  Google Scholar 

  • Ozaktay AC, Kallakuri S, Takebayashi T, Cavanaugh JM, Asik I, DeLeo JA, Weinstein JN (2006) Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur Spine J 15:1529–1537

    PubMed  Google Scholar 

  • Park JB, Chang H, Kim YS (2002) The pattern of interleukin-12 and T-helper types 1 and 2 cytokine expression in herniated lumbar disc tissue. Spine (Phila Pa 1976) 27(19):2125–2128

    Google Scholar 

  • Pedowitz RA, Garfin SR, Massie JB, Hargens AR, Swenson MR, Myers RR, Rydevik BL (1992) Effects of magnitude and duration of compression on spinal nerve root conduction. Spine (Phila Pa 1976) 17:194–199

    CAS  Google Scholar 

  • Piesla MJ, Leventhal L, Strassle BW, Harrison JE, Cummons TA, Lu P, Whiteside GT (2009) Abnormal gait, due to inflammation but not nerve injury, reflects enhanced nociception in preclinical pain models. Brain Res 1295:89–98

    PubMed  CAS  Google Scholar 

  • Ramer LM, Richter MW, Roskams AJ, Tetzlaff W, Ramer MS (2004) Peripherally-derived olfactory ensheathing cells do not promote primary afferent regeneration following dorsal root injury. Glia 47:189–206

    PubMed  Google Scholar 

  • Ricci JA, Stewart WF, Chee E, Leotta C, Foley K, Hochberg MC (2006) Back pain exacerbations and lost productive time costs in United States workers. Spine (Phila Pa 1976) 31:3052–3060

    Google Scholar 

  • Roberts S, Evans H, Trivedi J, Menage J (2006) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):10–14

    PubMed  Google Scholar 

  • Robinson I, Meert TF (2005) Stability of neuropathic pain symptoms in partial sciatic nerve ligation in rats is affected by suture material. Neurosci Lett 373:125–129

    PubMed  CAS  Google Scholar 

  • Rothman SM, Winkelstein BA (2007) Chemical and mechanical nerve root insults induce differential behavioral sensitivity and glial activation that are enhanced in combination. Brain Res 1181:30–43

    PubMed  CAS  Google Scholar 

  • Rothman SM, Winkelstein BA (2010) Cytokine antagonism reduces pain and modulates spinal astrocytic reactivity after cervical nerve root compression. Ann Biomed Eng 38(8):2563–2576

    PubMed  Google Scholar 

  • Rothman SM, Kreider RA, Winkelstein BA (2005) Spinal neuropeptide responses in persistent and transient pain following cervical nerve root injury. Spine (Phila Pa 1976) 30:2491–2496

    Google Scholar 

  • Rothman SM, Guarino BB, Winkelstein BA (2009a) Spinal microglial proliferation is evident in a rat model of painful disc herniation both in the presence of behavioral hypersensitivity and following minocycline treatment sufficient to attenuate allodynia. J Neurosci Res 87:2709–2717

    PubMed  CAS  Google Scholar 

  • Rothman SM, Huang Z, Lee KE, Weisshaar CL, Winkelstein BA (2009b) Cytokine mRNA expression in painful radiculopathy. J Pain 10(1):90–99

    PubMed  CAS  Google Scholar 

  • Rothman SM, Nicholson KJ, Winkelstein BA (2010) Time-dependent mechanics and measures of glial activation and behavioral sensitivity in a rodent model of radiculopathy. J Neurotrauma 27:803–814

    PubMed  Google Scholar 

  • Rutkowski MD, Winkelstein BA, Hickey WF, Pahl JL, DeLeo JA (2002) Lumbar nerve root injury induces central nervous system neuroimmune activation and neuroinflammation in the rat: relationship to painful radiculopathy. Spine (Phila Pa 1976) 27:1604–1613

    Google Scholar 

  • Rydevik B (1994) Sciatica and herniated disk. Current aspects of pathophysiology and pain mechanisms. Nord Med 109:74–76, 80

    PubMed  CAS  Google Scholar 

  • Rydevik B, Brown MD, Lundborg G (1984) Pathoanatomy and pathophysiology of nerve root compression. Spine (Phila Pa 1976) 9:7–15

    CAS  Google Scholar 

  • Rydevik BL, Pedowitz RA, Hargens AR, Swenson MR, Myers RR, Garfin SR (1991) Effects of acute, graded compression on spinal nerve root function and structure. An experimental study of the pig cauda equina. Spine (Phila Pa 1976) 16:487–493

    CAS  Google Scholar 

  • Saab CY, Waxman SG, Hains BC (2008) Alarm or curse? The pain of neuroinflammation. Brain Res Rev 58:226–235

    PubMed  CAS  Google Scholar 

  • Saal JS (1995) The role of inflammation in lumbar pain. Spine (Phila Pa 1976) 20:1821–1827

    CAS  Google Scholar 

  • Saal JS, Franson RC, Dobrow R, Saal JA (1990) High levels of inflammatory phospholipase A2 activity in lumbar disc herniations. Spine 15:674–678

    PubMed  CAS  Google Scholar 

  • Sapunar D, Ljubkovic M, Lirk P, McCallum JB, Hogan QH (2005) Distinct membrane effects of spinal nerve ligation on injured and adjacent dorsal root ganglion neurons in rats. Anesthesiology 103:360–376

    PubMed  Google Scholar 

  • Sasaki N, Kikuchi S, Konno S, Sekiguchi M, Watanabe K (2007) Anti-TNF-alpha antibody reduces pain-behavioral changes induced by epidural application of nucleus pulposus in a rat model depending on the timing of administration. Spine (Phila Pa 1976) 32:413–416

    Google Scholar 

  • Schafers M, Svensson CI, Sommer C, Sorkin LS (2003) Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci 23(7):2517–2521

    PubMed  CAS  Google Scholar 

  • Schafers M, Marziniak M, Sorkin LS, Yaksh TL, Sommer C (2004) Cyclooxygenase inhibition in nerve-injury- and TNF-induced hyperalgesia in the rat. Exp Neurol 185(1):160–168

    PubMed  Google Scholar 

  • Sekiguchi Y, Kikuchi S, Myers RR, Campana WM (2003) ISSLS prize winner: erythropoietin inhibits spinal neuronal apoptosis and pain following nerve root crush. Spine (Phila Pa 1976) 28:2577–2584

    Google Scholar 

  • Sekiguchi M, Otoshi K, Kikuchi S, Konno S (2011) Analgesic effects of prostaglandin E2 receptor subtype EP1 receptor antagonist: experimental study of application of nucleus pulposus. Spine 36(22):1829–1834

    PubMed  Google Scholar 

  • Sekiguchi M, Konno S, Kikuchi S (2008) The effects of a 5-HT2A receptor antagonist on blood flow in lumbar disc herniation: application of nucleus pulposus in a canine model. Eur Spine J 17:307–313

    PubMed  Google Scholar 

  • Sekiguchi M, Sekiguchi Y, Konno S, Kobayashi H, Homma Y, Kikuchi S (2009) Comparison of neuropathic pain and neuronal apoptosis following nerve root or spinal nerve compression. Eur Spine J 18:1978–1985

    PubMed  Google Scholar 

  • Shamji MF, Whitlatch L, Friedman AH, Richardson WJ, Chilkoti A, Setton LA (2008) An injectable and in situ-gelling biopolymer for sustained drug release following perineural administration. Spine (Phila Pa 1976) 33:748–754

    Google Scholar 

  • Shamji MF, Allen KD, So S, Jing L, Adams SB Jr, Schuh R, Huebner J, Kraus VB, Friedman AH, Setton LA, Richardson WJ (2009) Gait abnormalities and inflammatory cytokines in an autologous nucleus pulposus model of radiculopathy. Spine (Phila Pa 1976) 34:648–654

    Google Scholar 

  • Shamji MF, Setton LA, Jarvis W, So S, Chen J, Jing L, Bullock R, Isaacs RE, Brown C, Richardson WJ (2010) Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum 62:1974–1982

    PubMed  CAS  Google Scholar 

  • Skouen J, Brisby H, Otani K, Olmarker K, Rosengren L, Rydevik B (1999) Protein markers in cerebrospinal fluid in experimental nerve root injury. A study of slow-onset chronic compression effects or the biochemical effects of nucleus pulposus on sacral nerve roots. Spine 24:2195–2200

    PubMed  CAS  Google Scholar 

  • Sommer C, Schmidt C, George A, Toyka KV (1997) A metalloprotease-inhibitor reduces pain associated behavior in mice with experimental neuropathy. Neurosci Lett 237(1):45–48

    PubMed  CAS  Google Scholar 

  • Sommer C, Schafers M, Marziniak M, Toyka KV (2001) Etanercept reduced hyperalgesia in experimental painful neuropathy. J Peripher Nerv Syst 6:67–72

    PubMed  CAS  Google Scholar 

  • Song XJ, Wang ZB, Gan Q, Walters ET (2006) cAMP and cGMP contribute to sensory neuron hyperexcitability and hyperalgesia in rats with dorsal root ganglia compression. J Neurophysiol 95(1):479–492

    PubMed  CAS  Google Scholar 

  • Specchia N, Pagnotta A, Toesca A, Greco F (2002) Cytokines and growth factors in the protruded intervertebral disc of the lumbar spine. Eur Spine J 11:145–151

    PubMed  Google Scholar 

  • Staal JB, de Bie R, de Vet HC, Hildebrandt J, Nelemans P (2008) Injection therapy for subacute and chronic low-back pain. Cochrane Database Syst Rev (3):CD001824

    Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247

    PubMed  CAS  Google Scholar 

  • Stoll G, Muller HW (1999) Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain Pathol 9:313–325

    PubMed  CAS  Google Scholar 

  • Suter MR, Wen YR, Decosterd I, Ji RR (2007) Do glial cells control pain? Neuron Glia Biol 3:255–268

    PubMed  Google Scholar 

  • Suzuki M, Inoue G, Gemba T, Watanabe T, Ito T, Koshi T, Yamauchi K, Yamashita M, Orita S, Eguchi Y, Ochiai N, Kishida S, Takaso M, Aoki Y, Takahashi K, Ohtori S (2009) Nuclear factor-kappa B decoy suppresses nerve injury and improves mechanical allodynia and thermal hyperalgesia in a rat lumbar disc herniation model. Eur Spine J 18(7):1001–1007

    PubMed  Google Scholar 

  • Takahashi H, Suguro T, Okazima Y, Motegi M, Okada Y, Kakiuchi T (1996) Inflammatory cytokines in the herniated disc of the lumbar spine. Spine (Phila Pa 1976) 21(2):218–224

    CAS  Google Scholar 

  • Takahashi N, Yabuki S, Aoki Y, Kikuchi S (2003) Pathomechanisms of nerve root injury caused by disc herniation: an experimental study of mechanical compression and chemical irritation. Spine (Phila Pa 1976) 28:435–441

    Google Scholar 

  • Takamori Y, Arimizu J, Izaki T, Naito M, Kobayashi T (2011) Combined measurement of nerve root blood flow and electrophysiological values: intraoperative straight-leg-raising test for lumbar disc herniation. Spine (Phila Pa 1976) 36:57–62

    Google Scholar 

  • Tobinick EL, Britschgi-Davoodifar S (2003) Perispinal TNF-alpha inhibition for discogenic pain. Swiss Med Wkly 133:170–177

    PubMed  CAS  Google Scholar 

  • Tokunaga S, Yamanokuchi K, Yabuki A, Fujiki M, Misumi K (2010) Cartilage oligomeric matrix protein in canine spinal cord appears in the cerebrospinal fluid associated with intervertebral disc herniation. Spine (Phila Pa 1976) 35:4–9

    Google Scholar 

  • Uceyler N, Tscharke A, Sommer C (2008) Early cytokine gene expression in mouse CNS after peripheral nerve lesion. Neurosci Lett 436(2):259–264

    PubMed  Google Scholar 

  • van der Windt DAWM, Simons E, Riphagen II, Ammendolia C, Verhagen AP, Laslett M, Devillé W, Deyo RA, Bouter LM, de Vet HCW, Aertgeerts B (2010) Physical examination for lumbar radiculopathy due to disc herniation in patients with low-back pain. Cochrane Database Syst Rev (2):CD007431

    Google Scholar 

  • Van Zundert J, Harney D, Joosten EA, Durieux ME, Patijn J, Prins MH, Van Kleef M (2006) The role of the dorsal root ganglion in cervical radicular pain: diagnosis, pathophysiology, and rationale for treatment. Reg Anesth Pain Med 31:152–167

    PubMed  Google Scholar 

  • Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH (2006) Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 112:116–138

    PubMed  CAS  Google Scholar 

  • Vrinten DH, Hamers FF (2003) ‘Catwalk’ automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. Pain 102:203–209

    PubMed  Google Scholar 

  • Weiler C, Nerlich AG, Bachmeier BE, Boos N (2005) Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls. Spine (Phila Pa 1976) 30:44–53; discussion 54

    Google Scholar 

  • Weiler C, Lopez-Ramos M, Mayer HM, Korge A, Siepe CJ, Wuertz K, Weiler V, Boos N, Nerlich AG (2011) Histological analysis of surgical lumbar intervertebral disc tissue provides evidence for an association between disc degeneration and increased body mass index. BMC Res Notes 4:497

    PubMed  Google Scholar 

  • Weinstein JN, Lurie JD, Tosteson TD, Skinner JS, Hanscom B, Tosteson AN, Herkowitz H, Fischgrund J, Cammisa FP, Albert T, Deyo RA (2006a) Surgical vs nonoperative treatment for lumbar disk herniation: the spine patient outcomes research trial (sport) observational cohort. JAMA 296:2451–2459

    PubMed  CAS  Google Scholar 

  • Weinstein JN, Tosteson TD, Lurie JD, Tosteson AN, Hanscom B, Skinner JS, Abdu WA, Hilibrand AS, Boden SD, Deyo RA (2006b) Surgical vs nonoperative treatment for lumbar disk herniation: the spine patient outcomes research trial (sport): a randomized trial. JAMA 296:2441–2450

    PubMed  CAS  Google Scholar 

  • Weisshaar CL, Winer JP, Guarino BB, Janmey PA, Winkelstein BA (2011) The potential for salmon fibrin and thrombin to mitigate pain subsequent to cervical nerve root injury. Biomaterials 32(36):9738–9746

    PubMed  CAS  Google Scholar 

  • Whishaw IQ, Kolb B (2005) The behavior of the laboratory rat: a handbook with tests. Oxford University Press, Oxford/New York

    Google Scholar 

  • Willburger RE, Wittenberg RH (1994) Prostaglandin release from lumbar disc and facet joint tissue. Spine (Phila Pa 1976) 19(18):2068–2070

    CAS  Google Scholar 

  • Winkelstein BA, DeLeo JA (2004) Mechanical thresholds for initiation and persistence of pain following nerve root injury: mechanical and chemical contributions at injury. J Biomech Eng 126:258–263

    PubMed  Google Scholar 

  • Winkelstein BA, Rutkowski MD, Sweitzer SM, Pahl JL, DeLeo JA (2001a) Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J Comp Neurol 439(2):127–139

    PubMed  CAS  Google Scholar 

  • Winkelstein BA, Rutkowski MD, Weinstein JN, DeLeo JA (2001b) Quantification of neural tissue injury in a rat radiculopathy model: comparison of local deformation, behavioral outcomes, and spinal cytokine mRNA for two surgeons. J Neurosci Methods 111:49–57

    PubMed  CAS  Google Scholar 

  • Winkelstein BA, Weinstein JN, DeLeo JA (2002) The role of mechanical deformation in lumbar radiculopathy: an in vivo model. Spine (Phila Pa 1976) 27:27–33

    Google Scholar 

  • Xu J, Pollock CH, Kajander KC (1996) Chromic gut suture reduces calcitonin-gene-related peptide and substance P levels in the spinal cord following chronic constriction injury in the rat. Pain 64:503–509

    PubMed  CAS  Google Scholar 

  • Yabuki S, Kawaguchi Y, Nordborg C, Kikuchi S, Rydevik B, Olmarker K (1998) Effects of lidocaine on nucleus pulposus-induced nerve root injury: a neurophysiologic and histologic study of the pig cauda equina. Spine 23:2383–2389

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Nozaki-Taguchi N (1995) Role of cholecystokinin-B receptor in the maintenance of thermal hyperalgesia induced by unilateral constriction injury to the sciatic nerve in the rat. Neurosci Lett 202:89–92

    PubMed  CAS  Google Scholar 

  • Yildirim K, Deniz O, Gureser G, Karatay S, Ugur M, Erdal A, Senel K (2009) Gabapentin monotherapy in patients with chronic radiculopathy: the efficacy and impact on life quality. J Back Musculoskelet Rehabil 22:17–20

    PubMed  Google Scholar 

  • Zanella JM, Burright EN, Hildebrand K, Hobot C, Cox M, Christoferson L, McKay WF (2008) Effect of etanercept, a tumor necrosis factor-alpha inhibitor, on neuropathic pain in the rat chronic constriction injury model. Spine (Phila Pa 1976) 33(3):227–234

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH R00AR057426 (KDA), R01AR047442 (LAS), P01AR050245 (LAS), DOD (BAW), and the Catherine Sharpe Foundation (BAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lori A. Setton PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Winkelstein, B.A., Allen, K.D., Setton, L.A. (2014). Intervertebral Disc Herniation: Pathophysiology and Emerging Therapies. In: Shapiro, I., Risbud, M. (eds) The Intervertebral Disc. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1535-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1535-0_19

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1534-3

  • Online ISBN: 978-3-7091-1535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics