Skip to main content

Pathophysiology of Dystonia: Models and Mechanisms

  • Chapter
Dystonia and Dystonic Syndromes

Abstract

Dystonia has generally been considered a basal ganglia disorder. Increasing evidence, however, suggests a more system-wide disruption of brain circuitry involving cerebellar and brainstem pathophysiology reflected in altered firing patterns, synchronized oscillations, as well as widened receptive fields and abnormal plasticity. A model of dystonia incorporating observed pathophysiological properties within the basal ganglia thalamocortical and cerebellothalamocortical circuits (BGTC and CTC) is presented. In this model, we postulate that disruption in the BGTC arises from functional changes within the striatum, while alterations in the CTC arise independently but contribute to the development and expression of dystonia. The degree to which changes in firing rates/patterns and broadened receptive fields in these circuits contribute to the manifestation of dystonia is unclear but may be secondary to the development of uncontrolled temporal-spatial changes in synchronization and underlying changes in neuro-plasticity within these circuits. The continued review and modification of established theories and development of emerging pathophysiological models of dystonia is critical to improving our approach to treatment; this is particularly true for refining surgical therapies such as therapeutic deep-brain stimulation (DBS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahn S, Elton RL. The UPDRS Development Committee, United Parkinson disease rating scale. In: Fahn S, Marsden CD, Clne D, Goldstein M, editors. Recent developments in Parkinson’s disease, vol. 2. Floral Park: Macmillan; 1987. p. 293–304.

    Google Scholar 

  2. DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990;13:281–5.

    CAS  PubMed  Google Scholar 

  3. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.

    CAS  PubMed  Google Scholar 

  4. Vitek JL. Pathophysiology of dystonia: a neuronal model. Mov Disord. 2002;17:S49–62.

    PubMed  Google Scholar 

  5. Hendrix CM, Vitek JL. Toward a network model of dystonia. Ann N Y Acad Sci. 2012;1265:46–55.

    PubMed  Google Scholar 

  6. Vitek JL, Giroux M. Physiology of hypokinetic and hyperkinetic movement disorders: model for dyskinesia. Ann Neurol. 2000;47:S131–40.

    CAS  PubMed  Google Scholar 

  7. Kultas-ilinsky K, Ilinsky IA. Fine structure of the magnocellular subdivision of the ventral anterior thalamic nucleus (V Amc) of Macaca mulatta: II. Organization of nigrothalamic afferents as revealed with EM autoradiography. J Comp Neurol. 1990;294:479–89.

    CAS  PubMed  Google Scholar 

  8. Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res. 1990;85:119–46.

    CAS  PubMed  Google Scholar 

  9. Mink JW, Thach WT. Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol. 1993;3:950–7.

    CAS  PubMed  Google Scholar 

  10. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50:381–425.

    CAS  PubMed  Google Scholar 

  11. Uno M, Yoshida M. Monosynaptic inhibition of thalamic neurons produced by stimulation of the pallidal nucleus in cats. Brain Res. 1975;99:377–80.

    CAS  PubMed  Google Scholar 

  12. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.

    CAS  PubMed  Google Scholar 

  13. Smith Y, Wichmann T, DeLong MR. The external pallidum and the subthalamic nucleus send convergent inputs onto single neurons in the internal pallidal segment in the monkey: anatomical organization and functional significance. In: Percheron G, McKenzie FS, Feger J, editors. The basal ganglia IV – new ideas and data on structure and function. New York: Plenum Press; 1994. p. 51–61.

    Google Scholar 

  14. Nambu A, Tokuno H, Takada M. Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neurosci Res. 2002;43:111–7.

    PubMed  Google Scholar 

  15. Nambu A. Seven problems on the basal ganglia. Curr Opin Neurobiol. 2008;18:595–604.

    CAS  PubMed  Google Scholar 

  16. Tepper JM, Abercrombie ED, Bolam JP. Basal ganglia macrocircuits. In: James EDA, Tepper M, Bolam JP, editors. Progress in brain research, vol. 160. Amsterdam: Elsevier; 2007. p. 3–7.

    Google Scholar 

  17. Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, Akazawa T, et al. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol. 2000;84:289–300.

    CAS  PubMed  Google Scholar 

  18. Goto S, Lee LV, Munoz EL, Tooyama I, Tamiya G, Makino S, et al. Functional anatomy of the basal ganglia in X-linked recessive dystonia-parkinsonism. Ann Neurol. 2005;58:7–17.

    PubMed  Google Scholar 

  19. Crittenden JR, Graybiel AM. Basal Ganglia disorders associated with imbalances in the Striatal striosome and matrix compartments. Front Neuroanat. 2011;5:59.

    PubMed Central  PubMed  Google Scholar 

  20. Tokuno H, Chiken S, Kametani K, Moriizumi T. Efferent projections from the striatal patch compartment: anterograde degeneration after selective ablation of neurons expressing μ-opioid receptor in rats. Neurosci Lett. 2002;332:5–8.

    CAS  PubMed  Google Scholar 

  21. Gerfen CR. The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature. 1984;311:461–4.

    CAS  PubMed  Google Scholar 

  22. Bonsi P, Cuomo D, Martella G, Madeo G, Schirinzi T, Puglisi F, et al. Centrality of striatal cholinergic transmission in basal ganglia function. Front Neuroanat. 2011;5:6.

    PubMed Central  PubMed  Google Scholar 

  23. Koós T, Tepper JM. Dual cholinergic control of fast-spiking interneurons in the neostriatum. J Neurosci. 2002;22:529–35.

    PubMed  Google Scholar 

  24. Pisani A, Bernardi G, Ding J, Surmeier DJ. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci. 2007;30:545–53.

    CAS  PubMed  Google Scholar 

  25. Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G. Acetylcholine-mediated modulation of striatal function. Trends Neurosci. 2000;23:120–6.

    CAS  PubMed  Google Scholar 

  26. Duvoisin RC. Cholinergic-anticholinergic antagonism in parkinsonism. Arch Neurol. 1967;17:124–36.

    CAS  PubMed  Google Scholar 

  27. Barbeau A. The pathogenesis of Parkinson’s disease: a new hypothesis. Can Med Assoc J. 1962;87:802–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Fahn S. High dosage anticholinergic therapy in dystonia. Neurology. 1983;33:1255–61.

    CAS  PubMed  Google Scholar 

  29. Graybiel AM. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 1990;13:244–54.

    CAS  PubMed  Google Scholar 

  30. Contant C, Umbriaco D, Garcia S, Watkins KC, Descarries L. Ultrastructural characterization of the acetylcholine innervation in adult rat neostriatum. Neuroscience. 1996;71:937–47.

    CAS  PubMed  Google Scholar 

  31. Smith Y, Villalba R. Striatal and extrastriatal dopamine in the basal ganglia: An overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord. 2008;23:S534–47.

    PubMed  Google Scholar 

  32. Sidibé M, Smith Y. Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins. Neuroscience. 1999;89:1189–208.

    PubMed  Google Scholar 

  33. Lapper SR, Bolam JP. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience. 1992;51:533–45.

    CAS  PubMed  Google Scholar 

  34. DeBoer P, Abercrombie ED. Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes. J Pharmacol Exp Ther. 1996;277:775–83.

    CAS  PubMed  Google Scholar 

  35. Pakhotin P, Bracci E. Cholinergic interneurons control the excitatory input to the striatum. J Neurosci. 2007;27:391–400.

    CAS  PubMed  Google Scholar 

  36. Zhou FM, Wilson CJ, Dani JA. Cholinergic interneuron characteristics and nicotinic properties in the striatum. J Neurobiol. 2002;53:590–605.

    CAS  PubMed  Google Scholar 

  37. Zhuang P, Li Y, Hallett M. Neuronal activity in the basal ganglia and thalamus in patients with dystonia. Clin Neurophysiol. 2004;115:2542–57.

    PubMed  Google Scholar 

  38. Starr PA, Rau GM, Davis V, Marks Jr WJ, Ostrem JL, Simmons D, et al. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson’s disease and normal macaque. J Neurophysiol. 2005;93:3165–76.

    PubMed  Google Scholar 

  39. Hutchison WD, Lang AE, Dostrovsky JO, Lozano AM. Pallidal neuronal activity: implications for models of dystonia. Ann Neurol. 2003;53:480–8.

    PubMed  Google Scholar 

  40. Vitek JL, Chockkan V, Zhang JY, Kaneoke Y, Evatt M, DeLong MR, et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol. 1999;46:22–35.

    CAS  PubMed  Google Scholar 

  41. Chang EF, Turner RS, Ostrem JL, Davis VR, Starr PA. Neuronal responses to passive movement in the globus pallidus internus in primary dystonia. J Neurophysiol. 2007;98:3696–707.

    PubMed  Google Scholar 

  42. Lenz F, Byl N, Garonzik I, Lee J, Hua S. Microelectrode studies of basal ganglia and VA, VL and VP thalamus in patients with dystonia: dystonia-related activity and sensory reorganization. In: Kultas-Ilinsky K, Ilinsky I, editors. Basal ganglia and thalamus in health and movement disorders. New York: Kluwer Academic/Plenum Publishers; 2001. p. 225–37.

    Google Scholar 

  43. Tang JK, Moro E, Mahant N, Hutchison WD, Lang AE, Lozano AM, et al. Neuronal firing rates and patterns in the globus pallidus internus of patients with cervical dystonia differ from those with Parkinson’s disease. J Neurophysiol. 2007;98:720–9.

    PubMed  Google Scholar 

  44. Merello M, Cerquetti D, Cammarota A, Tenca E, Artes C, Antico J, et al. Neuronal globus pallidus activity in patients with generalised dystonia. Mov Disord. 2004;19:548–54.

    PubMed  Google Scholar 

  45. Baron MS, Vitek JL, Bakay RA, Green J, Kaneoke Y, Hashimoto T, et al. Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study. Ann Neurol. 1996;40:355–66.

    CAS  PubMed  Google Scholar 

  46. Lozano AM, Kumar R, Gross RE, Giladi N, Hutchison WD, Dostrovsky JO, et al. Globus pallidus internus pallidotomy for generalized dystonia. Mov Disord. 1997;12:865–70.

    CAS  PubMed  Google Scholar 

  47. Lozano AM, Lang AE, Galvez-Jimenez N, Miyasaki J, Duff J, Hutchinson WD, et al. Effect of GPi pallidotomy on motor function in Parkinson’s disease. Lancet. 1995;346:1383–7.

    CAS  PubMed  Google Scholar 

  48. Sanghera MK, Grossman RG, Kalhorn CG, Hamilton WJ, Ondo WG, Jankovic J. Basal ganglia neuronal discharge in primary and secondary dystonia in patients undergoing pallidotomy. Neurosurgery. 2003;52:1358–70; discussion 1370–3.

    PubMed  Google Scholar 

  49. Magarinos-Ascone CM, Regidor I, Gomez-Galan M, Cabanes-Martinez L, Figueiras-Mendez R. Deep brain stimulation in the globus pallidus to treat dystonia: electrophysiological characteristics and 2 years’ follow-up in 10 patients. Neuroscience. 2008;152:558–71.

    CAS  PubMed  Google Scholar 

  50. Starr PA, Turner RS, Rau G, Lindsey N, Heath S, Volz M, et al. Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. Neurosurg Focus. 2004;17:E4.

    PubMed  Google Scholar 

  51. Suarez J, Verhagen-Metman L, Reich S, Dougherty P, Hallett M, Lenz F. Pallidotomy for hemiballismus: efficacy and characteristics of neuronal activity. Ann Neurol. 1997;42:807–11.

    CAS  PubMed  Google Scholar 

  52. Kumar R. Methods for programming and patient management with deep brain stimulation of the globus pallidus for the treatment of advanced Parkinson’s disease and dystonia. Mov Disord. 2002;17 Suppl 3:S198–207.

    PubMed  Google Scholar 

  53. Tisch S, Zrinzo L, Limousin P, Bhatia KP, Quinn N, Ashkan K, et al. Effect of electrode contact location on clinical efficacy of pallidal deep brain stimulation in primary generalised dystonia. J Neurol Neurosurg Psychiatry. 2007;78:1314–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Alterman RL, Miravite J, Weisz D, Shils JL, Bressman SB, Tagliati M. Sixty hertz pallidal deep brain stimulation for primary torsion dystonia. Neurology. 2007;69:681–8.

    CAS  PubMed  Google Scholar 

  55. Kupsch A, Benecke R, Muller J, Trottenberg T, Schneider GH, Poewe W, et al. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N Engl J Med. 2006;355:1978–90.

    CAS  PubMed  Google Scholar 

  56. Vidailhet M, Vercueil L, Houeto JL, Krystkowiak P, Benabid AL, Cornu P, et al. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N Engl J Med. 2005;352:459–67.

    CAS  PubMed  Google Scholar 

  57. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93:1318–26.

    PubMed  Google Scholar 

  58. Sanger TD, Pascual-Leone A, Tarsy D, Schlaug G. Nonlinear sensory cortex response to simultaneous tactile stimuli in writer’s cramp. Mov Disord. 2002;17:105–11.

    PubMed  Google Scholar 

  59. Sanger T, Tarsy D, Pascual-Leone A. Abnormalities of spatial and temporal sensory discrimination in writer’s cramp. Mov Disord. 2001;16:94–9.

    CAS  PubMed  Google Scholar 

  60. Byl NN. Focal hand dystonia may result from aberrant neuroplasticity. Adv Neurol. 2004;94:19–28.

    PubMed  Google Scholar 

  61. Byl N. Sensory dysfunction associated with repetitive strain injuries of tendinitis and focal hand dystonia: a comparative study. J Orthop Sports Phys Ther. 1996;23:234–44.

    CAS  PubMed  Google Scholar 

  62. Byl N, Merzenich M, Cheung S, Bedenbaugh P, Nagarajan S, Jenkins W. A primate model for studying focal dystonia and repetitive strain injury: effects on the primary somatosensory cortex. Phys Ther. 1997;77:269–84.

    CAS  PubMed  Google Scholar 

  63. Tinazzi M, Priori A, Bertolasi L, Frasson E, Mauguiere F, Fiaschi A. Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow. Brain. 2000;123(Pt 1):42–50.

    PubMed  Google Scholar 

  64. Tempel LW, Perlmutter JS. Abnormal vibration-induced cerebral blood flow responses in idiopathic dystonia. Brain. 1990;113(Pt 3):691–707.

    PubMed  Google Scholar 

  65. Lenz FA, Jaeger CJ, Seike MS, Lin YC, Reich SG, DeLong MR, et al. Thalamic single neuron activity in patients with dystonia: dystonia-related activity and somatic sensory reorganization. J Neurophysiol. 1999;82:2372–92.

    CAS  PubMed  Google Scholar 

  66. Vitek JL, Bakay RA, Hashimoto T, Kaneoke Y, Mewes K, Zhang JY, et al. Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. J Neurosurg. 1998;88:1027–43.

    CAS  PubMed  Google Scholar 

  67. Taha JM, Favre J, Baumann TK, Burchiel KJ. Characteristics and somatotopic organization of kinesthetic cells in the globus pallidus of patients with Parkinson’s disease. J Neurosurg. 1996;85:1005–12.

    CAS  PubMed  Google Scholar 

  68. Topp KS, Byl NN. Movement dysfunction following repetitive hand opening and closing: anatomical analysis in owl monkeys. Mov Disord. 1999;14:295–306.

    CAS  PubMed  Google Scholar 

  69. Garraux G, Bauer A, Hanakawa T, Wu T, Kansaku K, Hallett M. Changes in brain anatomy in focal hand dystonia. Ann Neurol. 2004;55:736–9.

    PubMed  Google Scholar 

  70. Argyelan M, Carbon M, Niethammer M, Uluğ AM, Voss HU, Bressman SB, et al. Cerebellothalamocortical connectivity regulates penetrance in dystonia. J Neurosci. 2009;29:9740–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Asanuma K, Ma Y, Okulski J, Dhawan V, Chaly T, Carbon M, et al. Decreased striatal D2 receptor binding in non-manifesting carriers of the DYT1 dystonia mutation. Neurology. 2005;64:347–9.

    CAS  PubMed  Google Scholar 

  72. Carbon M, Su S, Dhawan V, Raymond D, Bressman S, Eidelberg D. Regional metabolism in primary torsion dystonia: effects of penetrance and genotype. Neurology. 2004;62:1384–90.

    CAS  PubMed  Google Scholar 

  73. Ghilardi MF, Carbon M, Silvestri G, Dhawan V, Tagliati M, Bressman S, et al. Impaired sequence learning in carriers of the DYT1 dystonia mutation. Ann Neurol. 2003;54:102–9.

    PubMed  Google Scholar 

  74. Agostino R, Berardelli A, Curra A, Manfredi M. The performance of rapid arm movements in Parkinson’s disease – a review. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S, editors. Parkinson’s disease. Philadelphia: Lippincott-Raven Pub; 1996. p. 135–46.

    Google Scholar 

  75. Cohen LG, Hallett M. Hand cramps: clinical features and electromyographic patterns in a focal dystonia. Neurology. 1988;38:1005–12.

    CAS  PubMed  Google Scholar 

  76. Berardelli A, Hallett M, Rothwell JC, Agostino R, Manfredi M, Thompson PD, et al. Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain. 1996;119(Pt 2):661–74.

    PubMed  Google Scholar 

  77. Lestienne F. Effects of inertial load and velocity on the braking process of voluntary limb movements in man. Exp Brain Res. 1979;35:407–18.

    CAS  PubMed  Google Scholar 

  78. Prodoehl J, Corcos DM, Vaillancourt DE. Effects of focal hand dystonia on visually guided and internally guided force control. J Neurol Neurosurg Psychiatry. 2006;77:909–14.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Prodoehl J, MacKinnon CD, Comella CL, Corcos DM. Rate of force production and relaxation is impaired in patients with focal hand dystonia. Parkinsonism Relat Disord. 2006;12:363–71.

    PubMed Central  PubMed  Google Scholar 

  80. Nowak DA, Rosenkranz K, Topka H, Rothwell J. Disturbances of grip force behaviour in focal hand dystonia: evidence for a generalised impairment of sensory-motor integration? J Neurol Neurosurg Psychiatry. 2005;76:953–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Odergren T, Iwasaki N, Borg J, Forssberg H. Impaired sensory-motor integration during grasping in writer’s cramp. Brain. 1996;119:569–83.

    PubMed  Google Scholar 

  82. Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal ganglia and adaptive motor control. Science. 1994;265:1826–31.

    CAS  PubMed  Google Scholar 

  83. Albin RL, Cross D, Cornblath WT, Wald JA, Wernette K, Frey KA, et al. Diminished striatal [123I]iodobenzovesamicol binding in idiopathic cervical dystonia. Ann Neurol. 2003;53:528–32.

    PubMed  Google Scholar 

  84. Saka E, Iadarola M, Fitzgerald DJ, Graybiel AM. Local circuit neurons in the striatum regulate neural and behavioral responses to dopaminergic stimulation. Proc Natl Acad Sci U S A. 2002;99:9004–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Pisani A, Martella G, Tscherter A, Bonsi P, Sharma N, Bernardi G, et al. Altered responses to dopaminergic D2 receptor activation and N-type calcium currents in striatal cholinergic interneurons in a mouse model of DYT1 dystonia. Neurobiol Dis. 2006;24:318–25.

    CAS  PubMed  Google Scholar 

  86. Quartarone A, Morgante F, Sant’Angelo A, Rizzo V, Bagnato S, Terranova C, et al. Abnormal plasticity of sensorimotor circuits extends beyond the affected body part in focal dystonia. J Neurol Neurosurg Psychiatry. 2008;79:985–90.

    CAS  PubMed  Google Scholar 

  87. Ruge D, Cif L, Limousin P, Gonzalez V, Vasques X, Hariz MI, et al. Shaping reversibility? Long-term deep brain stimulation in dystonia: the relationship between effects on electrophysiology and clinical symptoms. Brain. 2011;134:2106–15.

    PubMed  Google Scholar 

  88. Peterson DA, Sejnowski TJ, Poizner H. Convergent evidence for abnormal striatal synaptic plasticity in dystonia. Neurobiol Dis. 2010;37:558–73.

    PubMed Central  PubMed  Google Scholar 

  89. Lovinger DM, Partridge JG, Tang KC. Plastic control of striatal glutamatergic transmission by ensemble actions of several neurotransmitters and targets for drugs of abuse. Ann N Y Acad Sci. 2003;1003:226–40.

    CAS  PubMed  Google Scholar 

  90. Bonsi P, Martella G, Cuomo D, Platania P, Sciamanna G, Bernardi G, et al. Loss of muscarinic autoreceptor function impairs long-term depression but not long-term potentiation in the striatum. J Neurosci. 2008;28:6258–63.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Jun D, Guzman JN, Tkatch T, Songhai C, Goldberg JA, Ebert PJ, et al. RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci. 2006;9:832–42.

    Google Scholar 

  92. Ruge D, Tisch S, Hariz MI, Zrinzo L, Bhatia KP, Quinn NP, et al. Deep brain stimulation effects in dystonia: time course of electrophysiological changes in early treatment. Mov Disord. 2011;26:1913–21.

    PubMed Central  PubMed  Google Scholar 

  93. Hebb MO, Chiasson P, Lang AE, Brownstone RM, Mendez I. Sustained relief of dystonia following cessation of deep brain stimulation. Mov Disord. 2007;22:1958–62.

    PubMed  Google Scholar 

  94. Coubes P, Cif L, El Fertit H, Hemm S, Vayssiere N, Serrat S, et al. Electrical stimulation of the globus pallidus internus in patients with primary generalized dystonia: long-term results. J Neurosurg. 2004;101:189–94.

    PubMed  Google Scholar 

  95. Gernert M, Bennay M, Fedrowitz M, Rehders JH, Richter A. Altered discharge pattern of basal ganglia output neurons in an animal model of idiopathic dystonia. J Neurosci. 2002;22:7244–53.

    CAS  PubMed  Google Scholar 

  96. Liu X, Yianni J, Wang S, Bain PG, Stein JF, Aziz TZ. Different mechanisms may generate sustained hypertonic and rhythmic bursting muscle activity in idiopathic dystonia. Exp Neurol. 2006;198:204–13.

    PubMed  Google Scholar 

  97. Silberstein P, Kuhn AA, Kupsch A, Trottenberg T, Krauss JK, Wohrle JC, et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain. 2003;126:2597–608.

    PubMed  Google Scholar 

  98. Bittar RG, Yianni J, Wang S, Liu X, Nandi D, Joint C, et al. Deep brain stimulation for generalised dystonia and spasmodic torticollis. J Clin Neurosci. 2005;12:12–6.

    PubMed  Google Scholar 

  99. Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA. The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain. 2008;131:2499–509.

    PubMed Central  PubMed  Google Scholar 

  100. Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27:10659–73.

    CAS  PubMed  Google Scholar 

  101. Clower DM, Dum RP, Strick PL. Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex. 2005;15:913–20.

    PubMed  Google Scholar 

  102. Hoover JE, Strick PL. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci. 1999;19:1446–63.

    CAS  PubMed  Google Scholar 

  103. Bostan A, Strick P. The cerebellum and basal ganglia are interconnected. Neuropsychol Rev. 2010;20:261–70.

    PubMed Central  PubMed  Google Scholar 

  104. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8:1491–3.

    CAS  PubMed  Google Scholar 

  105. Ichinohe N, Mori F, Shoumura K. A di-synaptic projection from the lateral cerebellar nucleus to the laterodorsal part of the striatum via the central lateral nucleus of the thalamus in the rat. Brain Res. 2000;880:191–7.

    CAS  PubMed  Google Scholar 

  106. LeDoux MS, Brady KA. Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord. 2003;18:60–9.

    PubMed  Google Scholar 

  107. Le Ber I, Clot F, Vercueil L, Camuzat A, Viémont M, Benamar N, De Liège P, Ouvrard-Hernandez AM, Pollak P, Stevanin G, Brice A, Dürr A, Camuzat A, Viémont M, Benamar N, De Liège P, Ouvrard-Hernandez AM, Pollak P, Stevanin G, Brice A, Dürr A. Predominant dystonia with marked cerebellar atrophy: a rare phenotype in familial dystonia. Neurology. 2006;67:1769–73.

    CAS  PubMed  Google Scholar 

  108. McNaught KSP, Kapustin A, Jackson T, Jengelley TA, JnoBaptiste R, Shashidharan P, et al. Brainstem pathology in DYT1 primary torsion dystonia. Ann Neurol. 2004;56:540–7.

    CAS  PubMed  Google Scholar 

  109. Krauss JK, Seeger W, Jankovic J. Cervical dystonia associated with tumors of the posterior fossa. Mov Disord. 1997;12:443–7.

    CAS  PubMed  Google Scholar 

  110. Ratcheson RA, Li CL. Effect of dentate stimulation on neuronal activity in the caudate nucleus. Exp Neurol. 1969;25:268–81.

    CAS  PubMed  Google Scholar 

  111. Li CI, Parker LO. Effect of dentate stimulation on neuronal activity in the globus pallidus. Exp Neurol. 1969;24:298–309.

    CAS  PubMed  Google Scholar 

  112. Nieoullon A, Cheramy A, Glowinski J. Release of dopamine in both caudate nuclei and both substantia nigrae in response to unilateral stimulation of cerebellar nuclei in the cat. Brain Res. 1978;148:143–52.

    CAS  PubMed  Google Scholar 

  113. Calderon DP, Fremont R, Kraenzlin F, Khodakhah K. The neural substrates of rapid-onset Dystonia-Parkinsonism. Nat Neurosci. 2011;14:357–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Carbon M, Kingsley PB, Su S, Smith GS, Spetsieris P, Bressman S, et al. Microstructural white matter changes in carriers of the DYT1 gene mutation. Ann Neurol. 2004;56:283–6.

    CAS  PubMed  Google Scholar 

  115. Carbon M, Kingsley PB, Tang C, Bressman S, Eidelberg D. Microstructural white matter changes in primary torsion dystonia. Mov Disord. 2008;23:234–9.

    PubMed  Google Scholar 

  116. Delmaire C, Vidailhet M, Wassermann D, Descoteaux M, Valabregue R, Bourdain F, et al. Diffusion abnormalities in the primary sensorimotor pathways in writer’s cramp. Arch Neurol. 2009;66:502–8.

    PubMed  Google Scholar 

  117. Uluğ AM, Vo A, Argyelan M, Tanabe L, Schiffer WK, Dewey S, et al. Cerebellothalamocortical pathway abnormalities in torsinA DYT1 knock-in mice. Proc Natl Acad Sci. 2011;108:6638–43.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerrold L. Vitek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Hendrix, C.M., Vitek, J.L. (2015). Pathophysiology of Dystonia: Models and Mechanisms. In: Kanovsky, P., Bhatia, K., Rosales, R. (eds) Dystonia and Dystonic Syndromes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1516-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1516-9_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1515-2

  • Online ISBN: 978-3-7091-1516-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics