Skip to main content

Spinal Motion Restoration Devices for the Degenerative Disc

  • Chapter
  • First Online:
The Intervertebral Disc

Abstract

Cervical and lumbar degenerative disc disease is common in today’s society and can be associated with significant pain and disability (Taksali et al. 2004). Spinal fusion continues to be the most common surgical treatment for degenerative conditions in the neck and low back (Davis 1994; Lee and Langrana 2004). While fusion has been similarly used for the treatment of degenerative arthritis of the hip and knee joints, it has been replaced by revolutionary joint arthroplasty techniques with excellent outcomes in terms of relieving pain and restoring function (Santos et al. 2004). In contrast, disc arthroplasty has only recently been considered an alternative to spinal arthrodesis and has not replaced fusion as the “gold standard” treatment. Studies regarding spinal fusion for degenerative disc disease have demonstrated inconsistent clinical results even in properly selected patients, and despite advances in spinal fusion technique and instrumentation, patient outcomes have not been significantly altered (Barrick et al. 2000; Kleeman et al. 2001; Madan and Boeree 2003; Bono and Lee 2004; Lee and Langrana 2004; Santos et al. 2004).

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the United States Army or the Department of Defense. Two authors are employees of the United States government. This work was prepared as part of their official duties and as such, there is no copyright to be transferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrens M, Tsantrizos A et al (2009) Nucleus replacement with the DASCOR disc arthroplasty device: interim two-year efficacy and safety results from two prospective, non-randomized multicenter European studies. Spine (Phila Pa 1976) 34(13):1376–1384

    Google Scholar 

  • Akamaru T, Kawahara N et al (2003) Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments: a biomechanical analysis. Spine (Phila Pa 1976) 28(14):1560–1566

    Google Scholar 

  • Albee FH (1911) Transplantation of a portion of the tibia into the spine for Pott’s disease. JAMA 57:885

    Google Scholar 

  • Albert TJ, Eichenbaum MD (2004) Goals of cervical disc replacement. Spine J 4(6 Suppl):292S–293S

    PubMed  Google Scholar 

  • Anderson PA, Rouleau JP et al (2003) Wear analysis of the Bryan Cervical Disc prosthesis. Spine (Phila Pa 1976) 28(20):S186–S194

    Google Scholar 

  • Anderson PA, Sasso RC et al (2004) The Bryan Cervical Disc: wear properties and early clinical results. Spine J 4(6 Suppl):303S–309S

    PubMed  Google Scholar 

  • Anderson PA, Tribus CB et al (2006) Treatment of neurogenic claudication by interspinous decompression: application of the X STOP device in patients with lumbar degenerative spondylolisthesis. J Neurosurg Spine 4(6):463–471

    PubMed  Google Scholar 

  • Arens S, Schlegel U et al (1996) Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br 78(4):647–651

    PubMed  CAS  Google Scholar 

  • Barrick WT, Schofferman JA et al (2000) Anterior lumbar fusion improves discogenic pain at levels of prior posterolateral fusion. Spine (Phila Pa 1976) 25(7):853–857

    CAS  Google Scholar 

  • Bernthal NM, Celestre PC et al (2012) Disappointing short-term results with the DePuy ASR XL metal-on-metal total hip arthroplasty. J Arthroplasty 27:539–544

    PubMed  Google Scholar 

  • Bertagnoli R, Schonmayr R (2002) Surgical and clinical results with the PDN prosthetic disc-nucleus device. Eur Spine J 11(Suppl 2):S143–S148

    PubMed  Google Scholar 

  • Bertagnoli R, Sabatino CT et al (2005a) Mechanical testing of a novel hydrogel nucleus replacement implant. Spine J 5(6):672–681

    PubMed  Google Scholar 

  • Bertagnoli R, Zigler J et al (2005b) Complications and strategies for revision surgery in total disc replacement. Orthop Clin North Am 36(3):389–395

    PubMed  Google Scholar 

  • Bisseling P, Zeilstra DJ et al (2011) Metal ion levels in patients with a lumbar metal-on-metal total disc replacement: should we be concerned? J Bone Joint Surg Br 93(7):949–954

    PubMed  CAS  Google Scholar 

  • Bohlman HH, Emery SE et al (1993) Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients. J Bone Joint Surg Am 75(9):1298–1307

    PubMed  CAS  Google Scholar 

  • Bono CM, Garfin SR (2004) History and evolution of disc replacement. Spine J 4(6 Suppl):145S–150S

    PubMed  Google Scholar 

  • Bono CM, Lee CK (2004) Critical analysis of trends in fusion for degenerative disc disease over the past 20 years: influence of technique on fusion rate and clinical outcome. Spine (Phila Pa 1976) 29(4):455–463; discussion Z455

    Google Scholar 

  • Burkus JK, Haid RW et al (2010) Long-term clinical and radiographic outcomes of cervical disc replacement with the Prestige disc: results from a prospective randomized controlled clinical trial. J Neurosurg Spine 13(3):308–318

    PubMed  Google Scholar 

  • Buttner-Janz K, Hahn S et al (2002) Basic principles of successful implantation of the SB Charité model LINK intervertebral disk endoprosthesis. Orthopade 31(5):441–453

    PubMed  CAS  Google Scholar 

  • Cardoso MJ, Rosner MK (2010) Multilevel cervical arthroplasty with artificial disc replacement. Neurosurg Focus 28(5):E19

    PubMed  Google Scholar 

  • Cardoso MJ, Mendelsohn A et al (2011) Cervical hybrid arthroplasty with 2 unique fusion techniques. J Neurosurg Spine 15(1):48–54

    PubMed  Google Scholar 

  • Carragee EJ, Alamin TF (2001) Discography. A review. Spine J 1(5):364–372

    PubMed  CAS  Google Scholar 

  • Chandler FA (1929) Spinal fusion operations in the treatment of low back and sciatic pain. JAMA 93:1447

    Google Scholar 

  • Chang UK, Kim DH et al (2007) Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion. J Neurosurg Spine 7(1):33–39

    PubMed  Google Scholar 

  • Cinotti G, David T et al (1996) Results of disc prosthesis after a minimum follow-up period of 2 years. Spine (Phila Pa 1976) 21(8):995–1000

    CAS  Google Scholar 

  • Cunningham BW (2004) Basic scientific considerations in total disc arthroplasty. Spine J 4(6 Suppl):219S–230S

    PubMed  Google Scholar 

  • Cunningham BW, Lowery GL et al (2002) Total disc replacement arthroplasty using the AcroFlex lumbar disc: a non-human primate model. Eur Spine J 11(Suppl 2):S115–S123

    PubMed  Google Scholar 

  • Cunningham BW, Dmitriev AE et al (2003a) General principles of total disc replacement arthroplasty: seventeen cases in a nonhuman primate model. Spine (Phila Pa 1976) 28(20):S118–S124

    Google Scholar 

  • Cunningham BW, Gordon JD et al (2003b) Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Spine (Phila Pa 1976) 28(20):S110–S117

    Google Scholar 

  • Dahl MC, Rouleau JP et al (2006) Dynamic characteristics of the intact, fused, and prosthetic-replaced cervical disk. J Biomech Eng 128(6):809–814

    PubMed  Google Scholar 

  • Dahl MC, Jacobsen S, Metcalf N, Sasso R, Ching RP (2011) A comparison of the shock-absorbing properties of cervical disc prosthesis bearing materials. SAS J 5:48–54

    Google Scholar 

  • Davis H (1994) Increasing rates of cervical and lumbar spine surgery in the United States, 1979–1990. Spine (Phila Pa 1976) 19(10):1117–1123; discussion 1123–1114

    CAS  Google Scholar 

  • Delamarter RB, Fribourg DM et al (2003) ProDisc artificial total lumbar disc replacement: introduction and early results from the United States clinical trial. Spine (Phila Pa 1976) 28(20):S167–S175

    Google Scholar 

  • Delamarter R, Zigler JE et al (2011) Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement compared with circumferential arthrodesis for the treatment of two-level lumbar degenerative disc disease: results at twenty-four months. J Bone Joint Surg Am 93(8):705–715

    PubMed  Google Scholar 

  • DiAngelo DJ, Foley KT et al (2004) In vitro biomechanics of cervical disc arthroplasty with the ProDisc-C total disc implant. Neurosurg Focus 17(3):E7

    PubMed  Google Scholar 

  • Dmitriev AE, Cunningham BW et al (2005) Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an in vitro human cadaveric model. Spine (Phila Pa 1976) 30(10):1165–1172

    Google Scholar 

  • Eck JC, Humphreys SC et al (1999) Adjacent-segment degeneration after lumbar fusion: a review of clinical, biomechanical, and radiologic studies. Am J Orthop (Belle Mead NJ) 28(6):336–340

    CAS  Google Scholar 

  • Fassio B, Ginestie JF (1978) Discal prosthesis made of silicone: experimental study and 1st clinical cases. Nouv Presse Med 7(3):207

    PubMed  CAS  Google Scholar 

  • Fernstrom U (1966) Arthroplasty with intercorporal endoprosthesis in herniated disc and in painful disc. Acta Chir Scand Suppl 357:154–159

    PubMed  CAS  Google Scholar 

  • Fritzell P, Hagg O et al (2003) Complications in lumbar fusion surgery for chronic low back pain: comparison of three surgical techniques used in a prospective randomized study. A report from the Swedish Lumbar Spine Study Group. Eur Spine J 12(2):178–189

    PubMed  Google Scholar 

  • Frymoyer JW, Hanley E et al (1978) Disc excision and spine fusion in the management of lumbar disc disease. A minimum ten-year followup. Spine (Phila Pa 1976) 3(1):1–6

    CAS  Google Scholar 

  • Gao SG, Lei GH et al (2011) Biomechanical comparison of lumbar total disc arthroplasty, discectomy, and fusion: effect on adjacent-level disc pressure and facet joint force. J Neurosurg Spine 15(5):507–514

    PubMed  Google Scholar 

  • Garino JP (2000) Modern ceramic-on-ceramic total hip systems in the United States: early results. Clin Orthop Relat Res (379):41–47

    Google Scholar 

  • Garrido BJ, Taha TA et al (2010) Clinical outcomes of Bryan cervical disc arthroplasty a prospective, randomized, controlled, single site trial with 48-month follow-up. J Spinal Disord Tech 23(6):367–371

    PubMed  Google Scholar 

  • Gertzbein SD, Seligman J et al (1986) Centrode characteristics of the lumbar spine as a function of segmental instability. Clin Orthop Relat Res (208):48–51

    Google Scholar 

  • Ghiselli G, Wang JC et al (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86-A(7):1497–1503

    PubMed  Google Scholar 

  • Gillet P (2003) The fate of the adjacent motion segments after lumbar fusion. J Spinal Disord Tech 16(4):338–345

    PubMed  Google Scholar 

  • Goldsmith AA, Dowson D et al (2000) A comparative joint simulator study of the wear of metal-on-metal and alternative material combinations in hip replacements. Proc Inst Mech Eng H 214(1):39–47

    PubMed  CAS  Google Scholar 

  • Golish SR, Anderson PA (2012) Bearing surfaces for total disc arthroplasty: metal-on-metal versus metal-on-polyethylene and other biomaterials. Spine J 12:693–701

    PubMed  Google Scholar 

  • Gore DR, Sepic SB (1984) Anterior cervical fusion for degenerated or protruded discs. A review of one hundred forty-six patients. Spine (Phila Pa 1976) 9(7):667–671

    CAS  Google Scholar 

  • Guyer RD, McAfee PC et al (2009) Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: five-year follow-up. Spine J 9(5):374–386

    PubMed  Google Scholar 

  • Hallab N, Link HD et al (2003a) Biomaterial optimization in total disc arthroplasty. Spine (Phila Pa 1976) 28(20):S139–S152

    Google Scholar 

  • Hallab NJ, Cunningham BW et al (2003b) Spinal implant debris-induced osteolysis. Spine (Phila Pa 1976) 28(20):S125–S138

    Google Scholar 

  • Harvey EJ, Bobyn JD et al (1999) Effect of flexibility of the femoral stem on bone-remodeling and fixation of the stem in a canine total hip arthroplasty model without cement. J Bone Joint Surg Am 81(1):93–107

    PubMed  CAS  Google Scholar 

  • Herkowitz HN, Kurz LT et al (1990) Surgical management of cervical soft disc herniation. A comparison between the anterior and posterior approach. Spine (Phila Pa 1976) 15(10):1026–1030

    CAS  Google Scholar 

  • Hibbs RA (1911) An operation for progressive spinal deformities. NY Med J 93:1013

    Google Scholar 

  • Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4(6 Suppl):190S–194S

    PubMed  Google Scholar 

  • Hilibrand AS, Carlson GD et al (1999) Radiculopathy and myelopathy at segments adjacent to the site of a previous anterior cervical arthrodesis. J Bone Joint Surg Am 81(4):519–528

    PubMed  CAS  Google Scholar 

  • Huang RC, Girardi FP et al (2003) The implications of constraint in lumbar total disc replacement. J Spinal Disord Tech 16(4):412–417

    PubMed  Google Scholar 

  • Ishihara H, Kanamori M et al (2004) Adjacent segment disease after anterior cervical interbody fusion. Spine J 4(6):624–628

    PubMed  Google Scholar 

  • Jackson RK, Boston DA et al (1985) Lateral mass fusion. A prospective study of a consecutive series with long-term follow-up. Spine (Phila Pa 1976) 10(9):828–832

    CAS  Google Scholar 

  • Kienapfel H, Sprey C et al (1999) Implant fixation by bone ingrowth. J Arthroplasty 14(3):355–368

    PubMed  CAS  Google Scholar 

  • Kim WJ, Lee SH et al (2003) Treatment of juxtafusional degeneration with artificial disc replacement (ADR): preliminary results of an ongoing prospective study. J Spinal Disord Tech 16(4):390–397

    PubMed  Google Scholar 

  • Klara PM, Ray CD (2002) Artificial nucleus replacement: clinical experience. Spine (Phila Pa 1976) 27(12):1374–1377

    Google Scholar 

  • Kleeman TJ, Ahn UM et al (2001) Laparoscopic anterior lumbar interbody fusion with rhBMP-2: a prospective study of clinical and radiographic outcomes. Spine (Phila Pa 1976) 26(24):2751–2756

    CAS  Google Scholar 

  • Kostuik JP (1997) Intervertebral disc replacement. Experimental study. Clin Orthop Relat Res (337):27–41

    Google Scholar 

  • Kostuik JP (2004) Complications and surgical revision for failed disc arthroplasty. Spine J 4(6 Suppl):289S–291S

    PubMed  Google Scholar 

  • Kulkarni SS, Lowery GL et al (2003) Arterial complications following anterior lumbar interbody fusion: report of eight cases. Eur Spine J 12(1):48–54

    PubMed  Google Scholar 

  • Kumar MN, Jacquot F et al (2001) Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease. Eur Spine J 10(4):309–313

    PubMed  CAS  Google Scholar 

  • Kurtz SM, Muratoglu OK et al (1999a) Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20(18):1659–1688

    PubMed  CAS  Google Scholar 

  • Kurtz SM, Pruitt LA et al (1999b) Radiation and chemical crosslinking promote strain hardening behavior and molecular alignment in ultra high molecular weight polyethylene during multi-axial loading conditions. Biomaterials 20(16):1449–1462

    PubMed  CAS  Google Scholar 

  • Langton DJ, Jameson SS et al (2011) Accelerating failure rate of the ASR total hip replacement. J Bone Joint Surg Br 93(8):1011–1016

    PubMed  CAS  Google Scholar 

  • Lee CK (1988) Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine (Phila Pa 1976) 13(3):375–377

    CAS  Google Scholar 

  • Lee CK, Goel VK (2004) Artificial disc prosthesis: design concepts and criteria. Spine J 4(6 Suppl):209S–218S

    PubMed  Google Scholar 

  • Lee CK, Langrana NA (1984) Lumbosacral spinal fusion. A biomechanical study. Spine (Phila Pa 1976) 9(6):574–581

    CAS  Google Scholar 

  • Lee CK, Langrana NA (2004) A review of spinal fusion for degenerative disc disease: need for alternative treatment approach of disc arthroplasty? Spine J 4(6 Suppl):173S–176S

    PubMed  Google Scholar 

  • Lehmann TR, Spratt KF et al (1987) Long-term follow-up of lower lumbar fusion patients. Spine (Phila Pa 1976) 12(2):97–104

    CAS  Google Scholar 

  • LeHuec JC, Kiaer T et al (2003) Shock absorption in lumbar disc prosthesis: a preliminary mechanical study. J Spinal Disord Tech 16(4):346–351

    PubMed  CAS  Google Scholar 

  • Lin EL, Wang JC (2006) Total disk arthroplasty. J Am Acad Orthop Surg 14(13):705–714

    PubMed  Google Scholar 

  • Link HD (2002) History, design and biomechanics of the LINK SB Charité artificial disc. Eur Spine J 11(Suppl 2):S98–S105

    PubMed  Google Scholar 

  • Luk KD, Lee FB et al (1987) The effect on the lumbosacral spine of long spinal fusion for idiopathic scoliosis. A minimum 10-year follow-up. Spine (Phila Pa 1976) 12(10):996–1000

    CAS  Google Scholar 

  • MacWilliam CH, Yood MU et al (1996) Patient-related risk factors that predict poor outcome after total hip replacement. Health Serv Res 31(5):623–638

    PubMed  CAS  Google Scholar 

  • Madan SS, Boeree NR (2003) Comparison of instrumented anterior interbody fusion with instrumented circumferential lumbar fusion. Eur Spine J 12(6):567–575

    PubMed  CAS  Google Scholar 

  • Madigan L, Vaccaro AR et al (2009) Management of symptomatic lumbar degenerative disk disease. J Am Acad Orthop Surg 17(2):102–111

    PubMed  Google Scholar 

  • Matsunaga S, Kabayama S et al (1999) Strain on intervertebral discs after anterior cervical decompression and fusion. Spine (Phila Pa 1976) 24(7):670–675

    CAS  Google Scholar 

  • McAfee PC (2004) The indications for lumbar and cervical disc replacement. Spine J 4(6 Suppl):177S–181S

    PubMed  Google Scholar 

  • McAfee PC, Cunningham B et al (2005) A prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part II: evaluation of radiographic outcomes and correlation of surgical technique accuracy with clinical outcomes. Spine (Phila Pa 1976) 30(14):1576–1583; discussion E1388–E1590

    Google Scholar 

  • McLaughlin JR, Lee KR (2000) Total hip arthroplasty in young patients. 8- to 13-year results using an uncemented stem. Clin Orthop Relat Res (373):153–163

    Google Scholar 

  • Mummaneni PV, Burkus JK et al (2007) Clinical and radiographic analysis of cervical disc arthroplasty compared with allograft fusion: a randomized controlled clinical trial. J Neurosurg Spine 6(3):198–209

    PubMed  Google Scholar 

  • Murrey D, Janssen M et al (2009) Results of the prospective, randomized, controlled multicenter Food and Drug Administration investigational device exemption study of the ProDisc-C total disc replacement versus anterior discectomy and fusion for the treatment of 1-level symptomatic cervical disc disease. Spine J 9(4):275–286

    PubMed  Google Scholar 

  • Nguyen NQ, Kafle D et al (2011) Ceramic fracture following cervical disc arthroplasty: a case report. J Bone Joint Surg Am 93(22):e1321–e1324

    Google Scholar 

  • O’Beirne J, O’Neill D et al (1992) Spinal fusion for back pain: a clinical and radiological review. J Spinal Disord 5(1):32–38

    PubMed  Google Scholar 

  • Orr RD, Postak PD et al (2007) The current state of cervical and lumbar spinal disc arthroplasty. J Bone Joint Surg Am 89(Suppl 3):70–75

    PubMed  Google Scholar 

  • Patel AA, Brodke DS et al (2008) Revision strategies in lumbar total disc arthroplasty. Spine (Phila Pa 1976) 33(11):1276–1283

    Google Scholar 

  • Penta M, Sandhu A et al (1995) Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine (Phila Pa 1976) 20(6):743–747

    CAS  Google Scholar 

  • Pidhorz LE, Urban RM et al (1993) A quantitative study of bone and soft tissues in cementless porous-coated acetabular components retrieved at autopsy. J Arthroplasty 8(2):213–225

    PubMed  CAS  Google Scholar 

  • Pitzen T, Kettler A et al (2007) Cervical spine disc prosthesis: radiographic, biomechanical and morphological post mortal findings 12 weeks after implantation. A retrieval example. Eur Spine J 16(7):1015–1020

    PubMed  Google Scholar 

  • Polly DW Jr (2003) Adapting innovative motion-preserving technology to spinal surgical practice: what should we expect to happen? Spine (Phila Pa 1976) 28(20):S104–S109

    Google Scholar 

  • Puttlitz CM, Rousseau MA et al (2004) Intervertebral disc replacement maintains cervical spine kinetics. Spine (Phila Pa 1976) 29(24):2809–2814

    Google Scholar 

  • Ray CD (2002) The PDN prosthetic disc-nucleus device. Eur Spine J 11(Suppl 2):S137–S142

    PubMed  Google Scholar 

  • Reitman CA, Hipp JA et al (2004) Changes in segmental intervertebral motion adjacent to cervical arthrodesis: a prospective study. Spine (Phila Pa 1976) 29(11):E221–E226

    Google Scholar 

  • Riew KD, Buchowski JM et al (2008) Cervical disc arthroplasty compared with arthrodesis for the treatment of myelopathy. J Bone Joint Surg Am 90(11):2354–2364

    PubMed  Google Scholar 

  • Robertson JT, Papadopoulos SM et al (2005) Assessment of adjacent-segment disease in patients treated with cervical fusion or arthroplasty: a prospective 2-year study. J Neurosurg Spine 3(6):417–423

    PubMed  Google Scholar 

  • Robinson RA, Smith GW (1955) Anterolateral cervical disc removal and interbody fusion for cervical disc syndrome. Bull Johns Hopkins Hosp 96:223–224

    Google Scholar 

  • Sandhu HS, Sanchez-Caso LP et al (2000) Association between findings of provocative discography and vertebral endplate signal changes as seen on MRI. J Spinal Disord 13(5):438–443

    PubMed  CAS  Google Scholar 

  • Santos EG, Polly DW Jr et al (2004) Disc arthroplasty: lessons learned from total joint arthroplasty. Spine J 4(6 Suppl):182S–189S

    PubMed  Google Scholar 

  • Sasso RC, Smucker JD et al (2007) Clinical outcomes of BRYAN cervical disc arthroplasty: a prospective, randomized, controlled, multicenter trial with 24-month follow-up. J Spinal Disord Tech 20(7):481–491

    PubMed  Google Scholar 

  • Schulte KR, Callaghan JJ et al (1993) The outcome of Charnley total hip arthroplasty with cement after a minimum twenty-year follow-up. The results of one surgeon. J Bone Joint Surg Am 75(7):961–975

    PubMed  CAS  Google Scholar 

  • Serhan H, Mhatre D, Defossez H, Bono CM (2011) Motion-preserving technologies for degenerative lumbar spine: the past, present, and future horizons. SAS J 5:75–89

    Google Scholar 

  • Shono Y, Kaneda K et al (1998) Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Spine (Phila Pa 1976) 23(14):1550–1558

    CAS  Google Scholar 

  • Silva M, Shepherd EF et al (2002) Average patient walking activity approaches 2 million cycles per year: pedometers under-record walking activity. J Arthroplasty 17(6):693–697

    PubMed  Google Scholar 

  • Sumner DR, Bryan JM et al (1990) Measuring the volume fraction of bone ingrowth: a comparison of three techniques. J Orthop Res 8(3):448–452

    PubMed  CAS  Google Scholar 

  • Taksali S, Grauer JN et al (2004) Material considerations for intervertebral disc replacement implants. Spine J 4(6 Suppl):231S–238S

    PubMed  Google Scholar 

  • Traynelis VC (2004) The Prestige cervical disc replacement. Spine J 4(6 Suppl):310S–314S

    PubMed  Google Scholar 

  • van Ooij A, Oner FC et al (2003) Complications of artificial disc replacement: a report of 27 patients with the SB Charité disc. J Spinal Disord Tech 16(4):369–383

    PubMed  Google Scholar 

  • Wagner M, Wagner H (2000) Medium-term results of a modern metal-on-metal system in total hip replacement. Clin Orthop Relat Res (379):123–133

    Google Scholar 

  • Wagner WH, Regan JJ et al (2006) Access strategies for revision or explantation of the Charite lumbar artificial disc replacement. J Vasc Surg 44(6):1266–1272

    PubMed  Google Scholar 

  • Weinhoffer SL, Guyer RD et al (1995) Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine (Phila Pa 1976) 20(5):526–531

    CAS  Google Scholar 

  • Williams JL, Allen MB Jr et al (1968) Late results of cervical discectomy and interbody fusion: some factors influencing the results. J Bone Joint Surg Am 50(2):277–286

    PubMed  CAS  Google Scholar 

  • Williams DH, Greidanus NV et al (2011) Prevalence of pseudotumor in asymptomatic patients after metal-on-metal hip arthroplasty. J Bone Joint Surg Am 93(23):2164–2171

    PubMed  Google Scholar 

  • Wong DA, Annesser B et al (2007) Incidence of contraindications to total disc arthroplasty: a retrospective review of 100 consecutive fusion patients with a specific analysis of facet arthrosis. Spine J 7(1):5–11

    PubMed  Google Scholar 

  • Yang KH, King AI (1984) Mechanism of facet load transmission as a hypothesis for low-back pain. Spine (Phila Pa 1976) 9(6):557–565

    CAS  Google Scholar 

  • Yue WM, Brodner W et al (2005) Long-term results after anterior cervical discectomy and fusion with allograft and plating: a 5- to 11-year radiologic and clinical follow-up study. Spine (Phila Pa 1976) 30(19):2138–2144

    Google Scholar 

  • Zigler J, Delamarter R et al (2007) Results of the prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement versus circumferential fusion for the treatment of 1-level degenerative disc disease. Spine (Phila Pa 1976) 32(11):1155–1162; discussion 1163

    Google Scholar 

  • Zucherman JF, Hsu KY et al (2005) A multicenter, prospective, randomized trial evaluating the X STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results. Spine (Phila Pa 1976) 30(12):1351–1358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Kang MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Kang, D.G., Helgeson, M.D., Vaccaro, A.R. (2014). Spinal Motion Restoration Devices for the Degenerative Disc. In: Shapiro, I., Risbud, M. (eds) The Intervertebral Disc. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1535-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1535-0_14

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1534-3

  • Online ISBN: 978-3-7091-1535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics