Skip to main content

Dystonia: The Syndrome, Its Term, Concept and Their Evolution

  • Chapter
  • 1385 Accesses

Abstract

At the end of the 1970s, dystonia was seen as something peculiar, balancing on the edge between organic disorder and psychiatric condition. The everlasting enigma of dystonia has been breeched for the first time by David Marsden, who attributed the clinical syndrome to a disorder of basal ganglia functioning. As he postulated in the seminal work regarding the natural history and clinical presentation of dystonia, dystonia is a syndrome of sustained involuntary muscle contraction, frequently causing twisting or repetitive movements or abnormal postures. Although a new definition of dystonia has been recently adopted, Marsden’s concept is still a cornerstone of it. One can undoubtedly characterise the dystonic movement as a result of volitional (albeit unconscious) motor action. There is enough evidence that dystonia is the “normal” motor action abnormally accompanied by the action of antagonists, or by the co-contractions of inappropriate muscles, and by the defective reciprocal inhibition of other muscles. As a result, there is a dystonic movement or dystonic posture appearing as final vector of that deviant muscle activity. Dystonia does not look like a chaotic medley of contractions and muscle relaxation, as do a majority of other hyperkinetic movement disorders. Dystonia rather looks like a highly (albeit aberrantly) organised motor performance. The motor action seen in patients with dystonia is apparently not a result of several abnormal contractions or muscle jerks. It is complex dyskinesia, which only sometimes changes character over time. Named “a shadow of movement” by Rondot more than 20 years ago, dystonia was proposed as a primitive “kind of movement”, similar to that which can still be seen in other primates. The motor action itself was seen as a “dystonic way back” in the phylogenetic history of motor action. In Rondot’s view, dystonia is something that is constantly present in the mature human motor system, but which can only be seen in particular circumstances, for instance in the case of basal ganglia lesion (or other basal ganglia involvement, as in the case of idiopathic dystonia). Nevertheless, all recent and current physiological indices are only pieces of a puzzle. We believe that once completed, this jigsaw will show idiopathic dystonia in the frame of defective programming and organisation of motor action due to defective somatosensory flow consequent to defective sensorimotor integration or brain plasticity, in which the movement itself is perfectly performed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gowers WR. A manual of diseases of the nervous system. 2nd ed. London: Churchill; 1888.

    Google Scholar 

  2. Destarac M. Torticollis spasmodique et spasmes fonctionnelles. Rev Neurol. 1901;9:591–7.

    Google Scholar 

  3. Schwalbe G. Lehrbuch der Neurologie. Jena: Springer; 1881.

    Google Scholar 

  4. Oppenheim H. Über eine eigenartige Krampfkrankheit des kindlichen und jugendlichen Alters (dysbasia lordotica progressiva, dystonia musculorum deformans). Neurologische Zbl. 1911;30:1090–107.

    Google Scholar 

  5. Flatau E, Sterling W. Torsionspasms bei kindern. Z Gesamte Neurol Psychiatr. 1911;7:586–612.

    Article  Google Scholar 

  6. Meige H. Les convulsions de la face, une forme clinique de convulsion faciale, bilaterale et mediane. Rev Neurol. 1910;20:437–43.

    Google Scholar 

  7. Marsden CD. Dystonia: the spectrum of the disease. Res Publ Assoc Res Nerv Ment Dis. 1976;55:351–67.

    CAS  PubMed  Google Scholar 

  8. Marsden CD, Rothwell JC. The physiology of idiopathic dystonia. Can J Neurol Sci. 1987;14 Suppl 3:521–7.

    CAS  PubMed  Google Scholar 

  9. Albanese A, Bhatia K, Bressmann S, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;29:863–73.

    Article  Google Scholar 

  10. Kaňovský P. Dystonia: disorder of motor preparation or motor performance? Mov Disord. 2002;17:1143–8.

    Article  PubMed  Google Scholar 

  11. Rondot P. The shadow of movement. J Neurol. 1991;238:411–9.

    Article  CAS  PubMed  Google Scholar 

  12. Berardelli A, Rothwell JC, Hallet M, Thompson PD, Manfredi M, Marsden CD. The pathophysiology of primary dystonia. Brain. 1998;121:1195–212.

    Article  PubMed  Google Scholar 

  13. Hallet M. Is dystonia a sensory disorder? Ann Neurol. 1995;38:139–40.

    Article  Google Scholar 

  14. Hallet M. The neurophysiology of dystonia. Arch Neurol. 1998;55:601–3.

    Article  Google Scholar 

  15. Hallet M. Disorder of movement preparation in dystonia. Brain. 2000;123:1765–6.

    Article  Google Scholar 

  16. Kaji R, Murase N. Sensory function of basal ganglia. Mov Disord. 2001;16:593–4.

    Article  CAS  PubMed  Google Scholar 

  17. Jankovic J. Post-traumatic movement disorders: central and peripheral mechanisms. Neurology. 1994;44:2006–14.

    Article  CAS  PubMed  Google Scholar 

  18. Rondot P, Korn H, Scherrer J. Suppression of an entire limb tremor by anaesthetising a selective muscular group. Arch Neurol. 1968;19:421–9.

    Article  CAS  PubMed  Google Scholar 

  19. Walshe F. Observation on the nature of the muscular rigidity of paralysis agitans, and its relationship with tremor. Brain. 1924;47:159–77.

    Article  Google Scholar 

  20. Jankovic J, Van der Linden C. Dystonia and tremor induced by peripheral trauma: predisposing factors. J Neurol Neurosurg Psychiatry. 1988;51:1512–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Hallet M. Physiology of basal ganglia disorders: an overview. Can J Neurol Sci. 1993;20:177–83.

    Google Scholar 

  22. Young A, Penney J. Biochemical and functional organisation of the basal ganglia. In: Jankovic J, Tolosa E, editors. Parkinson’s disease and movement disorders. 2nd ed. Philadelphia: Williams and Wilkins; 1993. p. 1–12.

    Google Scholar 

  23. Boyd LA, Lindsell MA. Excitatory repetitive transcranial magnetic stimulation to left dorsal premotor cortex enhances motor consolidation of new skills. BMC Neurosci. 2009;10:72.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Carlsson G, Hufnagel M, Jansen O, Claviez A, Nabavi A. Rapid recovery of motor and cognitive functions after resection of a right frontal lobe meningioma in a child. Childs Nerv Syst. 2010;26:105–11.

    Article  PubMed  Google Scholar 

  25. Kaji R, Ikeda A, Ikeda T, Kubori T, Mezaki T, Kohara A, Kanda M, Nagamine T, Honda M, Rothwell J, Shibasaki H, Kimura J. Physiological study of cervical dystonia. Task-specific abnormality in contingent negative variation. Brain. 1995;118:511–22.

    Article  PubMed  Google Scholar 

  26. Kaji R, Shibasaki H, Kimura J. Writer’s cramp: a disorder of motor subroutine? Ann Neurol. 1995;38:837–8.

    Article  CAS  PubMed  Google Scholar 

  27. Day BL, Marsden CD, Obeso JA, Rothwell JC. Reciprocal inhibition between the muscles of the human forearm. J Physiol. 1984;349:519–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Deuschl G, Heinen F, Kleedorfer B, Wagner M, Lücking CH, Poewe W. Clinical and polymyographic investigation of spasmodic torticollis. J Neurol. 1992;239:9–15.

    Article  CAS  PubMed  Google Scholar 

  29. Deuschl G, Seifert C, Heinen F, Illert M, Lücking CH. Reciprocal inhibition of forearm flexor muscles in spasmodic torticollis. J Neurol Sci. 1992;113:85–90.

    Article  CAS  PubMed  Google Scholar 

  30. Priori A, Berardelli A, Mercuri B, Manfredi M. Physiological effects produced by botulinum toxin treatment of upper limb dystonia. Changes in reciprocal inhibition between forearm muscles. Brain. 1995;118:801–7.

    Article  PubMed  Google Scholar 

  31. Gelb D, Yoshimura D, Olney R, Lowenstein D, Aminoff M. Change in pattern of muscle activity following botulinum toxin injections for torticollis. Ann Neurol. 1991;29:370–6.

    Article  CAS  PubMed  Google Scholar 

  32. Kaňovský P, Dufek J, Halačková H, Rektor I. Change in the pattern of cervical dystonia might be the cause of benefit loss during botulinum toxin treatment. Eur J Neurol. 1997;4:79–84.

    Article  PubMed  Google Scholar 

  33. Kaňovský P, Streitová H, Dufek J, Rektor I. Lateralization of the P22/N30 component of the median nerve in patients with cervical dystonia. Mov Disord. 1997;12:553–60.

    Article  PubMed  Google Scholar 

  34. Marín C, Marti MJ, Tolosa E, Alvarez R, Montserrat L, Santamaría J. Modification of muscle activity after BOTOX injections in spasmodic torticollis. Ann Neurol. 1992;32:411–2.

    Article  PubMed  Google Scholar 

  35. Marín C, Martí MJ, Tolosa E, Alvarez R, Montserrat L, Santamaría J. Muscle activity changes in spasmodic torticollis after botulinum toxin treatment. Eur J Neurol. 1995;1:243–7.

    Article  PubMed  Google Scholar 

  36. Grünewald R, Yoneda Y, Shipman J, Sagar H. Idiopathic focal dystonia: a disorder of muscle spindle afferent processing? Brain. 1997;120:2179–85.

    Article  PubMed  Google Scholar 

  37. Naumann M, Reiners K. Long-latency reflexes of hand muscles in idiopathic focal dystonia and their modification by botulinum toxin. Brain. 1997;120:409–16.

    Article  PubMed  Google Scholar 

  38. Jones SJ, Sheean G, Ceballos-Baumann AO, Marsden CD. Evidence for enhanced sensorimotor cortex excitability in dystonia (abstract). Electroencephalogr Clin Neurophysiol. 1995;94 Suppl 1:S233.

    Article  Google Scholar 

  39. Kaňovský P, Streitová H, Dufek J, Znojil V, Daniel P, Rektor I. Lateralization of the P22/N30 precentral cortical component of the median nerve somatosensory evoked potentials is different in patients with a tonic or tremulous form of cervical dystonia. Mov Disord. 1999;14:642–51.

    Article  PubMed  Google Scholar 

  40. Reilly JA, Hallet M, Cohen LG, Tarkka I, Dang N. The N30 component of somatosensory evoked potentials in patients with dystonia. Electroencephalogr Clin Neurophysiol. 1992;84:243–7.

    Article  CAS  PubMed  Google Scholar 

  41. Tinazzi M, Frasson E, Polo A, Tezzon F, Bovi P, Deotto L, et al. Evidence for an abnormal cortical sensory processing in dystonia: selective enhancement of lower limb P37/N50 somatosensory evoked potential. Mov Disord. 1999;14:473–80.

    Article  CAS  PubMed  Google Scholar 

  42. Berardelli A. Transcranial magnetic stimulation in movement disorders. Electroencephalogr Clin Neurophysiol. 1999;51 Suppl 1:276–80.

    CAS  Google Scholar 

  43. Ridding M, Sheean G, Rothwell JC, Inzelberg R, Kujirai T. Changes in the balance between motor cortical excitation and inhibition in focal, task–specific dystonia. J Neurol Neurosurg Psychiatry. 1995;59:493–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Rona S, Berardelli A, Vacca L, Inghilleri M, Manfredi M. Alterations of motor cortical inhibition in patients with dystonia. Mov Disord. 1998;13:118–24.

    Article  CAS  PubMed  Google Scholar 

  45. Kaňovský P, Bareš M, Streitová H, Klajblová H, Daniel P, Rektor. Abnormalities of cortical excitability and cortical inhibition in cervical dystonia evidence from somatosensory evoked potentials and paired transcranial magnetic stimulation recordings. J Neurol. 2003;250:41–50.

    Google Scholar 

  46. Deuschl G, Toro C, Matsumoto J, Hallet M. Movement-related cortical potentials in writer’s cramp. Ann Neurol. 1995;38:862–8.

    Article  CAS  PubMed  Google Scholar 

  47. Féve A, Bathien A, Rondot P. Abnormal movement-related potentials in patients with lesions of basal ganglia and anterior thalamus. J Neurol Neurosurg Psychiatry. 1994;57:100–4.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Podivinsky F. Dissociation between motor potential and contingent negative variation after lesions of some basal ganglia in man: electrophysiological study of torticollis. Act Nerv Super. 1978;20:312–8.

    CAS  Google Scholar 

  49. Van der Kamp W, Rothwell J, Thompson P, Day B, Marsden C. The movement-related cortical potential is abnormal in patients with idiopathic torsion dystonia. Mov Disord. 1995;10:630–3.

    Article  PubMed  Google Scholar 

  50. Hamano T, Kaji R, Katayama M, Kubori T, Ikeda A, Shibasaki H, Kimura J. Abnormal contingent negative variation in writer’s cramp. Clin Neurophysiol. 1999;110:508–15.

    Article  CAS  PubMed  Google Scholar 

  51. Ikeda A, Shibasaki H, Kaji R, Terada K, Nagamine T, Honda M, Hamano T, Kimura J. Abnormal sensorimotor integration in writer’s cramp: study of contingent negative variation. Mov Disord. 1996;11:683–90.

    Article  CAS  PubMed  Google Scholar 

  52. Bareš M. Parallel processing of cognitive evoked potentials in the frontal cortex and basal ganglia. An intracerebral study. Homeostasis. 2001;41:55–7.

    Google Scholar 

  53. Bareš M, Rektor I. Basal ganglia involvement in sensory and cognitive processing. A depth electrode CNV study in human subjects. Clin Neurophysiol. 2001;112:2022–30.

    Article  PubMed  Google Scholar 

  54. Rektor I, Bareš M, Kaňovský P, Kukleta M. Intracerebral recording of readiness potential induced by a complex motor task. Mov Disord. 2001;16:698–704.

    Article  CAS  PubMed  Google Scholar 

  55. Rektor I, Bareš M, Kubová D. Movement-related potentials in the basal ganglia: a SEEG readiness potential study. Clin Neurophysiol. 2001;112:2146–53.

    Article  CAS  PubMed  Google Scholar 

  56. Rektor I, Kaňovský P, Bareš M, Louvel J, Lamarche M. Evoked potentials, ERP, CNV, readiness potential, and movement accompanying potential recorded from the posterior thalamus in human subjects. A SEEG study. Clin Neurophysiol. 2001;31:253–61.

    Article  CAS  Google Scholar 

  57. Gilio F, Curra A, Lorenzano C, Modugno A, Mangredi M, Berardelli A. Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia. Ann Neurol. 2000;48:20–6.

    Article  CAS  PubMed  Google Scholar 

  58. Kaňovský P, Streitová H, Dufek J, Rektor I. Change in lateralization of the P22/N30 cortical component of median nerve somatosensory evoked potentials in patients after successful treatment with botulinum toxin A. Mov Disord. 1998;13:101–12.

    Google Scholar 

  59. Abbruzzese G, Marchese R, Buccolieri A, Gasparetto B, Trompetto C. Abnormalities of sensorimotor integration in dystonia. A transcranial magnetic stimulation study. Brain. 2001;124:537–45.

    Article  CAS  PubMed  Google Scholar 

  60. Cohen LG. A window into the role of inhibitory and excitatory mechanisms of perception? J Physiol. 2000;529(2):461–8.

    Article  Google Scholar 

  61. Frasson E, Priori A, Bertolasi L, Mauguière F, Fiaschi A, Tinazzi M. Somatosensory disinhibition in dystonia. Mov Disord. 2001;16:674–82.

    Article  CAS  PubMed  Google Scholar 

  62. Hanajima R, Ugawa Y. Intracortical inhibition of the motor cortex in movement disorders. Brain Dev. 2000;22 Suppl 1:132–5.

    Article  Google Scholar 

  63. Murase M, Kaji R, Shimazu H, Katayama–Hirota M, Ikeda A, Kohara N, Kimura J, Shibasaki H, Rothwell JC. Abnormal premovement gating of somatosensory input in writer’s cramp. Brain. 2000;123:1813–29.

    Article  PubMed  Google Scholar 

  64. Rosenkranz K, Altenmüller E, Sigelkow S, Dengler R. Alteration of sensorimotor integration in musician’s cramp: impaired focusing of proprioception. Clin Neurophysiol. 2000;111:2040–5.

    Article  CAS  PubMed  Google Scholar 

  65. Meunier S, Garnero I, Ducorps A, et al. Human brain mapping in dystonia reveals both endophenotypic traits and adaptive organisation. Ann Neurol. 2001;50:521–7.

    Article  CAS  PubMed  Google Scholar 

  66. Nelson AJ, Blake DT, Chen R. Digit-specific aberrations in the primary somatosensory cortex in writer’s cramp. Ann Neurol. 2009;66:146–54.

    Article  PubMed  Google Scholar 

  67. Quartarone A, Rizzo V, Bagnato S. Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia. Brain. 2005;128:1943–50.

    Article  PubMed  Google Scholar 

  68. Quartarone A, Siebner HR, Rothwell JC. Task-specific hand dystonia: can too much plasticity be bad for you? Trends Neurosci. 2006;29:192–9.

    Article  CAS  PubMed  Google Scholar 

  69. Opavský R, Hluštík P, Otruba P, Kaňovský P. Sensorimotor network in cervical dystonia and the effect of botulinum toxin treatment: a functional MRI study. J Neurol Sci. 2011;306:71–5.

    Article  PubMed  Google Scholar 

  70. Milton J, Solodkin A, Hluštík P, Small S. The mind of expert motor performance is cool and focused. Neuroimage. 2007;35:804–13.

    Article  PubMed  Google Scholar 

  71. Marsden CD. Motor disorders in basal ganglia disease. Hum Neurobiol. 1984;2:245–50.

    CAS  PubMed  Google Scholar 

  72. Stamelou M, Edwards MJ, Hallett M, Bhatia KP. The non-motor syndrome of primary dystonia: clinical and pathophysiological implications. Brain. 2012;145:1668–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kanovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Kanovsky, P., Rosales, R.L., Bhatia, K.P. (2015). Dystonia: The Syndrome, Its Term, Concept and Their Evolution. In: Kanovsky, P., Bhatia, K., Rosales, R. (eds) Dystonia and Dystonic Syndromes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1516-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1516-9_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1515-2

  • Online ISBN: 978-3-7091-1516-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics