Skip to main content

Large Animal Models of Disc Degeneration

  • Chapter
  • First Online:
The Intervertebral Disc

Abstract

Intervertebral discs are largely of embryonic notochordal origin and impart a unique biomechanical function to the spine of vertebrate animals (Singh et al. 2005). The intervertebral disc is anatomically comprised of two constituents: a proteoglycan-rich nucleus pulposus contained within a collagen 1-rich annulus fibrosus (Singh et al. 2005). Together, these structures effectively dissipate mechanical loads within the spine while allowing controlled motion between adjacent vertebrae. The biologic environment of the disc is uniquely harsh due to the avascular nature of the tissue and the long distance between metabolically active cells and their nutritional source. Tissue degeneration progresses through a well-defined series of changes (Singh et al. 2005) including breakdown of the long-chain proteoglycan constituents of the extracellular matrix, loss of water-binding capacity, decreased cellularity, and annular disorganization/disruption (Lotz 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Courtesy of Drs. Reed and Woddie, Rood and Riddle Equine Hospital, Lexington, KY

References

  • Aguiar DJ, Johnson SL et al (1999) Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 246(1):129–137

    Article  PubMed  CAS  Google Scholar 

  • Alini M, Eisenstein SM et al (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17(1):2–19

    Article  PubMed  Google Scholar 

  • An H, Boden SD et al (2003) Summary statement: emerging techniques for treatment of degenerative lumbar disc disease. Spine (Phila Pa 1976) 28(15 Suppl):S24–S25

    Google Scholar 

  • Beckstein JC, Sen S et al (2008) Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine (Phila Pa 1976) 33(6):E166–E173

    Article  Google Scholar 

  • Berry RJ (1961) Genetically controlled degeneration of the nucleus pulposus in the mouse. J Bone Joint Surg Br 43:387–393

    Google Scholar 

  • Buser Z, Kuelling F et al (2011) Biological and biomechanical effects of fibrin injection into porcine intervertebral discs. Spine (Phila Pa 1976) 36(18):E1201–E1209

    Article  Google Scholar 

  • Chan DD, Khan SN et al (2011) Mechanical deformation and glycosaminoglycan content changes in a rabbit annular puncture disc degeneration model. Spine (Phila Pa 1976) 36(18):1438–1445

    Article  Google Scholar 

  • Chiang CJ, Cheng CK et al (2011) The effect of a new anular repair after discectomy in intervertebral disc degeneration: an experimental study using a porcine spine model. Spine (Phila Pa 1976) 36(10):761–769

    Article  Google Scholar 

  • Cho H, Park SH et al (2011) Snapshot of degenerative aging of porcine intervertebral disc: a model to unravel the molecular mechanisms. Exp Mol Med 43(6):334–340

    Article  PubMed  CAS  Google Scholar 

  • Elliott DM, Sarver JJ (2004) Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc. Spine (Phila Pa 1976) 29(7):713–722

    Article  Google Scholar 

  • Farfan HF (1978) The biomechanical advantage of lordosis and hip extension for upright activity. Man as compared with other anthropoids. Spine (Phila Pa 1976) 3(4):336–342

    Article  CAS  Google Scholar 

  • Frobin W et al (1997) Precision measurement of disc height, vertebral height and sagittal plane displacement from lateral radiographic views of the lumbar spine. Clin Biomech 12:S1–S63

    Article  Google Scholar 

  • Galbusera F, Schmidt H et al (2011) The mechanical response of the lumbar spine to different combinations of disc degenerative changes investigated using randomized poroelastic finite element models. Eur Spine J 20(4):563–571

    Article  PubMed  Google Scholar 

  • Ganey TM, Meisel HJ (2002) A potential role for cell-based therapeutics in the treatment of intervertebral disc herniation. Eur Spine J 11(Suppl 2):S206–S214

    PubMed  Google Scholar 

  • Ganey T, Libera J et al (2003) Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine (Phila Pa 1976) 28(23):2609–2620

    Article  Google Scholar 

  • Ganey T, Hutton WC et al (2009) Intervertebral disc repair using adipose tissue-derived stem and regenerative cells: experiments in a canine model. Spine (Phila Pa 1976) 34(21):2297–2304

    Article  Google Scholar 

  • Hasegawa K, Turner CH et al (1995) Effect of disc lesion on microdamage accumulation in lumbar vertebrae under cyclic compression loading. Clin Orthop Relat Res 311:190–198

    Google Scholar 

  • Higuchi M, Kaneda K et al (1982) Age-related changes in the nucleus pulposus of intervertebral disc in mice. An electronmicroscopic study. Nihon Seikeigeka Gakkai Zasshi 56(4):321–329

    PubMed  CAS  Google Scholar 

  • Hiyama A, Mochida J et al (2008) Transplantation of mesenchymal stem cells in a canine disc degeneration model. J Orthop Res 26(5):589–600

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter M, Gedet P et al (2009) Biomechanical analysis of the three-dimensional motion pattern of the canine cervical spine segment C4-C5. Vet Surg 38(1):49–58

    Article  PubMed  Google Scholar 

  • Holm S, Ekstrom L et al (2007) Intradiscal pressure in the degenerated porcine intervertebral disc. Vet Comp Orthop Traumatol 20(1):29–33

    PubMed  CAS  Google Scholar 

  • Hoogendoorn RJ, Helder MN et al (2008) Reproducible long-term disc degeneration in a large animal model. Spine (Phila Pa 1976) 33(9):949–954

    Article  Google Scholar 

  • Hu N, Cunningham BW et al (2006) Porous coated motion cervical disc replacement: a biomechanical, histomorphometric, and biologic wear analysis in a caprine model. Spine (Phila Pa 1976) 31(15):1666–1673

    Article  Google Scholar 

  • Hunter CJ, Matyas JR et al (2004) Cytomorphology of notochordal and chondrocytic cells from the nucleus pulposus: a species comparison. J Anat 205(5):357–362

    Article  PubMed  Google Scholar 

  • Hutton WC, Toribatake Y et al (1998) The effect of compressive force applied to the intervertebral disc in vivo. A study of proteoglycans and collagen. Spine (Phila Pa 1976) 23(23):2524–2537

    Article  CAS  Google Scholar 

  • Hutton WC, Ganey TM et al (2000) Does long-term compressive loading on the intervertebral disc cause degeneration? Spine (Phila Pa 1976) 25(23):2993–3004

    Article  CAS  Google Scholar 

  • Hutton WC, Murakami H et al (2004) The effect of blocking a nutritional pathway to the intervertebral disc in the dog model. J Spinal Disord Tech 17(1):53–63

    Article  PubMed  Google Scholar 

  • Iatridis JC, Mente PL et al (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine (Phila Pa 1976) 24(10):996–1002

    Article  CAS  Google Scholar 

  • Kaapa E, Gronblad M et al (1994a) Neural elements in the normal and experimentally injured porcine intervertebral disk. Eur Spine J 3(3):137–142

    Article  PubMed  CAS  Google Scholar 

  • Kaapa E, Holm S et al (1994b) Collagens in the injured porcine intervertebral disc. J Orthop Res 12(1):93–102

    Article  PubMed  CAS  Google Scholar 

  • Kaapa E, Holm S et al (1994c) Proteoglycan chemistry in experimentally injured porcine intervertebral disk. J Spinal Disord 7(4):296–306

    PubMed  CAS  Google Scholar 

  • Kalichman L, Hunter DJ (2008) Diagnosis and conservative management of degenerative lumbar spondylolisthesis. Eur Spine J 17(3):327–335

    Article  PubMed  Google Scholar 

  • Kandziora F, Pflugmacher R et al (2001) Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine (Phila Pa 1976) 26(9):1028–1037

    Article  CAS  Google Scholar 

  • Langley R (1999) Physical hazards of animal handlers. Occup Med 14(2):181–194

    PubMed  CAS  Google Scholar 

  • Lotz JC (2004) Animal models of intervertebral disc degeneration: lessons learned. Spine (Phila Pa 1976) 29(23):2742–2750

    Article  Google Scholar 

  • Lotz JC, Colliou OK et al (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine (Phila Pa 1976) 23(23):2493–2506

    Article  CAS  Google Scholar 

  • Lundin O, Ekstrom L et al (2000) Exposure of the porcine spine to mechanical compression: differences in injury pattern between adolescents and adults. Eur Spine J 9(6):466–471

    Article  PubMed  CAS  Google Scholar 

  • McLain RF, Yerby SA et al (2002) Comparative morphometry of L4 vertebrae: comparison of large animal models for the human lumbar spine. Spine (Phila Pa 1976) 27(8):E200–E206

    Article  Google Scholar 

  • Melrose J, Ghosh P et al (1992) A longitudinal study of the matrix changes induced in the intervertebral disc by surgical damage to the annulus fibrosus. J Orthop Res 10(5):665–676

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Taylor TK et al (1996) Variation in intervertebral disc serine proteinase inhibitory proteins with ageing in a chondrodystrophoid (beagle) and a non-chondrodystrophoid (greyhound) canine breed. Gerontology 42(6):322–329

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Ghosh P et al (1997) Elevated synthesis of biglycan and decorin in an ovine annular lesion model of experimental disc degeneration. Eur Spine J 6(6):376–384

    Article  PubMed  CAS  Google Scholar 

  • Melrose J, Roberts S et al (2002) Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine (Phila Pa 1976) 27(12):1278–1285

    Article  Google Scholar 

  • Melrose J, Shu C et al (2012) Mechanical destabilization induced by controlled annular incision of the intervertebral disc dysregulates metalloproteinase expression and induces disc degeneration. Spine (Phila Pa 1976) 37(1):18–25

    Article  Google Scholar 

  • Nguyen CM, Haughton VM et al (1989) A model for studying intervertebral disc degeneration with magnetic resonance and a nucleotome. Invest Radiol 24(5):407–409

    Article  PubMed  CAS  Google Scholar 

  • O’Connell GD, Vresilovic EJ et al (2007) Comparison of animals used in disc research to human lumbar disc geometry. Spine (Phila Pa 1976) 32(3):328–333

    Article  Google Scholar 

  • Omlor GW, Nerlich AG et al (2009) A new porcine in vivo animal model of disc degeneration: response of anulus fibrosus cells, chondrocyte-like nucleus pulposus cells, and notochordal nucleus pulposus cells to partial nucleotomy. Spine (Phila Pa 1976) 34(25):2730–2739

    Article  Google Scholar 

  • Osti OL, Vernon-Roberts B et al (1990) 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine (Phila Pa 1976) 15(8):762–767

    CAS  Google Scholar 

  • Palmer EI, Lotz JC (2004) The compressive creep properties of normal and degenerated murine intervertebral discs. J Orthop Res 22(1):164–169

    Article  PubMed  Google Scholar 

  • Panjabi MM (1998) Cervical spine models for biomechanical research. Spine (Phila Pa 1976) 23(24):2684–2700

    Article  CAS  Google Scholar 

  • Park C, Kim YJ et al (2005) An in vitro animal study of the biomechanical responses of anulus fibrosus with aging. Spine (Phila Pa 1976) 30(10):E259–E265

    Article  Google Scholar 

  • Reid JE, Meakin JR et al (2002) Sheep lumbar intervertebral discs as models for human discs. Clin Biomech (Bristol, Avon) 17(4):312–314

    Article  CAS  Google Scholar 

  • Sakai D, Nakai T et al (2009) Differential phenotype of intervertebral disc cells: microarray and immunohistochemical analysis of canine nucleus pulposus and anulus fibrosus. Spine (Phila Pa 1976) 34(14):1448–1456

    Article  Google Scholar 

  • Schmidt R, Richter M et al (2005) Limitations of the cervical porcine spine in evaluating spinal implants in comparison with human cervical spinal segments: a biomechanical in vitro comparison of porcine and human cervical spine specimens with different instrumentation techniques. Spine (Phila Pa 1976) 30(11):1275–1282

    Article  Google Scholar 

  • Sheng SR, Wang XY et al (2010) Anatomy of large animal spines and its comparison to the human spine: a systematic review. Eur Spine J 19(1):46–56

    Article  PubMed  Google Scholar 

  • Showalter BL, Beckstein JC et al (2012) Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content. Spine (Phila Pa 1976) 37(15):E900–E907

    Article  Google Scholar 

  • Silberberg R (1988) Histologic and morphometric observations on vertebral bone of aging sand rats. Spine (Phila Pa 1976) 13(2):202–208

    Article  CAS  Google Scholar 

  • Singh K, Masuda K et al (2005) Animal models for human disc degeneration. Spine J 5(6 Suppl):267S–279S

    Article  PubMed  Google Scholar 

  • Smith LJ, Nerurkar NL et al (2011) Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech 4(1):31–41

    Article  PubMed  Google Scholar 

  • Urban JP, Roberts S et al (2000) The nucleus of the intervertebral disc from development to degeneration. Am Zool 40:53–61

    Article  Google Scholar 

  • Wagner PC, Bagby GW et al (1979) Surgical stabilization of the equine cervical spine. Vet Surg 8(1):7–12

    Article  Google Scholar 

  • Weigler BJ, Di Giacomo RF et al (2005) A national survey of laboratory animal workers concerning occupational risks for zoonotic diseases. Comp Med 55(2):183–191

    PubMed  CAS  Google Scholar 

  • Wilke HJ, Kettler A et al (1997a) Are sheep spines a valid biomechanical model for human spines? Spine (Phila Pa 1976) 22(20):2365–2374

    Article  CAS  Google Scholar 

  • Wilke HJ, Kettler A et al (1997b) Anatomy of the sheep spine and its comparison to the human spine. Anat Rec 247(4):542–555

    Article  PubMed  CAS  Google Scholar 

  • Yoon SH, Miyazaki M et al (2008) A porcine model of intervertebral disc degeneration induced by annular injury characterized with magnetic resonance imaging and histopathological findings. Laboratory investigation. J Neurosurg Spine 8(5):450–457

    Article  PubMed  Google Scholar 

  • Zhang Y, Drapeau S et al (2011a) Histological features of the degenerating intervertebral disc in a goat disc-injury model. Spine (Phila Pa 1976) 36(19):1519–1527

    Article  Google Scholar 

  • Zhang Y, Drapeau S et al (2011b) Transplantation of goat bone marrow stromal cells to the degenerating intervertebral disc in a goat disc injury model. Spine (Phila Pa 1976) 36(5):372–377

    Google Scholar 

  • Zimmerman MC, Vuono-Hawkins M et al (1992) The mechanical properties of the canine lumbar disc and motion segment. Spine (Phila Pa 1976) 17(2):213–220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Schaer VMD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Patel, S.A., Kepler, C.K., Schaer, T.P., Anderson, D.G. (2014). Large Animal Models of Disc Degeneration. In: Shapiro, I., Risbud, M. (eds) The Intervertebral Disc. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1535-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1535-0_18

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1534-3

  • Online ISBN: 978-3-7091-1535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics