Skip to main content

Pathogenesis of Intervertebral Disc Degeneration

  • Chapter
  • First Online:
The Intervertebral Disc

Abstract

It is estimated that as much as 84 % of the population will suffer from low back pain (LBP) at some point in their lifetime (Walker 2000), with around 10 % of sufferers being chronically disabled. As such LBP is one of the most prevalent musculoskeletal conditions affecting Western society (Stewart et al. 2003), and its prevalence has increased over recent decades (Harkness et al. 2005). The socio-economic cost of LBP is also huge, with associated costs, in terms of lost productivity, disability benefits and direct and indirect health-care costs, estimated in the UK to be around £12 billion annually (Maniadakis and Gray 2000) and in the USA to be over $85 billion per annum (Martin et al. 2008). Importantly, increases in both the size and average age of the population both suggest that the prevalence and costs associated with LBP will continue to rise over future decades, unless novel therapies can be developed to alleviate pain and restore long-term function and mobility to the spine. However, in order to develop such therapies, a more thorough understanding of the underlying aetiology is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaszade I, Liu RQ, Yang F, Rosenfeld SA, Ross OH, Link JR, Ellis DM, Tortorella MD, Pratta MA, Hollis JM, Wynn R, Duke JL, George HJ, Hillman MC Jr, Murphy K, Wiswall BH, Copeland RA, Decicco CP, Bruckner R, Nagase H, Itoh Y, Newton RC, Magolda RL, Trzaskos JM, Burn TC et al (1999) Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J Biol Chem 274:23443–23450

    Article  PubMed  CAS  Google Scholar 

  • Abe Y, Akeda K, An HS, Aoki Y, Pichika R, Muehleman C, Kimura T, Masuda K (2007) Proinflammatory cytokines stimulate the expression of nerve growth factor by human intervertebral disc cells. Spine (Phila Pa 1976) 32:635–642

    Article  Google Scholar 

  • Adams MA, Hutton WC (1986) The effect of posture on diffusion into lumbar intervertebral discs. J Anat 147:121–134

    PubMed  CAS  Google Scholar 

  • Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 31:2151–2161

    Article  Google Scholar 

  • Adams MA, Mannion AF, Dolan P (1999) Personal risk factors for first-time low back pain. Spine (Phila Pa 1976) 24:2497–2505

    Article  CAS  Google Scholar 

  • Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine (Phila Pa 1976) 25:1625–1636

    Article  CAS  Google Scholar 

  • Adams MA, Stefanakis M, Dolan P (2010) Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: implications for physical therapies for discogenic back pain. Clin Biomech (Bristol, Avon) 25:961–971

    Article  Google Scholar 

  • Akyol S, Eraslan BS, Etyemez H, Tanriverdi T, Hanci M (2010) Catabolic cytokine expressions in patients with degenerative disc disease. Turk Neurosurg 20:492–499

    PubMed  Google Scholar 

  • Ali R, Le Maitre CL, Richardson SM, Hoyland JA, Freemont AJ (2008) Connective tissue growth factor expression in human intervertebral disc: implications for angiogenesis in intervertebral disc degeneration. Biotech Histochem 83:239–245

    Article  PubMed  CAS  Google Scholar 

  • Alini M, Roughley PJ, Antoniou J, Stoll T, Aebi M (2002) A biological approach to treating disc degeneration: not for today, but maybe for tomorrow. Eur Spine J 11(Suppl 2):S215–S220

    PubMed  Google Scholar 

  • Alvarez L, Ortiz A (1999) The study of apoptosis in spine pathology. Spine (Phila Pa 1976) 24:500

    Article  CAS  Google Scholar 

  • An HS, Takegami K, Kamada H, Nguyen CM, Thonar EJ, Singh K, Andersson GB, Masuda K (2005) Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine (Phila Pa 1976) 30:25–31

    Google Scholar 

  • Anderson DG, Li X, Balian G (2005) A fibronectin fragment alters the metabolism by rabbit intervertebral disc cells in vitro. Spine (Phila Pa 1976) 30:1242–1246

    Article  Google Scholar 

  • Annunen S, Paassilta P, Lohiniva J, Perala M, Pihlajamaa T, Karppinen J, Tervonen O, Kroger H, Lahde S, Vanharanta H, Ryhanen L, Goring HH, Ott J, Prockop DJ, la-Kokko L (1999) An allele of COL9A2 associated with intervertebral disc disease. Science 285:409–412

    Article  PubMed  CAS  Google Scholar 

  • Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003

    Article  PubMed  CAS  Google Scholar 

  • Antoniou J, Pike GB, Steffen T, Baramki H, Poole AR, Aebi M, Alini M (1998) Quantitative magnetic resonance imaging in the assessment of degenerative disc disease. Magn Reson Med 40:900–907

    Article  PubMed  CAS  Google Scholar 

  • Aota Y, An HS, Homandberg G, Thonar EJ, Andersson GB, Pichika R, Masuda K (2005) Differential effects of fibronectin fragment on proteoglycan metabolism by intervertebral disc cells: a comparison with articular chondrocytes. Spine (Phila Pa 1976) 30:722–728

    Article  Google Scholar 

  • Ariga K, Yonenobu K, Nakase T, Kaneko M, Okuda S, Uchiyama Y, Yoshikawa H (2001) Localization of cathepsins D, K, and L in degenerated human intervertebral discs. Spine (Phila Pa 1976) 26:2666–2672

    Article  CAS  Google Scholar 

  • Ashton IK, Roberts S, Jaffray DC, Polak JM, Eisenstein SM (1994) Neuropeptides in the human intervertebral disc. J Orthop Res 12:186–192

    Article  PubMed  CAS  Google Scholar 

  • Bachmeier BE, Nerlich AG, Weiler C, Paesold G, Jochum M, Boos N (2007) Analysis of tissue distribution of TNF-alpha, TNF-alpha-receptors, and the activating TNF-alpha-converting enzyme suggests activation of the TNF-alpha system in the aging intervertebral disc. Ann N Y Acad Sci 1096:44–54

    Article  PubMed  CAS  Google Scholar 

  • Bachmeier BE, Nerlich A, Mittermaier N, Weiler C, Lumenta C, Wuertz K, Boos N (2009) Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur Spine J 18:1573–1586

    Article  PubMed  Google Scholar 

  • Barksby HE, Milner JM, Patterson AM, Peake NJ, Hui W, Robson T, Lakey R, Middleton J, Cawston TE, Richards CD, Rowan AD (2006) Matrix metalloproteinase 10 promotion of collagenolysis via procollagenase activation: implications for cartilage degradation in arthritis. Arthritis Rheum 54:3244–3253

    Article  PubMed  CAS  Google Scholar 

  • Bartels EM, Fairbank JC, Winlove CP, Urban JP (1998) Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain. Spine (Phila Pa 1976) 23:1–7

    Article  CAS  Google Scholar 

  • Beard HK, Roberts S, O’Brien JP (1981) Immunofluorescent staining for collagen and proteoglycan in normal and scoliotic intervertebral discs. J Bone Joint Surg Br 63B:529–534

    PubMed  CAS  Google Scholar 

  • Bernick S, Cailliet R (1982) Vertebral end-plate changes with aging of human vertebrae. Spine (Phila Pa 1976) 7:97–102

    Article  CAS  Google Scholar 

  • Bibby SR, Urban JP (2004) Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur Spine J 13:695–701

    Article  PubMed  CAS  Google Scholar 

  • Bibby SR, Fairbank JC, Urban MR, Urban JP (2002) Cell viability in scoliotic discs in relation to disc deformity and nutrient levels. Spine (Phila Pa 1976) 27:2220–2228

    Article  Google Scholar 

  • Bogduk N (2004) Management of chronic low back pain. Med J Aust 180:79–83

    PubMed  Google Scholar 

  • Boos N, Nerlich AG, Wiest I, von der Mark K, Aebi M (1997) Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem Cell Biol 108:471–480

    Article  PubMed  CAS  Google Scholar 

  • Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Phila Pa 1976) 27:2631–2644

    Article  Google Scholar 

  • Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    Article  PubMed  CAS  Google Scholar 

  • Brodin H (1955) Paths of nutrition in articular cartilage and intervertebral discs. Acta Orthop Scand 24:177–183

    PubMed  CAS  Google Scholar 

  • Brown MF, Hukkanen MV, McCarthy ID, Redfern DR, Batten JJ, Crock HV, Hughes SP, Polak JM (1997) Sensory and sympathetic innervation of the vertebral endplate in patients with degenerative disc disease. J Bone Joint Surg Br 79:147–153

    Article  PubMed  CAS  Google Scholar 

  • Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) 20:1307–1314

    CAS  Google Scholar 

  • Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, Lopez-Otin C (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283:49–62

    Article  PubMed  CAS  Google Scholar 

  • Cappello R, Bird JL, Pfeiffer D, Bayliss MT, Dudhia J (2006) Notochordal cell produce and assemble extracellular matrix in a distinct manner, which may be responsible for the maintenance of healthy nucleus pulposus. Spine (Phila Pa 1976) 31:873–882

    Article  Google Scholar 

  • Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A 92:4337–4341

    Article  PubMed  CAS  Google Scholar 

  • Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) 34:934–940

    Article  Google Scholar 

  • Chubinskaya S, Kawakami M, Rappoport L, Matsumoto T, Migita N, Rueger DC (2007) Anti-catabolic effect of OP-1 in chronically compressed intervertebral discs. J Orthop Res 25:517–530

    Article  PubMed  CAS  Google Scholar 

  • Collins-Racie LA, Flannery CR, Zeng W, Corcoran C, Annis-Freeman B, Agostino MJ, Arai M, DiBlasio-Smith E, Dorner AJ, Georgiadis KE, Jin M, Tan XY, Morris EA, LaVallie ER (2004) ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol 23:219–230

    Article  PubMed  CAS  Google Scholar 

  • Cooper TW, Eisen AZ, Stricklin GP, Welgus HG (1985) Platelet-derived collagenase inhibitor: characterization and subcellular localization. Proc Natl Acad Sci U S A 82:2779–2783

    Article  PubMed  CAS  Google Scholar 

  • Coppes MH, Marani E, Thomeer RT, Groen GJ (1997) Innervation of “painful” lumbar discs. Spine (Phila Pa 1976) 22:2342–2349

    Article  CAS  Google Scholar 

  • Cs-Szabo G, Ragasa-San JD, Turumella V, Masuda K, Thonar EJ, An HS (2002) Changes in mRNA and protein levels of proteoglycans of the anulus fibrosus and nucleus pulposus during intervertebral disc degeneration. Spine (Phila Pa 1976) 27:2212–2219

    Article  Google Scholar 

  • Cui LY, Liu SL, Ding Y, Huang DS, Ma RF, Huang WG, Hu BS, Pan QH (2007) IL-1beta sensitizes rat intervertebral disc cells to Fas ligand mediated apoptosis in vitro. Acta Pharmacol Sin 28:1671–1676

    Article  PubMed  CAS  Google Scholar 

  • Dai SM, Shan ZZ, Nakamura H, Masuko-Hongo K, Kato T, Nishioka K, Yudoh K (2006) Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum 54:818–831

    Article  PubMed  CAS  Google Scholar 

  • Delamarter R, Zigler JE, Balderston RA, Cammisa FP, Goldstein JA, Spivak JM (2011) Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of the ProDisc-L total disc replacement compared with circumferential arthrodesis for the treatment of two-level lumbar degenerative disc disease: results at twenty-four months. J Bone Joint Surg Am 93:705–715

    Article  PubMed  Google Scholar 

  • Demircan K, Hirohata S, Nishida K, Hatipoglu OF, Oohashi T, Yonezawa T, Apte SS, Ninomiya Y (2005) ADAMTS-9 is synergistically induced by interleukin-1beta and tumor necrosis factor alpha in OUMS-27 chondrosarcoma cells and in human chondrocytes. Arthritis Rheum 52:1451–1460

    Article  PubMed  CAS  Google Scholar 

  • Deyo RA, Bass JE (1989) Lifestyle and low-back pain. The influence of smoking and obesity. Spine (Phila Pa 1976) 14:501–506

    Article  CAS  Google Scholar 

  • Di MA, Vaccaro AR, Lee JY, Denaro V, Lim MR (2005) Nucleus pulposus replacement: basic science and indications for clinical use. Spine 30:S16–S22

    Article  Google Scholar 

  • Duance VC, Crean JK, Sims TJ, Avery N, Smith S, Menage J, Eisenstein SM, Roberts S (1998) Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine (Phila Pa 1976) 23:2545–2551

    Article  CAS  Google Scholar 

  • Errico TJ (2005) Lumbar disc arthroplasty. Clin Orthop Relat Res 435:106–117

    Google Scholar 

  • Eyre DR, Muir H (1976) Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem J 157:267–270

    PubMed  CAS  Google Scholar 

  • Feng H, Danfelter M, Stromqvist B, Heinegard D (2006) Extracellular matrix in disc degeneration. J Bone Joint Surg Am 88(Suppl 2):25–29

    Article  PubMed  Google Scholar 

  • Freemont AJ, Peacock TE, Goupille P, Hoyland JA, O’Brien J, Jayson MI (1997) Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 350:178–181

    Article  PubMed  CAS  Google Scholar 

  • Freemont AJ, Watkins A, Le MC, Baird P, Jeziorska M, Knight MT, Ross ER, O’Brien JP, Hoyland JA (2002) Nerve growth factor expression and innervation of the painful intervertebral disc. J Pathol 197:286–292

    Article  PubMed  CAS  Google Scholar 

  • Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30:1536–1548

    Article  PubMed  CAS  Google Scholar 

  • Frino J, McCarthy RE, Sparks CY, McCullough FL (2006) Trends in adolescent lumbar disk herniation. J Pediatr Orthop 26:579–581

    Article  PubMed  Google Scholar 

  • Gabr MA, Jing L, Helbling AR, Sinclair SM, Allen KD, Shamji MF, Richardson WJ, Fitch RD, Setton LA, Chen J (2011) Interleukin-17 synergizes with IFNgamma or TNFalpha to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells. J Orthop Res 29:1–7

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cosamalon J, del Valle ME, Calavia MG, Garcia-Suarez O, Lopez-Muniz A, Otero J, Vega JA (2010) Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat 217:1–15

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HT, Hoyland JA, Millward-Sadler SJ (2010) The response of human anulus fibrosus cells to cyclic tensile strain is frequency-dependent and altered with disc degeneration. Arthritis Rheum 62:3385–3394

    Article  PubMed  CAS  Google Scholar 

  • Gilbert HT, Hoyland JA, Freemont AJ, Millward-Sadler SJ (2011) The involvement of interleukin-1 and interleukin-4 in the response of human annulus fibrosus cells to cyclic tensile strain: an altered mechanotransduction pathway with degeneration. Arthritis Res Ther 13:R8

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson L, Ahn SH, Teng PN, Studer RK, Niyibizi C, Kang JD (2008) The effects of recombinant human bone morphogenetic protein-2, recombinant human bone morphogenetic protein-12, and adenoviral bone morphogenetic protein-12 on matrix synthesis in human annulus fibrosis and nucleus pulposus cells. Spine J 8:449–456

    Article  PubMed  Google Scholar 

  • Greg AD, Li X, Tannoury T, Beck G, Balian G (2003) A fibronectin fragment stimulates intervertebral disc degeneration in vivo. Spine (Phila Pa 1976) 28:2338–2345

    Article  Google Scholar 

  • Gruber HE, Hanley EN Jr (1998) Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine (Phila Pa 1976) 23:751–757

    Article  CAS  Google Scholar 

  • Gruber HE, Fisher EC Jr, Desai B, Stasky AA, Hoelscher G, Hanley EN Jr (1997) Human intervertebral disc cells from the annulus: three-dimensional culture in agarose or alginate and responsiveness to TGF-beta1. Exp Cell Res 235:13–21

    Article  PubMed  CAS  Google Scholar 

  • Gruber HE, Norton HJ, Hanley EN Jr (2000) Anti-apoptotic effects of IGF-1 and PDGF on human intervertebral disc cells in vitro. Spine (Phila Pa 1976) 25:2153–2157

    Article  CAS  Google Scholar 

  • Gruber HE, Ingram JA, Hanley EN Jr (2005) Immunolocalization of MMP-19 in the human intervertebral disc: implications for disc aging and degeneration. Biotech Histochem 80:157–162

    Article  PubMed  CAS  Google Scholar 

  • Gruber HE, Ingram JA, Norton HJ, Hanley EN Jr (2007) Senescence in cells of the aging and degenerating intervertebral disc: immunolocalization of senescence-associated beta-galactosidase in human and sand rat discs. Spine (Phila Pa 1976) 32:321–327

    Article  Google Scholar 

  • Gruber HE, Ingram JA, Hoelscher G, Zinchenko N, Norton HJ, Hanley EN Jr (2008) Brain-derived neurotrophic factor and its receptor in the human and the sand rat intervertebral disc. Arthritis Res Ther 10:R82

    Article  PubMed  CAS  Google Scholar 

  • Guehring T, Urban JP, Cui Z, Tirlapur UK (2008) Noninvasive 3D vital imaging and characterization of notochordal cells of the intervertebral disc by femtosecond near-infrared two-photon laser scanning microscopy and spatial-volume rendering. Microsc Res Tech 71:298–304

    Article  PubMed  Google Scholar 

  • Guyer RD, McAfee PC, Banco RJ, Bitan FD, Cappuccino A, Geisler FH, Hochschuler SH, Holt RT, Jenis LG, Majd ME, Regan JJ, Tromanhauser SG, Wong DC, Blumenthal SL (2009) Prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: five-year follow-up. Spine J 9:374–386

    Article  PubMed  Google Scholar 

  • Ha KY, Koh IJ, Kirpalani PA, Kim YY, Cho YK, Khang GS, Han CW (2006) The expression of hypoxia inducible factor-1alpha and apoptosis in herniated discs. Spine (Phila Pa 1976) 31:1309–1313

    Article  Google Scholar 

  • Handa T, Ishihara H, Ohshima H, Osada R, Tsuji H, Obata K (1997) Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine (Phila Pa 1976) 22:1085–1091

    Article  CAS  Google Scholar 

  • Harkness EF, Macfarlane GJ, Silman AJ, McBeth J (2005) Is musculoskeletal pain more common now than 40 years ago?: Two population-based cross-sectional studies. Rheumatology (Oxford) 44:890–895

    Article  CAS  Google Scholar 

  • Haro H, Kato T, Komori H, Osada M, Shinomiya K (2002) Vascular endothelial growth factor (VEGF)-induced angiogenesis in herniated disc resorption. J Orthop Res 20:409–415

    Article  PubMed  CAS  Google Scholar 

  • Hatano E, Fujita T, Ueda Y, Okuda T, Katsuda S, Okada Y, Matsumoto T (2006) Expression of ADAMTS-4 (aggrecanase-1) and possible involvement in regression of lumbar disc herniation. Spine (Phila Pa 1976) 31:1426–1432

    Article  Google Scholar 

  • Heathfield SK, Le Maitre CL, Hoyland JA (2008) Caveolin-1 expression and stress-induced premature senescence in human intervertebral disc degeneration. Arthritis Res Ther 10:R87

    Article  PubMed  CAS  Google Scholar 

  • Heyde CE, Tschoeke SK, Hellmuth M, Hostmann A, Ertel W, Oberholzer A (2006) Trauma induces apoptosis in human thoracolumbar intervertebral discs. BMC Clin Pathol 6:5

    Article  PubMed  Google Scholar 

  • Hilibrand AS, Robbins M (2004) Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4:190S–194S

    Article  PubMed  Google Scholar 

  • Hirano N, Tsuji H, Ohshima H, Kitano S, Itoh T, Sano A (1988) Analysis of rabbit intervertebral disc physiology based on water metabolism. II. Changes in normal intervertebral discs under axial vibratory load. Spine (Phila Pa 1976) 13:1297–1302

    Article  CAS  Google Scholar 

  • Holm S, Nachemson A (1982) Nutritional changes in the canine intervertebral disc after spinal fusion. Clin Orthop Relat Res 169:243–258

    Google Scholar 

  • Holm S, Nachemson A (1983) Variations in the nutrition of the canine intervertebral disc induced by motion. Spine (Phila Pa 1976) 8:866–874

    Article  CAS  Google Scholar 

  • Holm S, Nachemson A (1988) Nutrition of the intervertebral disc: acute effects of cigarette smoking. An experimental animal study. Ups J Med Sci 93:91–99

    PubMed  CAS  Google Scholar 

  • Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8:101–119

    Article  PubMed  CAS  Google Scholar 

  • Homandberg GA, Hui F, Wen C, Purple C, Bewsey K, Koepp H, Huch K, Harris A (1997) Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J 321(Pt 3):751–757

    PubMed  CAS  Google Scholar 

  • Homma Y, Tsunoda M, Kasai H (1994) Evidence for the accumulation of oxidative stress during cellular ageing of human diploid fibroblasts. Biochem Biophys Res Commun 203:1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Hormel SE, Eyre DR (1991) Collagen in the ageing human intervertebral disc: an increase in covalently bound fluorophores and chromophores. Biochim Biophys Acta 1078:243–250

    Article  PubMed  CAS  Google Scholar 

  • Horner HA, Urban JP (2001) 2001 Volvo Award Winner in Basic Science Studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976) 26:2543–2549

    Article  CAS  Google Scholar 

  • Hoyland JA, Le MC, Freemont AJ (2008) Investigation of the role of IL-1 and TNF in matrix degradation in the intervertebral disc. Rheumatology (Oxford) 47:809–814

    Article  CAS  Google Scholar 

  • Humzah MD, Soames RW (1988) Human intervertebral disc: structure and function. Anat Rec 220:337–356

    Article  PubMed  CAS  Google Scholar 

  • Hutton WC, Adams MA (1982) Can the lumbar spine be crushed in heavy lifting? Spine (Phila Pa 1976) 7:586–590

    Article  CAS  Google Scholar 

  • Igarashi T, Kikuchi S, Shubayev V, Myers RR (2000) 2000 Volvo Award winner in basic science studies: exogenous tumor necrosis factor-alpha mimics nucleus pulposus-induced neuropathology. Molecular, histologic, and behavioral comparisons in rats. Spine (Phila Pa 1976) 25:2975–2980

    Article  CAS  Google Scholar 

  • Imai Y, Miyamoto K, An HS, Thonar EJ, Andersson GB, Masuda K (2007a) Recombinant human osteogenic protein-1 upregulates proteoglycan metabolism of human anulus fibrosus and nucleus pulposus cells. Spine (Phila Pa 1976) 32:1303–1309

    Article  Google Scholar 

  • Imai Y, Okuma M, An HS, Nakagawa K, Yamada M, Muehleman C, Thonar E, Masuda K (2007b) Restoration of disc height loss by recombinant human osteogenic protein-1 injection into intervertebral discs undergoing degeneration induced by an intradiscal injection of chondroitinase ABC. Spine (Phila Pa 1976) 32:1197–1205

    Article  Google Scholar 

  • Inkinen RI, Lammi MJ, Lehmonen S, Puustjarvi K, Kaapa E, Tammi MI (1998) Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc. J Rheumatol 25:506–514

    PubMed  CAS  Google Scholar 

  • Ishihara H, Urban JP (1999) Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res 17:829–835

    Article  PubMed  CAS  Google Scholar 

  • Jackson AR, Huang CY, Gu WY (2011) Effect of endplate calcification and mechanical deformation on the distribution of glucose in intervertebral disc: a 3D finite element study. Comput Methods Biomech Biomed Engin 14:195–204

    Article  PubMed  Google Scholar 

  • Jin D, Qu D, Zhao L, Chen J, Jiang J (2003) Prosthetic disc nucleus (PDN) replacement for lumbar disc herniation: preliminary report with six months’ follow-up. J Spinal Disord Tech 16:331–337

    Article  PubMed  Google Scholar 

  • Johnson WE, Roberts S (2007) ‘Rumours of my death may have been greatly exaggerated’: a brief review of cell death in human intervertebral disc disease and implications for cell transplantation therapy. Biochem Soc Trans 35:680–682

    Article  PubMed  CAS  Google Scholar 

  • Johnson WE, Eisenstein SM, Roberts S (2001) Cell cluster formation in degenerate lumbar intervertebral discs is associated with increased disc cell proliferation. Connect Tissue Res 42:197–207

    Article  PubMed  CAS  Google Scholar 

  • Johnson WE, Caterson B, Eisenstein SM, Hynds DL, Snow DM, Roberts S (2002) Human intervertebral disc aggrecan inhibits nerve growth in vitro. Arthritis Rheum 46:2658–2664

    Article  PubMed  CAS  Google Scholar 

  • Johnson WE, Caterson B, Eisenstein SM, Roberts S (2005) Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro. Spine (Phila Pa 1976) 30:1139–1147

    Article  Google Scholar 

  • Johnson WE, Sivan S, Wright KT, Eisenstein SM, Maroudas A, Roberts S (2006) Human intervertebral disc cells promote nerve growth over substrata of human intervertebral disc aggrecan. Spine (Phila Pa 1976) 31:1187–1193

    Article  Google Scholar 

  • Johnson WE, Patterson AM, Eisenstein SM, Roberts S (2007) The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularization: an immunohistologic study. Spine (Phila Pa 1976) 32:1295–1302

    Article  Google Scholar 

  • Jones P, Gardner L, Menage J, Williams GT, Roberts S (2008) Intervertebral disc cells as competent phagocytes in vitro: implications for cell death in disc degeneration. Arthritis Res Ther 10:R86

    Article  PubMed  CAS  Google Scholar 

  • Kang JD, Georgescu HI, Intyre-Larkin L, Stefanovic-Racic M, Donaldson WF III, Evans CH (1996) Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine (Phila Pa 1976) 21:271–277

    Article  CAS  Google Scholar 

  • Kashiwagi M, Tortorella M, Nagase H, Brew K (2001) TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 276:12501–12504

    Article  PubMed  CAS  Google Scholar 

  • Katsuura A, Hukuda S (1994) Experimental study of intervertebral disc allografting in the dog. Spine 19:2426–2432

    Article  PubMed  CAS  Google Scholar 

  • Katz MM, Hargens AR, Garfin SR (1986) Intervertebral disc nutrition. Diffusion versus convection. Clin Orthop Relat Res (210):243–245

    Google Scholar 

  • Kawaguchi Y, Kanamori M, Ishihara H, Ohmori K, Matsui H, Kimura T (2002) The association of lumbar disc disease with vitamin-D receptor gene polymorphism. J Bone Joint Surg Am 84-A:2022–2028

    PubMed  Google Scholar 

  • Kawakami M, Matsumoto T, Hashizume H, Kuribayashi K, Chubinskaya S, Yoshida M (2005) Osteogenic protein-1 (osteogenic protein-1/bone morphogenetic protein-7) inhibits degeneration and pain-related behavior induced by chronically compressed nucleus pulposus in the rat. Spine (Phila Pa 1976) 30:1933–1939

    Article  Google Scholar 

  • Kim KW, Kim YS, Ha KY, Woo YK, Park JB, Park WS, An HS (2005) An autocrine or paracrine Fas-mediated counterattack: a potential mechanism for apoptosis of notochordal cells in intact rat nucleus pulposus. Spine (Phila Pa 1976) 30:1247–1251

    Article  Google Scholar 

  • Kim KW, Chung HN, Ha KY, Lee JS, Kim YY (2009) Senescence mechanisms of nucleus pulposus chondrocytes in human intervertebral discs. Spine J 9:658–666

    Article  PubMed  Google Scholar 

  • Klawitter M, Quero L, Bertolo A, Mehr M, Stoyanov J, Nerlich AG, Klasen J, Aebli N, Boos N, Wuertz K (2011) Human MMP28 expression is unresponsive to inflammatory stimuli and does not correlate to the grade of intervertebral disc degeneration. J Negat Results Biomed 10:9

    Article  PubMed  Google Scholar 

  • Kolodkin AL, Matthes DJ, Goodman CS (1993) The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75:1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Konttinen YT, Kaapa E, Hukkanen M, Gu XH, Takagi M, Santavirta S, Alaranta H, Li TF, Suda A (1999) Cathepsin G in degenerating and healthy discal tissue. Clin Exp Rheumatol 17:197–204

    PubMed  CAS  Google Scholar 

  • Korecki CL, Kuo CK, Tuan RS, Iatridis JC (2009) Intervertebral disc cell response to dynamic compression is age and frequency dependent. J Orthop Res 27:800–806

    Article  PubMed  Google Scholar 

  • Le Maitre CL, Freemont AJ, Hoyland JA (2004) Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 204:47–54

    Article  PubMed  CAS  Google Scholar 

  • Le Maitre CL, Freemont AJ, Hoyland JA (2005a) The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7:R732–R745

    Article  PubMed  CAS  Google Scholar 

  • Le Maitre CL, Richardson SM, Baird P, Freemont AJ, Hoyland JA (2005b) Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc. J Pathol 207:445–452

    Article  PubMed  CAS  Google Scholar 

  • Le Maitre CL, Freemont AJ, Hoyland JA (2006a) A preliminary in vitro study into the use of IL-1Ra gene therapy for the inhibition of intervertebral disc degeneration. Int J Exp Pathol 87:17–28

    Article  PubMed  Google Scholar 

  • Le Maitre CL, Freemont AJ, Hoyland JA (2006b) Human disc degeneration is associated with increased MMP 7 expression. Biotech Histochem 81:125–131

    Article  PubMed  CAS  Google Scholar 

  • Le Maitre CL, Freemont AJ, Hoyland JA (2007a) Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther 9:R45

    Article  PubMed  CAS  Google Scholar 

  • Le Maitre CL, Hoyland JA, Freemont AJ (2007b) Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther 9:R77

    Article  PubMed  CAS  Google Scholar 

  • Le Maitre CL, Hoyland JA, Freemont AJ (2007c) Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study. Arthritis Res Ther 9:R83

    Article  PubMed  CAS  Google Scholar 

  • Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA (2007d) Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans 35:652–655

    Article  PubMed  Google Scholar 

  • Le Maitre CL, Frain J, Fotheringham AP, Freemont AJ, Hoyland JA (2008) Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure. Biorheology 45:563–575

    PubMed  Google Scholar 

  • Le Maitre CL, Freemont AJ, Hoyland JA (2009) Expression of cartilage-derived morphogenetic protein in human intervertebral discs and its effect on matrix synthesis in degenerate human nucleus pulposus cells. Arthritis Res Ther 11:R137

    Article  PubMed  CAS  Google Scholar 

  • Lee CR, Sakai D, Nakai T, Toyama K, Mochida J, Alini M, Grad S (2007) A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur Spine J 16:2174–2185

    Article  PubMed  Google Scholar 

  • Lee JM, Song JY, Baek M, Jung HY, Kang H, Han IB, Kwon YD, Shin DE (2011) Interleukin-1beta induces angiogenesis and innervation in human intervertebral disc degeneration. J Orthop Res 29:265–269

    Article  PubMed  CAS  Google Scholar 

  • Lindley EM, Jaafar S, Noshchenko A, Baldini T, Nair DP, Shandas R, Burger EL, Patel VV (2010) Nucleus replacement device failure: a case report and biomechanical study. Spine (Phila Pa 1976) 35:E1241–E1247

    Article  Google Scholar 

  • Loreto C, Musumeci G, Castorina A, Loreto C, Martinez G (2011) Degenerative disc disease of herniated intervertebral discs is associated with extracellular matrix remodeling, vimentin-positive cells and cell death. Ann Anat 193:156–162

    Article  PubMed  CAS  Google Scholar 

  • Lotz JC, Chin JR (2000) Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine (Phila Pa 1976) 25:1477–1483

    Article  CAS  Google Scholar 

  • Luk KD, Ruan DK, Chow DH, Leong JC (1997) Intervertebral disc autografting in a bipedal animal model. Clin Orthop Relat Res 337:13–26

    Google Scholar 

  • Lyons G, Eisenstein SM, Sweet MB (1981) Biochemical changes in intervertebral disc degeneration. Biochim Biophys Acta 673:443–453

    Article  PubMed  CAS  Google Scholar 

  • MacGregor AJ, Andrew T, Sambrook PN, Spector TD (2004) Structural, psychological, and genetic influences on low back and neck pain: a study of adult female twins. Arthritis Rheum 51:160–167

    Article  PubMed  Google Scholar 

  • MacLean JJ, Lee CR, Alini M, Iatridis JC (2004) Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res 22:1193–1200

    Article  PubMed  CAS  Google Scholar 

  • MacLean JJ, Lee CR, Alini M, Iatridis JC (2005) The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc. J Orthop Res 23:1120–1127

    Article  PubMed  CAS  Google Scholar 

  • Malandrino A, Noailly J, Lacroix D (2011) The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes. PLoS Comput Biol 7:e1002112

    Article  PubMed  CAS  Google Scholar 

  • Maniadakis N, Gray A (2000) The economic burden of back pain in the UK. Pain 84:95–103

    Article  PubMed  CAS  Google Scholar 

  • Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15:402–410

    Article  PubMed  CAS  Google Scholar 

  • Maroudas A, Stockwell RA, Nachemson A, Urban J (1975) Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 120:113–130

    PubMed  CAS  Google Scholar 

  • Martin JA, Brown TD, Heiner AD, Buckwalter JA (2004) Chondrocyte senescence, joint loading and osteoarthritis. Clin Orthop Relat Res (427 Suppl):S96–103

    Google Scholar 

  • Martin BI, Deyo RA, Mirza SK, Turner JA, Comstock BA, Hollingworth W, Sullivan SD (2008) Expenditures and health status among adults with back and neck problems. JAMA 299:656–664

    Article  PubMed  CAS  Google Scholar 

  • Masuda K, Takegami K, An H, Kumano F, Chiba K, Andersson GB, Schmid T, Thonar E (2003) Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res 21:922–930

    Article  PubMed  CAS  Google Scholar 

  • Masuda K, Imai Y, Okuma M, Muehleman C, Nakagawa K, Akeda K, Thonar E, Andersson G, An HS (2006) Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine (Phila Pa 1976) 31:742–754

    Article  Google Scholar 

  • McCanless JD, Cole JA, Slack SM, Bumgardner JD, Zamora PO, Haggard WO (2011) Modeling nucleus pulposus regeneration in vitro: mesenchymal stem cells, alginate beads, hypoxia, BMP-2, and synthetic peptide B2A. Spine (Phila Pa 1976) 36:2275–2285

    Google Scholar 

  • Meisel HJ, Ganey T, Hutton WC, Libera J, Minkus Y, Alasevic O (2006) Clinical experience in cell-based therapeutics: intervention and outcome. Eur Spine J 15(Suppl 3):S397–S405

    Article  PubMed  Google Scholar 

  • Melrose J, Roberts S, Smith S, Menage J, Ghosh P (2002a) Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine (Phila Pa 1976) 27:1278–1285

    Article  Google Scholar 

  • Melrose J, Smith S, Little CB, Kitson J, Hwa SY, Ghosh P (2002b) Spatial and temporal localization of transforming growth factor-beta, fibroblast growth factor-2, and osteonectin, and identification of cells expressing alpha-smooth muscle actin in the injured anulus fibrosus: implications for extracellular matrix repair. Spine (Phila Pa 1976) 27:1756–1764

    Article  Google Scholar 

  • Melrose J, Smith SM, Appleyard RC, Little CB (2008) Aggrecan, versican and type VI collagen are components of annular translamellar crossbridges in the intervertebral disc. Eur Spine J 17:314–324

    Article  PubMed  Google Scholar 

  • Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010a) Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum 62:3695–3705

    Article  PubMed  Google Scholar 

  • Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA (2010b) Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther 12:R22

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto K, Masuda K, Kim JG, Inoue N, Akeda K, Andersson GB, An HS (2006) Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs. Spine J 6:692–703

    Article  PubMed  Google Scholar 

  • Mokhbi SD, Shirazi-Adl A, Urban JP (2009) Investigation of solute concentrations in a 3D model of intervertebral disc. Eur Spine J 18:254–262

    Article  Google Scholar 

  • Mwale F, Roughley P, Antoniou J (2004) Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater 8:58–63

    PubMed  CAS  Google Scholar 

  • Nachemson AL (1981) Disc pressure measurements. Spine (Phila Pa 1976) 6:93–97

    Article  CAS  Google Scholar 

  • Nachemson A, Lewin T, Maroudas A, Freeman MA (1970) In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 41:589–607

    Article  PubMed  CAS  Google Scholar 

  • Nagase H, Kashiwagi M (2003) Aggrecanases and cartilage matrix degradation. Arthritis Res Ther 5:94–103

    Article  PubMed  CAS  Google Scholar 

  • Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  PubMed  CAS  Google Scholar 

  • Neidlinger-Wilke C, Wurtz K, Urban JP, Borm W, Arand M, Ignatius A, Wilke HJ, Claes LE (2006) Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure. Eur Spine J 15(Suppl 3):S372–S378

    Article  PubMed  Google Scholar 

  • Nerlich AG, Schleicher ED, Boos N (1997) 1997 Volvo Award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine (Phila Pa 1976) 22:2781–2795

    Article  CAS  Google Scholar 

  • Nerlich AG, Boos N, Wiest I, Aebi M (1998) Immunolocalization of major interstitial collagen types in human lumbar intervertebral discs of various ages. Virchows Arch 432:67–76

    Article  PubMed  CAS  Google Scholar 

  • Nerlich AG, Weiler C, Zipperer J, Narozny M, Boos N (2002) Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs. Spine (Phila Pa 1976) 27:2484–2490

    Article  Google Scholar 

  • Nerlich AG, Schaaf R, Walchli B, Boos N (2007) Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs. Eur Spine J 16:547–555

    Article  PubMed  Google Scholar 

  • Nomura T, Mochida J, Okuma M, Nishimura K, Sakabe K (2001) Nucleus pulposus allograft retards intervertebral disc degeneration. Clin Orthop Relat Res 389:94–101

    Google Scholar 

  • Oegema TR Jr, Johnson SL, Aguiar DJ, Ogilvie JW (2000) Fibronectin and its fragments increase with degeneration in the human intervertebral disc. Spine (Phila Pa 1976) 25:2742–2747

    Article  Google Scholar 

  • Ohba T, Haro H, Ando T, Wako M, Suenaga F, Aso Y, Koyama K, Hamada Y, Nakao A (2009) TNF-alpha-induced NF-kappaB signaling reverses age-related declines in VEGF induction and angiogenic activity in intervertebral disc tissues. J Orthop Res 27:229–235

    Article  PubMed  CAS  Google Scholar 

  • Ohshima H, Urban JP (1992) The effect of lactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine (Phila Pa 1976) 17:1079–1082

    Article  CAS  Google Scholar 

  • Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H (2002) Substance P and calcitonin gene-related peptide immunoreactive sensory DRG neurons innervating the lumbar intervertebral discs in rats. Ann Anat 184:235–240

    Article  PubMed  CAS  Google Scholar 

  • Olmarker K, Larsson K (1998) Tumor necrosis factor alpha and nucleus-pulposus-induced nerve root injury. Spine (Phila Pa 1976) 23:2538–2544

    Article  CAS  Google Scholar 

  • Olmarker K, Rydevik B (2001) Selective inhibition of tumor necrosis factor-alpha prevents nucleus pulposus-induced thrombus formation, intraneural edema, and reduction of nerve conduction velocity: possible implications for future pharmacologic treatment strategies of sciatica. Spine (Phila Pa 1976) 26:863–869

    Article  CAS  Google Scholar 

  • Osada R, Ohshima H, Ishihara H, Yudoh K, Sakai K, Matsui H, Tsuji H (1996) Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs. J Orthop Res 14:690–699

    Article  PubMed  CAS  Google Scholar 

  • Park JB, Park IC, Park SJ, Jin HO, Lee JK, Riew KD (2006) Anti-apoptotic effects of caspase inhibitors on rat intervertebral disc cells. J Bone Joint Surg Am 88:771–779

    Article  PubMed  Google Scholar 

  • Patel KP, Sandy JD, Akeda K, Miyamoto K, Chujo T, An HS, Masuda K (2007) Aggrecanases and aggrecanase-generated fragments in the human intervertebral disc at early and advanced stages of disc degeneration. Spine (Phila Pa 1976) 32:2596–2603

    Article  Google Scholar 

  • Pazzaglia UE, Salisbury JR, Byers PD (1989) Development and involution of the notochord in the human spine. J R Soc Med 82:413–415

    PubMed  CAS  Google Scholar 

  • Pearce RH, Grimmer BJ, Adams ME (1987) Degeneration and the chemical composition of the human lumbar intervertebral disc. J Orthop Res 5:198–205

    Article  PubMed  CAS  Google Scholar 

  • Peng B, Hao J, Hou S, Wu W, Jiang D, Fu X, Yang Y (2006) Possible pathogenesis of painful intervertebral disc degeneration. Spine (Phila Pa 1976) 31:560–566

    Article  Google Scholar 

  • Peng B, Chen J, Kuang Z, Li D, Pang X, Zhang X (2009) Expression and role of connective tissue growth factor in painful disc fibrosis and degeneration. Spine (Phila Pa 1976) 34:E178–E182

    Article  Google Scholar 

  • Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 26:1873–1878

    Article  CAS  Google Scholar 

  • Pluijm SM, van Essen HW, Bravenboer N, Uitterlinden AG, Smit JH, Pols HA, Lips P (2004) Collagen type I alpha1 Sp1 polymorphism, osteoporosis, and intervertebral disc degeneration in older men and women. Ann Rheum Dis 63:71–77

    Article  PubMed  CAS  Google Scholar 

  • Pockert AJ, Richardson SM, Le Maitre CL, Lyon M, Deakin JA, Buttle DJ, Freemont AJ, Hoyland JA (2009) Modified expression of the ADAMTS enzymes and tissue inhibitor of metalloproteinases 3 during human intervertebral disc degeneration. Arthritis Rheum 60:482–491

    Article  PubMed  CAS  Google Scholar 

  • Pokharna HK, Phillips FM (1998) Collagen crosslinks in human lumbar intervertebral disc aging. Spine (Phila Pa 1976) 23:1645–1648

    Article  CAS  Google Scholar 

  • Pollintine P, Przybyla AS, Dolan P, Adams MA (2004) Neural arch load-bearing in old and degenerated spines. J Biomech 37:197–204

    Article  PubMed  CAS  Google Scholar 

  • Postacchini F, Lami R, Pugliese O (1988) Familial predisposition to discogenic low-back pain. An epidemiologic and immunogenetic study. Spine (Phila Pa 1976) 13:1403–1406

    Article  CAS  Google Scholar 

  • Purmessur D, Freemont AJ, Hoyland JA (2008) Expression and regulation of neurotrophins in the nondegenerate and degenerate human intervertebral disc. Arthritis Res Ther 10:R99

    Article  PubMed  CAS  Google Scholar 

  • Rannou F, Lee TS, Zhou RH, Chin J, Lotz JC, Mayoux-Benhamou MA, Barbet JP, Chevrot A, Shyy JY (2004) Intervertebral disc degeneration: the role of the mitochondrial pathway in annulus fibrosus cell apoptosis induced by overload. Am J Pathol 164:915–924

    Article  PubMed  CAS  Google Scholar 

  • Repanti M, Korovessis PG, Stamatakis MV, Spastris P, Kosti P (1998) Evolution of disc degeneration in lumbar spine: a comparative histological study between herniated and postmortem retrieved disc specimens. J Spinal Disord 11:41–45

    Article  PubMed  CAS  Google Scholar 

  • Richardson JK, Chung T, Schultz JS, Hurvitz E (1997) A familial predisposition toward lumbar disc injury. Spine (Phila Pa 1976) 22:1487–1492

    Article  CAS  Google Scholar 

  • Richardson SM, Curran JM, Chen R, Vaughan-Thomas A, Hunt JA, Freemont AJ, Hoyland JA (2006a) The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials 27:4069–4078

    Article  PubMed  CAS  Google Scholar 

  • Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, Hoyland JA (2006b) Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 24:707–716

    Article  PubMed  CAS  Google Scholar 

  • Richardson SM, Hughes N, Hunt JA, Freemont AJ, Hoyland JA (2008a) Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials 29:85–93

    Article  PubMed  CAS  Google Scholar 

  • Richardson SM, Knowles R, Tyler J, Mobasheri A, Hoyland JA (2008b) Expression of glucose transporters GLUT-1, GLUT-3, GLUT-9 and HIF-1alpha in normal and degenerate human intervertebral disc. Histochem Cell Biol 129:503–511

    Article  PubMed  CAS  Google Scholar 

  • Richardson SM, Doyle P, Minogue BM, Gnanalingham K, Hoyland JA (2009) Increased expression of matrix metalloproteinase-10, nerve growth factor and substance P in the painful degenerate intervertebral disc. Arthritis Res Ther 11:R126

    Article  PubMed  CAS  Google Scholar 

  • Richardson SM, Purmessur D, Baird P, Probyn B, Freemont AJ, Hoyland JA (2012) Degenerate human nucleus pulposus cells promote neurite outgrowth in neural cells. PLoS One 7(10):e47735. PubMed PMID: 23091643

    Google Scholar 

  • Risbud MV, Fertala J, Vresilovic EJ, Albert TJ, Shapiro IM (2005) Nucleus pulposus cells upregulate PI3K/Akt and MEK/ERK signaling pathways under hypoxic conditions and resist apoptosis induced by serum withdrawal. Spine (Phila Pa 1976) 30:882–889

    Article  Google Scholar 

  • Roberts S, Urban JP, Evans H, Eisenstein SM (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine (Phila Pa 1976) 21:415–420

    Article  CAS  Google Scholar 

  • Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SM (2000) Matrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine (Phila Pa 1976) 25:3005–3013

    Article  CAS  Google Scholar 

  • Roberts S, Evans EH, Kletsas D, Jaffray DC, Eisenstein SM (2006a) Senescence in human intervertebral discs. Eur Spine J 15(Suppl 3):S312–S316

    Article  PubMed  Google Scholar 

  • Roberts S, Evans H, Trivedi J, Menage J (2006b) Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am 88(Suppl 2):10–14

    Article  PubMed  Google Scholar 

  • Rodriguez AG, Slichter CK, Acosta FL, Rodriguez-Soto AE, Burghardt AJ, Majumdar S, Lotz JC (2011) Human disc nucleus properties and vertebral endplate permeability. Spine (Phila Pa 1976) 36:512–520

    Article  Google Scholar 

  • Rodriguez AG, Rodriguez-Soto AE, Burghardt AJ, Berven S, Majumdar S, Lotz JC (2012) Morphology of the human vertebral endplate. J Orthop Res 30:280–287

    Article  PubMed  Google Scholar 

  • Roughley PJ (2004) Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 29:2691–2699

    Article  PubMed  Google Scholar 

  • Roughley P, Martens D, Rantakokko J, Alini M, Mwale F, Antoniou J (2006) The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur Cell Mater 11:1–7

    PubMed  CAS  Google Scholar 

  • Rutges JP, Duit RA, Kummer JA, Oner FC, van Rijen MH, Verbout AJ, Castelein RM, Dhert WJ, Creemers LB (2010) Hypertrophic differentiation and calcification during intervertebral disc degeneration. Osteoarthritis Cartilage 18:1487–1495

    Article  PubMed  CAS  Google Scholar 

  • Sakai D, Mochida J, Iwashina T, Watanabe T, Nakai T, Ando K, Hotta T (2005) Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine (Phila Pa 1976) 30:2379–2387

    Article  Google Scholar 

  • Sakai D, Nakai T, Mochida J, Alini M, Grad S (2009) Differential phenotype of intervertebral disc cells: microarray and immunohistochemical analysis of canine nucleus pulposus and anulus fibrosus. Spine (Phila Pa 1976) 34:1448–1456

    Article  Google Scholar 

  • Schollmeier G, Lahr-Eigen R, Lewandrowski KU (2000) Observations on fiber-forming collagens in the anulus fibrosus. Spine (Phila Pa 1976) 25:2736–2741

    Article  CAS  Google Scholar 

  • Seki S, Kawaguchi Y, Chiba K, Mikami Y, Kizawa H, Oya T, Mio F, Mori M, Miyamoto Y, Masuda I, Tsunoda T, Kamata M, Kubo T, Toyama Y, Kimura T, Nakamura Y, Ikegawa S (2005) A functional SNP in CILP, encoding cartilage intermediate layer protein, is associated with susceptibility to lumbar disc disease. Nat Genet 37:607–612

    Article  PubMed  CAS  Google Scholar 

  • Selard E, Shirazi-Adl A, Urban JP (2003) Finite element study of nutrient diffusion in the human intervertebral disc. Spine (Phila Pa 1976) 28:1945–1953

    Article  Google Scholar 

  • Shen C, Yan J, Jiang LS, Dai LY (2011) Autophagy in rat annulus fibrosus cells: evidence and possible implications. Arthritis Res Ther 13:R132

    Article  PubMed  Google Scholar 

  • Sive JI, Baird P, Jeziorsk M, Watkins A, Hoyland JA, Freemont AJ (2002) Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol Pathol 55:91–97

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Whitelock JM, Iozzo RV, Little CB, Melrose J (2009) Topographical variation in the distributions of versican, aggrecan and perlecan in the foetal human spine reflects their diverse functional roles in spinal development. Histochem Cell Biol 132:491–503

    Article  PubMed  CAS  Google Scholar 

  • Solovieva S, Kouhia S, Leino-Arjas P, la-Kokko L, Luoma K, Raininko R, Saarela J, Riihimaki H (2004) Interleukin 1 polymorphisms and intervertebral disc degeneration. Epidemiology 15:626–633

    Article  PubMed  Google Scholar 

  • Solovieva S, Lohiniva J, Leino-Arjas P, Raininko R, Luoma K, la-Kokko L, Riihimaki H (2006) Intervertebral disc degeneration in relation to the COL9A3 and the IL-1ss gene polymorphisms. Eur Spine J 15:613–619

    Article  PubMed  Google Scholar 

  • Somerville RP, Longpre JM, Jungers KA, Engle JM, Ross M, Evanko S, Wight TN, Leduc R, Apte SS (2003) Characterization of ADAMTS-9 and ADAMTS-20 as a distinct ADAMTS subfamily related to Caenorhabditis elegans GON-1. J Biol Chem 278:9503–9513

    Article  PubMed  CAS  Google Scholar 

  • Sowa GA, Coelho JP, Bell KM, Zorn AS, Vo NV, Smolinski P, Niyonkuru C, Hartman R, Studer RK, Kang JD (2011) Alterations in gene expression in response to compression of nucleus pulposus cells. Spine J 11:36–43

    Article  PubMed  Google Scholar 

  • Stetler-Stevenson WG, Krutzsch HC, Liotta LA (1989) Tissue inhibitor of metalloproteinase (TIMP-2). A new member of the metalloproteinase inhibitor family. J Biol Chem 264:17374–17378

    PubMed  CAS  Google Scholar 

  • Stewart WF, Ricci JA, Chee E, Morganstein D, Lipton R (2003) Lost productive time and cost due to common pain conditions in the US workforce. JAMA 290:2443–2454

    Article  PubMed  CAS  Google Scholar 

  • Stoyanov JV, Gantenbein-Ritter B, Bertolo A, Aebli N, Baur M, Alini M, Grad S (2011) Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells. Eur Cell Mater 21:533–547

    PubMed  CAS  Google Scholar 

  • Studer RK, Vo N, Sowa G, Ondeck C, Kang J (2011) Human nucleus pulposus cells react to IL-6: independent actions and amplification of response to IL-1 and TNF-alpha. Spine (Phila Pa 1976) 36:593–599

    Article  Google Scholar 

  • Sztrolovics R, Alini M, Roughley PJ, Mort JS (1997) Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 326(Pt 1):235–241

    PubMed  CAS  Google Scholar 

  • Sztrolovics R, Grover J, Cs-Szabo G, Shi SL, Zhang Y, Mort JS, Roughley PJ (2002) The characterization of versican and its message in human articular cartilage and intervertebral disc. J Orthop Res 20:257–266

    Article  PubMed  Google Scholar 

  • Takahashi M, Haro H, Wakabayashi Y, Kawa-uchi T, Komori H, Shinomiya K (2001) The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J Bone Joint Surg Br 83:491–495

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Ohtori S, Takahashi K (2009) Peripheral nerve pathways of afferent fibers innervating the lumbar spine in rats. J Pain 10:416–425

    Article  PubMed  Google Scholar 

  • Takaishi H, Nemoto O, Shiota M, Kikuchi T, Yamada H, Yamagishi M, Yabe Y (1997) Type-II collagen gene expression is transiently upregulated in experimentally induced degeneration of rabbit intervertebral disc. J Orthop Res 15:528–538

    Article  PubMed  CAS  Google Scholar 

  • Takebayashi T, Cavanaugh JM, Kallakuri S, Chen C, Yamashita T (2006) Sympathetic afferent units from lumbar intervertebral discs. J Bone Joint Surg Br 88:554–557

    PubMed  CAS  Google Scholar 

  • Takegami K, An HS, Kumano F, Chiba K, Thonar EJ, Singh K, Masuda K (2005) Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J 5:231–238

    Article  PubMed  Google Scholar 

  • Thompson JP, Pearce RH, Schechter MT, Adams ME, Tsang IK, Bishop PB (1990) Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976) 15:411–415

    Article  CAS  Google Scholar 

  • Thompson JP, Oegema TR Jr, Bradford DS (1991) Stimulation of mature canine intervertebral disc by growth factors. Spine (Phila Pa 1976) 16:253–260

    Article  CAS  Google Scholar 

  • Tim YS, Su KK, Li J, Soo PJ, Akamaru T, Elmer WA, Hutton WC (2003) The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro. Spine (Phila Pa 1976) 28:1773–1780

    Article  Google Scholar 

  • Tolofari SK, Richardson SM, Freemont AJ, Hoyland JA (2010) Expression of semaphorin 3A and its receptors in the human intervertebral disc: potential role in regulating neural ingrowth in the degenerate intervertebral disc. Arthritis Res Ther 12:R1

    Article  PubMed  CAS  Google Scholar 

  • Tortorella MD, Burn TC, Pratta MA, Abbaszade I, Hollis JM, Liu R, Rosenfeld SA, Copeland RA, Decicco CP, Wynn R, Rockwell A, Yang F, Duke JL, Solomon K, George H, Bruckner R, Nagase H, Itoh Y, Ellis DM, Ross H, Wiswall BH, Murphy K, Hillman MC Jr, Hollis GF, Newton RC, Magolda RL, Trzaskos JM, Arner EC (1999) Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 284:1664–1666

    Article  PubMed  CAS  Google Scholar 

  • Tschoeke SK, Hellmuth M, Hostmann A, Robinson Y, Ertel W, Oberholzer A, Heyde CE (2008) Apoptosis of human intervertebral discs after trauma compares to degenerated discs involving both receptor-mediated and mitochondrial-dependent pathways. J Orthop Res 26:999–1006

    Article  PubMed  CAS  Google Scholar 

  • Urban JP, Holm S, Maroudas A, Nachemson A (1982) Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res (170):296–302

    Google Scholar 

  • Urban MR, Fairbank JC, Etherington PJ, Loh FL, Winlove CP, Urban JP (2001) Electrochemical measurement of transport into scoliotic intervertebral discs in vivo using nitrous oxide as a tracer. Spine (Phila Pa 1976) 26:984–990

    Article  CAS  Google Scholar 

  • Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine (Phila Pa 1976) 29:2700–2709

    Article  Google Scholar 

  • van der Roer N, Goossens ME, Evers SM, van Tulder MW (2005) What is the most cost-effective treatment for patients with low back pain? A systematic review. Best Pract Res Clin Rheumatol 19:671–684

    Article  PubMed  Google Scholar 

  • Videman T, Leppavuori J, Kaprio J, Battie MC, Gibbons LE, Peltonen L, Koskenvuo M (1998) Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine (Phila Pa 1976) 23:2477–2485

    Article  CAS  Google Scholar 

  • Wagner DR, Reiser KM, Lotz JC (2006) Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions. J Biomech 39:1021–1029

    Article  PubMed  Google Scholar 

  • Walker BF (2000) The prevalence of low back pain: a systematic review of the literature from 1966 to 1998. J Spinal Disord 13:205–217

    Article  PubMed  CAS  Google Scholar 

  • Wallach D, Arumugam TU, Boldin MP, Cantarella G, Ganesh KA, Goltsev Y, Goncharov TM, Kovalenko AV, Rajput A, Varfolomeev EE, Zhang SQ (2002) How are the regulators regulated? The search for mechanisms that impose specificity on induction of cell death and NF-kappaB activation by members of the TNF/NGF receptor family. Arthritis Res 4(Suppl 3):S189–S196

    Article  PubMed  Google Scholar 

  • Walsh AJ, Bradford DS, Lotz JC (2004) In vivo growth factor treatment of degenerated intervertebral discs. Spine (Phila Pa 1976) 29:156–163

    Article  Google Scholar 

  • Wang DL, Jiang SD, Dai LY (2007) Biologic response of the intervertebral disc to static and dynamic compression in vitro. Spine (Phila Pa 1976) 32:2521–2528

    Article  Google Scholar 

  • Weiler C, Nerlich AG, Zipperer J, Bachmeier BE, Boos N (2002) 2002 SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J 11:308–320

    Article  PubMed  CAS  Google Scholar 

  • Weiler C, Nerlich AG, Bachmeier BE, Boos N (2005) Expression and distribution of tumor necrosis factor alpha in human lumbar intervertebral discs: a study in surgical specimen and autopsy controls. Spine (Phila Pa 1976) 30:44–53

    Article  Google Scholar 

  • Wilder DG, Pope MH, Magnusson M (1996) Mechanical stress reduction during seated jolt/vibration exposure. Semin Perinatol 20:54–60

    Article  PubMed  CAS  Google Scholar 

  • Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine (Phila Pa 1976) 24:755–762

    Article  CAS  Google Scholar 

  • Wolfe HJ, Putschar WG, Vickery AL (1965) Role of the notochord in human intervetebral disk. I. Fetus and infant. Clin Orthop Relat Res 39:205–212

    PubMed  CAS  Google Scholar 

  • Wuertz K, Godburn K, MacLean JJ, Barbir A, Donnelly JS, Roughley PJ, Alini M, Iatridis JC (2009) In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression. J Orthop Res 27:1235–1242

    Article  PubMed  Google Scholar 

  • Yao H, Gu WY (2006) Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis. Biorheology 43:323–335

    PubMed  Google Scholar 

  • Yasuma T, Arai K, Yamauchi Y (1993) The histology of lumbar intervertebral disc herniation. The significance of small blood vessels in the extruded tissue. Spine (Phila Pa 1976) 18:1761–1765

    Article  CAS  Google Scholar 

  • Ye W, Xu K, Huang D, Liang A, Peng Y, Zhu W, Li C (2011) Age-related increases of macroautophagy and chaperone-mediated autophagy in rat nucleus pulposus. Connect Tissue Res 52:472–478

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Zhu Y (2012) Expression of ADAMTS-7 and ADAMTS-12 in nucleus pulposus during degeneration of rat caudal intervetebral disc. J Vet Med Sci 74:9–15

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Winlove PC, Roberts S, Urban JP (2002) Elastic fibre organization in the intervertebral discs of the bovine tail. J Anat 201:465–475

    Article  PubMed  Google Scholar 

  • Zhao F, Pollintine P, Hole BD, Dolan P, Adams MA (2005) Discogenic origins of spinal instability. Spine (Phila Pa 1976) 30:2621–2630

    Article  Google Scholar 

  • Zhao CQ, Liu D, Li H, Jiang LS, Dai LY (2007a) Interleukin-1beta enhances the effect of serum deprivation on rat annular cell apoptosis. Apoptosis 12:2155–2161

    Article  PubMed  CAS  Google Scholar 

  • Zhao CQ, Wang LM, Jiang LS, Dai LY (2007b) The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev 6:247–261

    Article  PubMed  Google Scholar 

  • Zhao CQ, Zhang YH, Jiang SD, Li H, Jiang LS, Dai LY (2011) ADAMTS-5 and intervertebral disc degeneration: the results of tissue immunohistochemistry and in vitro cell culture. J Orthop Res 29:718–725

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by grants from the Biotechnology and Biological Sciences Research Council (BBSRC), Arthritis Research UK (ARUK) and Research Councils UK (RCUK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. Hoyland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Richardson, S.M., Freemont, A.J., Hoyland, J.A. (2014). Pathogenesis of Intervertebral Disc Degeneration. In: Shapiro, I., Risbud, M. (eds) The Intervertebral Disc. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1535-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1535-0_11

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1534-3

  • Online ISBN: 978-3-7091-1535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics