Skip to main content

Auxin Coordinates Shoot and Root Development During Shade Avoidance Response

  • Chapter
  • First Online:
Auxin and Its Role in Plant Development

Abstract

Plants have evolved sophisticated mechanisms to sense the presence of other plants growing nearby and adjust their growth rate accordingly. The early perception of neighbor proximity depends on the detection of light quality changes. Within a vegetation community, the ratio of red (R) to far-red (FR) light is lowered by the absorption of R light by photosynthetic pigments. This light quality change is perceived through phytochrome (phyB, phyD, and phyE in Arabidopsis) as a signal of the proximity of neighbors and induces a suite of developmental responses (termed the shade avoidance response). In Arabidopsis shade avoidance is regulated by a balance of positive (PIF) and negative (HFR1/SICS1) regulators of gene expression which ensures a fast reshaping of the plant body toward an environment optimal for growth while at the same time avoiding an exaggerated reaction to low R/FR. Persistency of a low R/FR signal enhances the activity of phyA and, in turn, of HY5, a master regulator of seedling de-etiolation. Several hormones, such as gibberellins and brassinosteroids, have been implicated in shade-induced elongation. However, a compelling amount of evidence indicates that low R/FR-induced changes in auxin homeostasis and auxin transport are central in the shade avoidance response. This chapter describes the recent advances in understanding how auxin coordinates plant growth in a low R/FR light environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Sady B, Ni W, Kircher S et al (2006) Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell 23:439–446

    CAS  PubMed  Google Scholar 

  • Arsovski AA, Galstyan A, Guseman JM et al (2012) Photomorphogenesis. Arabidopsis Book 10:e0147

    PubMed Central  PubMed  Google Scholar 

  • Aukerman MJ, Hirschfeld M, Wester L et al (1997) A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9:1317–1326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bae G, Choi G (2008) Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol 59:281–311

    CAS  PubMed  Google Scholar 

  • Bai MY, Shang JX, Oh E et al (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ballaré CL (1999) Keeping up with the neighbours: phytochrome sensing and other signaling mechanisms. Trends Plant Sci 4:97–102

    PubMed  Google Scholar 

  • Bauer D, Viczián A, Kircher S et al (2004) Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3, a transcription factor required for light signaling in Arabidopsis. Plant Cell 16:1433–1445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Lee OR et al (2007) Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19:131–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bou-Torrent J, Salla-Martret M, Brandt R et al (2012) ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis. Plant Signal Behav 7:1382–1387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carabelli M, Morelli G, Whitelam G et al (1996) Twilight-zone and canopy shade induction of the ATHB-2 homeobox gene in green plants. Proc Natl Acad Sci USA 93:3530–3535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carabelli M, Possenti M, Sessa G et al (2007) Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev 21:1863–1868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carabelli M, Possenti M, Sessa G et al (2008) A novel regulatory circuit underlying plant response to canopy shade. Plant Signal Behav 3:137–139

    PubMed Central  PubMed  Google Scholar 

  • Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64:403–427

    CAS  PubMed  Google Scholar 

  • Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12:514–521

    CAS  PubMed  Google Scholar 

  • Chang CS, Li YH, Chen LT et al (2008) LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. Plant J 54:205–219

    CAS  PubMed  Google Scholar 

  • Chang CSJ, Maloof JN, Wu SH (2011) COP1 mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. Plant Physiol 156:228–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciarbelli AR, Ciolfi A, Salvucci S et al (2008) The Arabidopsis homeodomain-leucine zipper II gene family: diversity and redundancy. Plant Mol Biol 68:465–478

    CAS  PubMed  Google Scholar 

  • Ciolfi A, Sessa G, Sassi M et al (2013) Dynamics of the shade-avoidance response in Arabidopsis. Plant Physiol 163:331–353

    CAS  PubMed  Google Scholar 

  • Cluis CP, Mouchel CF, Hardtke CS (2004) The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J 38:332–347

    CAS  PubMed  Google Scholar 

  • Colón-Carmona A, You R, Haimovitch-Gal T et al (1999) Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J 20:503–508

    PubMed  Google Scholar 

  • Crocco CD, Holm M, Yanovsky MJ et al (2010) AtBBX21 and COP1 genetically interact in the regulation of shade avoidance. Plant J 64:551–562

    CAS  PubMed  Google Scholar 

  • Datta S, Hettiarachchi C, Johansson H et al (2007) SALT TOLERANCE HOMOLOG2, a B-box protein in Arabidopsis that activates transcription and positively regulates light-mediated development. Plant Cell 19:3242–3255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Datta S, Johansson H, Hettiarachchi C et al (2008) LZF1/SALT TOLERANCE HOMOLOG3, an Arabidopsis B-box protein involved in light-dependent development and gene expression, undergoes COP1-mediated ubiquitination. Plant Cell 20:2324–2338

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Lucas M, Daviere J-M, Rodriguez-Falcon M et al (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484

    PubMed  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:R365–R373

    CAS  PubMed  Google Scholar 

  • Devlin PF, Patel SR, Whitelam GC (1998) Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 10:1479–1487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devlin PF, Robson PRH, Patel SR et al (1999) Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation and flowering time. Plant Physiol 119:909–915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devlin PF, Yanovsky MJ, Kay SA (2003) A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol 133:1617–1629

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ding Z, Galván-Ampudia CS, Demarsy E et al (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–452

    CAS  PubMed  Google Scholar 

  • Djakovic-Petrovic T, de Wit M, Voesenek LACJ et al (2007) DELLA protein function in growth responses to canopy signals. Plant J 51:117–126

    CAS  PubMed  Google Scholar 

  • Duek PD, Fankhauser C (2003) HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signaling. Plant J 34:827–836

    CAS  PubMed  Google Scholar 

  • Duek PD, Elmer MV, van Oosten VR et al (2004) The degradation of HFR1, a putative bHLH class transcription factor involved in light signaling, is regulated by phosphorylation and requires COP1. Curr Biol 14:2296–2301

    CAS  PubMed  Google Scholar 

  • Fairchild CD, Schumaker MA, Quail PH (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 14:2377–2391

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fankhauser C, Chory J (2000) RSF1, an Arabidopsis locus implicated in phytochrome A signaling. Plant Physiol 124:39–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng S, Martinez C, Gusmaroli G et al (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franklin KA (2008) Shade avoidance. New Phytol 179:930–944

    CAS  PubMed  Google Scholar 

  • Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J Exp Bot 61:11–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franklin KA, Praekelt U, Stoddart WM et al (2003) Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol 131:1340–1346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frigerio M, Alabadi D, Perez-Gomez J et al (2006) Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friml J, Wiśniewska J, Benková E et al (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  Google Scholar 

  • Gallego-Bartolomé J, Minguet EG, Grau-Enguix F et al (2012) Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 109:13446–13451

    PubMed Central  PubMed  Google Scholar 

  • Galstyan A, Cifuentes-Esquivel N, Bou-Torrent J et al (2011) The shade avoidance syndrome in Arabidopsis: a fundamental role for atypical basic helix-loop-helix proteins as transcriptional cofactors. Plant J 66:258–267

    CAS  PubMed  Google Scholar 

  • Hao Y, Oh E, Choi G, Liang Z et al (2012) Interactions between HLH and bHLH factors modulate light-regulated plant development. Mol Plant 5:688–697

    PubMed Central  PubMed  Google Scholar 

  • Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1–DELLA growth regulatory mechanism: how an ‘inhibitor of an inhibitor’ enables flexible response to fluctuating environments. Plant Cell 21:1328–1339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardtke CS, Gohda K, Osterlund MT et al (2000) HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain. EMBO J 19:4997–5006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holm M, Ma L-G, Qu L-J et al (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16:1247–1259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hornitschek P, Lorrain S, Zoete V et al (2009) Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J 28:3893–3902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hornitschek P, Kohnen MV, Lorrain S et al (2012) Phytochrome interactin factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 71:699–711

    CAS  PubMed  Google Scholar 

  • Jaillais Y, Chory J (2010) Unraveling the paradoxes of plant hormone signaling in- tegration. Nat Struct Mol Biol 17:642–645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang I-C, Yang J-Y, Soo Seo H et al (2005) HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev 19:593–602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jang IC, Henriques R, Seo HS et al (2010) Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell 22:2370–2383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    CAS  PubMed  Google Scholar 

  • Johnson E, Bradley JM, Harberd NP et al (1994) Photoresponses of light-grown phyA mutants of Arabidopsis: phytochrome A is required for the perception of daylength extensions. Plant Physiol 105:141–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keller MM, Jaillais Y, Pedmale UV et al (2011) Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J 67:195–207

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keuskamp DH, Pollmann S, Voesenek LACJ et al (2010) Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc Natl Acad Sci USA 107:22740–22744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keuskamp DH, Sasidharan R, Vos I et al (2011) Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J 67:208–217

    CAS  PubMed  Google Scholar 

  • Khanna R, Kronmiller B, Maszle DR et al (2009) The Arabidopsis B-box zinc finger family. Plant Cell 21:3416–3420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim TW, Wang ZY (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    CAS  PubMed  Google Scholar 

  • Kuppusamy KT, Walcher CL, Nemhauser JL (2009) Cross-regulatory mechanisms in hormone signaling. Plant Mol Biol 69:375–381

    CAS  PubMed  Google Scholar 

  • Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577

    CAS  PubMed  Google Scholar 

  • Lee J, He K, Stolc V et al (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leivar P, Quail PH (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leivar P, Monte E, Oka Y et al (2008a) Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol 18:1815–1823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leivar P, Monte E, Al-Sady B et al (2008b) The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20:337–352

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leivar P, Tepperman JM, Cohn MM et al (2012a) Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis. Plant Cell 24:1398–1419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leivar P, Monte E, Cohn MM et al (2012b) Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB–PIF feedback loop. Mol Plant 5:734–749

    PubMed  Google Scholar 

  • Li L, Ljung K, Breton G et al (2012) Linking photoreceptor excitation to changes in plant architecture. Genes Dev 26:785–790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorrain S, Allen T, Duek PD et al (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323

    CAS  PubMed  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T et al (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108:18512–18517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mathews S (2006) Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol 15:3483–3503

    CAS  PubMed  Google Scholar 

  • Mathews S, Sharrock RA (1997) Phytochrome gene diversity. Plant Cell Environ 20:666–671

    CAS  Google Scholar 

  • McNellis TW, von Arnim AG, Araki T et al (1994) Genetic and molecular analysis of an allelic series of cop1 mutants suggests functional roles for the multiple protein domains. Plant Cell 6:487–500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morelli G, Ruberti I (2000) Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol 122:621–626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morelli G, Ruberti I (2002) Light and shade in the photocontrol of Arabidopsis growth. Trends Plant Sci 7:399–404

    CAS  PubMed  Google Scholar 

  • Murase K, Hirano Y, Sun TP et al (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456:459–463

    CAS  PubMed  Google Scholar 

  • Nakazawa M, Yabe N, Ichikawa T et al (2001) DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J 25:213–221

    CAS  PubMed  Google Scholar 

  • Nozue K, Covington MF, Duek PD et al (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361

    CAS  PubMed  Google Scholar 

  • Oh E, Zhu JY, Wang ZY (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 14:802–809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N et al (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    CAS  PubMed  Google Scholar 

  • Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park E, Kim J, Lee Y et al (2004) Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol 45:968–975

    CAS  PubMed  Google Scholar 

  • Pierik R, Djakovic-Petrovic T, Keuskamp DH et al (2009) Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and DELLA proteins in Arabidopsis. Plant Physiol 149:1701–1712

    CAS  PubMed Central  PubMed  Google Scholar 

  • Redman JC, Haas BJ, Tanimoto G et al (2004) Development and evaluation of an Arabidopsis whole genome Affymetrix probe array. Plant J 38:545–561

    CAS  PubMed  Google Scholar 

  • Reed JW, Nagpal P, Poole DS et al (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reymond MC, Brunoud G, Chauvet A et al (2012) A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA. Plant Cell 24:2812–2825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roig-Villanova I, Bou J, Sorin C et al (2006) Identification of primary target genes of phytochrome signaling. Early transcriptional control during shade avoidance responses in Arabidopsis. Plant Physiol 141:85–96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roig-Villanova I, Bou-Torrent J, Galstyan A et al (2007) Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J 26:4756–4767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rolauffs S, Fackendah P, Sahm J (2012) Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio. Plant Physiol 160:2015–2027

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruberti I, Sessa G, Ciolfi A et al (2012) Plant adaptation to dynamically changing environment: the shade avoidance response. Biotechnol Adv 30:1047–1058

    CAS  PubMed  Google Scholar 

  • Salisbury FJ, Hall A, Grierson CS et al (2007) Phytochrome coordinates Arabidopsis shoot and root development. Plant J 50:429–438

    CAS  PubMed  Google Scholar 

  • Salter MG, Franklin KA, Whitelam GC (2003) Gating of the rapid shade avoidance response by the circadian clock in plants. Nature 426:680–683

    CAS  PubMed  Google Scholar 

  • Sassi M, Lu Y, Zhang Y et al (2012) COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development 139:3402–3412

    CAS  PubMed  Google Scholar 

  • Sassi M, Wang J, Ruberti I et al (2013) Shedding light on auxin movement: light-regulation of polar auxin transport in the photocontrol of plant development. Plant Signal Behav 8:e23355

    PubMed Central  PubMed  Google Scholar 

  • Sawa S, Ohgishi M, Goda H et al (2002) The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis. Plant J 32:1011–1022

    CAS  PubMed  Google Scholar 

  • Schena M, Lloyd AM, Davis RW (1993) The HAT4 gene of Arabidopsis encodes a developmental regulator. Genes Dev 7:367–379

    CAS  PubMed  Google Scholar 

  • Sellaro R, Yanovsky MJ, Casal JJ (2011) Repression of shade-avoidance reactions by sunfleck-induction of HY5 expression in Arabidopsis. Plant J 68:919–928

    CAS  PubMed  Google Scholar 

  • Sessa G, Carabelli M, Sassi M et al (2005) A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Genes Dev 19:2811–2815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen H, Moon J, Huq E (2005) PIF1 is regulated by light-mediated degradation through the ubiquitin-26S proteasome pathway to optimize photomorphogenesis of seedlings in Arabidopsis. Plant J 44:1023–1035

    CAS  PubMed  Google Scholar 

  • Shen Y, Khanna R, Carle CM et al (2007) Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol 145:1043–1051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shin J, Kim K, Kang H et al (2009) Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc Natl Acad Sci USA 106:7660–7665

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sibout R, Sukumar P, Hettiarachchi C et al (2006) Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling. PLoS Genet 11:e202

    Google Scholar 

  • Smith H, Whitelam GC (1997) The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ 20:840–844

    Google Scholar 

  • Soh M-S, Kim Y-M, Han S-J et al (2000) REP1, a basic helix-loop-helix protein, is required for a branch pathway of phytochrome A signaling in Arabidopsis. Plant Cell 12:2061–2073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sorin C, Salla-Martret M, Bou-Torrent J et al (2009) ATHB4, a regulator of shade avoidance, modulates hormone response in Arabidopsis seedlings. Plant J 59:266–277

    CAS  PubMed  Google Scholar 

  • Stamm P, Kumar PP (2010) The phytohormone signal network regulating elongation growth during shade avoidance. J Exp Bot 61:2889–2903

    CAS  PubMed  Google Scholar 

  • Staswick PE, Serban B, Rowe M et al (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steindler C, Matteucci A, Sessa G et al (1999) Shade avoidance responses are mediated by the ATHB-2 HD-Zip protein, a negative regulator of gene expression. Development 125:4235–4245

    Google Scholar 

  • Stepanova AN, Yun J, Robles LM et al (2011) The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell 23:3961–3973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun T-P (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 21:R338–R345

    CAS  PubMed  Google Scholar 

  • Takase T, Nakazawa M, Ishikawa A et al (2004) ydk1-D, an auxin-responsive GH3 mutant that is involved in hypocotyl and root elongation. Plant J 37:471–483

    CAS  PubMed  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tatematsu K, Kumagai S, Muto H et al (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots in Arabidopsis thaliana. Plant Cell 16:379–393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turchi L, Carabelli M, Ruzza V et al (2013) Arabidopsis HD-Zip II transcription factors control embryo development and meristem function. Development 140:2118–2129

    CAS  PubMed  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G et al (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Roig-Villanova I, Khan S et al (2011) A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation. J Exp Bot 62:2973–2987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werner T, Motyka V, Laucou V et al (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 11:2532–2550

    Google Scholar 

  • Won C, Shen X, Mashiguchi K et al (2011) Conversion of tryptophan to indole- 3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108:18518–18523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J, Lin R, Sullivan J et al (2005) Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell 17:804–821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C et al (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    CAS  PubMed  Google Scholar 

  • Zúñiga-Mayo VM, Marsch-Martínez N, de Folter S (2012) JAIBA, a class-II HD-ZIP transcription factor involved in the regulation of meristematic activity, and important for correct gynoecium and fruit development in Arabidopsis. Plant J 71:314–326

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank all our collaborators who made the work on shade avoidance a rewarding experience. Our apologies to the many researchers whose work or original publications could not be cited here because of space constraints. Authors work was funded by grants from the Italian Ministry of Education, University and Research, FIRB-ERA-PG Program, and from the Italian Ministry of Agricultural, Food and Forestry Policies, AGRONANOTECH and NUTRIGEA Programs. This work was also supported by a grant from the Italian Ministry of Economy and Finance to the CNR for the Project FaReBio di Qualità.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Ruberti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Ruzza, V., Sessa, G., Sassi, M., Morelli, G., Ruberti, I. (2014). Auxin Coordinates Shoot and Root Development During Shade Avoidance Response. In: Zažímalová, E., Petrášek, J., Benková, E. (eds) Auxin and Its Role in Plant Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1526-8_17

Download citation

Publish with us

Policies and ethics