Skip to main content

Sphingolipids’ Role in Radiotherapy for Prostate Cancer

  • Chapter
  • First Online:
Sphingolipids in Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 216))

Abstract

There are several well-established mechanisms involved in radiation-induced cell death in mammalian cell systems. The p53-mediated apoptotic pathway is the most widely recognized mechanism (Lowe et al. Nature 362:847–849, 1993), although apoptosis has long been considered a less relevant mechanism of radiation-induced cell death (Steel, Acta Oncol 40:968–975, 2001; Brown and Wouters, Cancer Res 59:1391–1399, 1999; Olive and Durand, Int J Radiat Biol 71:695–707, 1997). We and others have recently focused instead on the emerging links between radiation, apoptosis, and ceramide and showed that ceramide is a sphingolipid-derived second messenger capable of initiating apoptotic cascades in response to various stress stimuli, including radiation.

Ceramide, the backbone of all sphingolipids, is synthesized by a family of ceramide synthases (CerS), each using acyl-CoAs of defined chain length for N-acylation of the sphingoid long-chain base. Six mammalian CerS homologs have been cloned that demonstrated high selectivity towards acyl-CoAs (Lahiri et al. FEBS Lett 581:5289–5294, 2007), and more recently, it was shown that their activity can be modulated by dimer formation (Mesicek et al. Cell Signal 22:1300–1307, 2010; Laviad et al. J Biol Chem 283:5677–5684, 2008).

This de novo ceramide synthesis has been observed in irradiated cells through a pathway normally suppressed by ataxia telangiectasia-mutated (ATM) protein, a key component of the cellular response to DNA double-strand breaks (Liao et al. J Biol Chem 274:17908–17917, 1999). ATM is not the sole factor known to affect apoptotic potential by modulating CerS activity. Recent work has also implicated protein kinase Cα (PKCα) as a potential CerS activator (Truman et al. Cancer Biol Ther 8:54–63, 2009).

In this review, we summarize involvement of CerS in sphingolipid-mediated apoptosis in irradiated human prostate cancer cells and discuss future directions in this field.

The authors have no conflict of interest or financial ties to disclose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akao Y, Banno Y, Nakagawa Y, Hasegawa N, Kim TJ, Murate T, Igarashi Y, Nozawa Y (2006) High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation. Biochem Biophys Res Commun 342:1284–1290

    Article  PubMed  CAS  Google Scholar 

  • Aldridge DR, Arends MJ, Radford IR (1995) Increasing the susceptibility of the rat 208F fibroblast cell line to radiation-induced apoptosis does not alter its clonogenic survival dose–response. Br J Cancer 71:571–577

    Article  PubMed  CAS  Google Scholar 

  • Algan O, Stobbe CC, Helt AM, Hanks GE, Chapman JD (1996) Radiation inactivation of human prostate cancer cells: the role of apoptosis. Radiat Res 146:267–275

    Article  PubMed  CAS  Google Scholar 

  • Ameisen JC (2002) On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 9:367–393

    Article  PubMed  CAS  Google Scholar 

  • Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R (1995) Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell 82:405–414

    Article  PubMed  CAS  Google Scholar 

  • Bowen C, Spiegel S, Gelmann EP (1998) Radiation-induced apoptosis mediated by retinoblastoma protein. Cancer Res 58:3275–3281

    PubMed  CAS  Google Scholar 

  • Brown JM, Wouters BG (1999) Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 59:1391–1399

    PubMed  CAS  Google Scholar 

  • Canman CE, Kastan MB (1995) Induction of apoptosis by tumor suppressor genes and oncogenes [Review]. Semin Cancer Biol 6:17–25

    Article  PubMed  CAS  Google Scholar 

  • Crook JM, Perry GA, Robertson S, Esche BA (1995) Routine prostate biopsies following radiotherapy for prostate cancer: results for 226 patients. Urology 45:624–631

    Article  PubMed  CAS  Google Scholar 

  • DeWeese TL, Shipman JM, Dillehay LE, Nelson WG (1998) Sensitivity of human prostatic carcinoma cell lines to low dose rate radiation exposure. J Urol 159:591–598

    Article  PubMed  CAS  Google Scholar 

  • Dubray B, Breton C, Delic J, Klijanienko J, Maciorowski Z, Vielh P, Fourquet A, Dumont J, Magdelenat H, Cosset JM (1998) In vitro radiation-induced apoptosis and early response to low-dose radiotherapy in non-Hodgkin’s lymphomas. Radiother Oncol 46:185–191

    Article  PubMed  CAS  Google Scholar 

  • Ellis PA, Smith IE, McCarthy K, Detre S, Salter J, Dowsett M (1997) Preoperative chemotherapy induces apoptosis in early breast cancer. Lancet 349:849

    Article  PubMed  CAS  Google Scholar 

  • Fadeel B, Orrenius S, Zhivotovsky B (1999) Apoptosis in human disease: a new skin for the old ceremony. Biochem Biophys Res Commun 266:699–717

    Article  PubMed  CAS  Google Scholar 

  • Flowers M, Fabriás G, Delgado A, Casas J, Abad JL, Cabot MC (2012) C6-Ceramide and targeted inhibition of acid ceramidase induce synergistic decreases in breast cancer cell growth. Breast Cancer Res Treat 133:447–458

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Bermejo ML, Leekow FC, Fujii T, Wang Q, Blumberg PM, Ohba M, Kuroki J, Han K-C, Lee J, Marquez VE et al (2002) Diacylglycerol (DAG)-lactones, a new class of protein kinase C (PKC) agonists, induce apoptosis in LNCaP prostate cancer cells by selective activation of PKCα. J Biol Chem 277:645–655

    Article  PubMed  CAS  Google Scholar 

  • Garzotto M, White-Jones M, Jiang Y, Ehleiter D, Liao WC, Haimovitz-Friedman A, Fuks Z, Kolesnick R (1998) 12-O-tetradecanoylphorbol-13-acetate-induced apoptosis in LNCaP cells is mediated through ceramide synthase. Cancer Res 58:2260–2264

    PubMed  CAS  Google Scholar 

  • Garzotto M, Haimovitz-Friedman A, Liao WC, White-Jones M, Huryk R, Heston DWW, Cardon-Cardo C, Kolesnick R, Fuks Z (1999) Reversal of radiation resistance in LNCaP cells by targeting apoptosis through ceramide synthase. Cancer Res 59:5194–5201

    PubMed  CAS  Google Scholar 

  • Haimovitz-Friedman A, Kolesnick RN, Fuks Z (1997) Ceramide signaling in apoptosis. Br Med Bull 53:539–553

    Article  PubMed  CAS  Google Scholar 

  • Hall EJ, Giaccia AJ (2006a) DNA strand breaks and chromosomal aberrations. In: McAllister L, Bierig L, Barrett K (eds) Radiobiology for the radiologist. Lippincott, Williams & Wilkins, Philadelphia, PA, pp 16–29

    Google Scholar 

  • Hall EJ, Giaccia AJ (2006b) Repair of radiation damage and the dose-rate effect. In: McAllister L, Bierig L, Barrett K (eds) Radiobiology for the radiologist. Lippincott, Williams & Wilkins, Philadelphia, PA, pp 85–105

    Google Scholar 

  • Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP (1983) LNCaP model of human prostatic carcinoma. Cancer Res 43:1809–1818

    PubMed  CAS  Google Scholar 

  • Jansen B, Wacheck V, Heere-Ress E, Schlagbauer-Wadl H, Hoeller C, Lucas T, Hoermann M, Hollenstein U, Wolff K, Pehamberger H (2000) Chemosensitization of malignant melanoma by BCL2 antisense therapy. Lancet 356:1728–1733

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  • Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17:16–23

    PubMed  CAS  Google Scholar 

  • Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Gelmann EP (2000) Tumor necrosis factor-alpha and Fas activate complementary Fas-associated death domain-dependent pathways that enhance apoptosis induced by gamma-irradiation. J Biol Chem 275:8610–8617

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Bowen C, Spiegel S, Gelmann EP (1999) Tumor necrosis factor-alpha sensitizes prostate cancer cells to gamma-irradiation-induced apoptosis. Cancer Res 59:1606–1614

    PubMed  CAS  Google Scholar 

  • Kimura K, Markowski M, Edsall LC, Spiegel S, Gelmann EP (2003) Role of ceramide in mediating apoptosis of irradiated LNCaP prostate cancer cells. Cell Death Differ 10:240–248

    Article  PubMed  CAS  Google Scholar 

  • Kyprianou N, King ED, Bradbury D, Rhee JG (1997) Bcl-2 over-expression delays radiation-induced apoptosis without affecting the clonogenic survival of human prostate cancer cells. Int J Cancer 70:341–348

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S, Lee H, Mesicek J, Fuks Z, Haimovitz-Friedman A, Kolesnick RN, Futerman AH (2007) Kinetic characterization of mammalian ceramide synthases: determination of K(m) values toward sphinganine. FEBS Lett 581:5289–5294

    Article  PubMed  CAS  Google Scholar 

  • Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH Jr, Futerman AH (2008) Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem 283:5677–5684

    Article  PubMed  CAS  Google Scholar 

  • Leith JT (1994) In vitro radiation sensitivity of the LNCaP prostatic tumor cell line. Prostate 24:119–124

    Article  PubMed  CAS  Google Scholar 

  • Leith JT, Quaranto L, Padfield G, Michelson S, Hercbergs A (1993) Radiobiological studies of PC-3 and DU-145 human prostate cancer cells: X-ray sensitivity in vitro and hypoxic fractions of xenografted tumors in vivo. Int J Radiat Oncol Biol Phys 25:283–287

    Article  PubMed  CAS  Google Scholar 

  • Li WX, Franklin WA (1998) Radiation- and heat-induced apoptosis in PC-3 prostate cancer cells. Radiat Res 150:190–194

    Article  PubMed  CAS  Google Scholar 

  • Liao W-C, Haimovitz-Friedman A, Persaud R, McLoughlin M, Ehleiter D, Zhang N, Gatei M, Lavin M, Kolesnick R, Fuks Z (1999) Ataxia Telangiectasia-mutated gene product inhibits DNA damage-induced apoptosis via ceramide synthase. J Biol Chem 274:17908–17917

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Genestier L, Pinkoski MJ, Castro A, Nicholas S, Mogil R, Paris F, Fuks Z, Schuchman EH, Kolesnick RN et al (2000) Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem 275:8657–8663

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Cheng JC, Turner LS, Elojeimy S, Beckham TH, Bielawska A, Keane TE, Hannun YA, Norris JS (2009) Acid ceramidase upregulation in prostate cancer: role in tumor development and implications for therapy. Expert Opin Ther Targets 13:1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Lock RB, Ross WE (1990) Inhibition of p34cdc2 kinase activity by etoposide or irradiation as a mechanism of G2 arrest in Chinese hamster ovary cells. Cancer Res 50:3761–3766

    PubMed  CAS  Google Scholar 

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes [see comments]. Nature 362:847–849

    Article  PubMed  CAS  Google Scholar 

  • Mahdy AE, Cheng JC, Li J, Elojeimy S, Meacham WD, Turner LS, Bai A, Gault CR, McPherson AS, Garcia N et al (2009) Acid ceramidase upregulation in prostate cancer cells confers resistance to radiation: AC inhibition, a potential radiosensitizer. Mol Ther 17:430–438

    Article  PubMed  CAS  Google Scholar 

  • Mathias S, Pena LA, Kolesnick RN (1998) Signal transduction of stress via ceramide. Biochem J 335:465–480

    PubMed  CAS  Google Scholar 

  • Mesicek J, Lee H, Feldman T, Jiang X, Skobeleva A, Berdyshev EV, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2010) Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal 22:1300–1307

    Article  PubMed  CAS  Google Scholar 

  • Meyn RE, Stephens LC, Hunter NR, Milas L (1995) Apoptosis in murine tumors treated with chemotherapy agents. Anticancer Drugs 6:443–450

    Article  PubMed  CAS  Google Scholar 

  • Meyn RE, Milas L, Ang KK (2009) The role of apoptosis in radiation oncology. Int J Radiat Biol 85:107–115

    Article  PubMed  CAS  Google Scholar 

  • Mizutani Y, Kihara A, Igarashi Y (2006) LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochem J 398:531–538

    Article  PubMed  CAS  Google Scholar 

  • Mullauer L, Gruber P, Sebinger D, Buch J, Wohlfart S, Chott A (2001) Mutations in apoptosis genes: a pathogenetic factor for human disease. Mutat Res 488:211–231

    Article  PubMed  CAS  Google Scholar 

  • Nava VE, Cuvillier O, Edsall LC, Kimura K, Milstien S, Gelmann EP, Spiegel S (2000) Sphingosine enhances apoptosis of radiation-resistant prostate cancer cells. Cancer Res 60:4468–4474

    PubMed  CAS  Google Scholar 

  • Norris JS, Bielawska A, Day T, El-Zawahri A, ElOjeimy S, Hannun Y, Holman D, Hyer M, Landon C, Lowe S et al (2006) Combined therapeutic use of AdGFPFasL and small molecule inhibitors of ceramide metabolism in prostate and head and neck cancers: a status report. Cancer Gene Ther 13:1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Olive PL, Durand RE (1997) Apoptosis: an indicator of radiosensitivity in vitro? Int J Radiat Biol 71:695–707

    Article  PubMed  CAS  Google Scholar 

  • Olson M, Kornbluth S (2001) Mitochondria in apoptosis and human disease. Curr Mol Med 1:91–122

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S (1995) Apoptosis: molecular mechanisms and implications for human disease. J Intern Med 237:529–536

    Article  PubMed  CAS  Google Scholar 

  • Pchejetski D, Doumerc N, Golzio M, Naymark M, Teissié J, Kohama T, Waxman J, Malavaud B, Cuvillier O (2008) Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol Cancer Ther 7:1836–1845

    Article  PubMed  CAS  Google Scholar 

  • Pena LA, Fuks Z, Kolesnick R (1997) Stress-induced apoptosis and the sphingomyelin pathway. Biochem Pharmacol 53:615–621

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1:111–121

    Article  PubMed  CAS  Google Scholar 

  • Royai R, Lange PH, Vessella R (1996) Preclinical models of prostate cancer. Semin Oncol 23:35–40

    PubMed  CAS  Google Scholar 

  • Saad AF, Meacham WD, Bai A, Anelli V, Elojeimy S, Mahdy AE, Turner LS, Cheng J, Bielawska A, Bielawski J et al (2007) The functional effects of acid ceramidase overexpression in prostate cancer progression and resistance to chemotherapy. Cancer Biol Ther 6:1455–1460

    Article  PubMed  CAS  Google Scholar 

  • Scardino PT, Wheeler TM (1988) Local control of prostate cancer with radiotherapy: frequency and prognostic significance of positive results of postirradiation prostate biopsy. NCI Monogr 7:95–103

    PubMed  Google Scholar 

  • Scarlatti F, Sala G, Ricci C, Maioli C, Milani F, Minella M, Botturi M, Ghidoni R (2007) Resveratrol sensitization of DU145 prostate cancer cells to ionizing radiation is associated to ceramide increase. Cancer Lett 253:124–130

    Article  PubMed  CAS  Google Scholar 

  • Schenck M, Carpinteiro A, Grassmé H, Lang F, Gulbins E (2007a) Ceramide: physiological and pathophysiological aspects. Arch Biochem Biophys 462:171–175

    Article  PubMed  CAS  Google Scholar 

  • Seelan RS, Qian C, Yokomizo A, Bostwick DG, Smith DI, Liu W (2000) Human acid ceramidase is overexpressed but not mutated in prostate cancer. Genes Chromosomes Cancer 29:137–146

    Article  PubMed  CAS  Google Scholar 

  • Shiloh Y (2001) ATM (ataxia telangiectasia mutated): expanding roles in the DNA damage response and cellular homeostasis. Biochem Soc Trans 29:661–666

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S, Foster D, Kolesnick R (1996) Signal transduction through lipid second messengers. Curr Opin Cell Biol 8:159–167

    Article  PubMed  CAS  Google Scholar 

  • Sridevi P, Alexander H, Laviad EL, Pewzner-Jung Y, Hannink M, Futerman AH, Alexander S (2009) Ceramide synthase 1 is regulated by proteasomal mediated turnover. Biochim Biophys Acta 1793:1218–1227

    Article  PubMed  CAS  Google Scholar 

  • Steel GG (2001) The case against apoptosis. Acta Oncol 40:968–975

    Article  PubMed  CAS  Google Scholar 

  • Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21:274–281

    Article  PubMed  CAS  Google Scholar 

  • Symmans WF, Volm MD, Shapiro RL, Perkins AB, Kim AY, Demaria S, Yee HT, McMullen H, Oratz R, Klein P et al (2000) Paclitaxel-induced apoptosis and mitotic arrest assessed by serial fine-needle aspiration: implications for early prediction of breast cancer response to neoadjuvant treatment. Clin Cancer Res 6:4610–4617

    PubMed  CAS  Google Scholar 

  • Truman JP, Gueven N, Lavin M, Leibel S, Kolesnick R, Fuks Z, Haimovitz-Friedman A (2005) Down-regulation of ATM protein sensitizes human prostate cancer cells to radiation-induced apoptosis. J Biol Chem 280:23262–23272

    Article  PubMed  CAS  Google Scholar 

  • Truman JP, Rotenberg SA, Kang JH, Lerman G, Fuks Z, Kolesnick R, Marquez VE, Haimovitz-Friedman A (2009) PKCalpha activation downregulates ATM and radio-sensitizes androgen-sensitive human prostate cancer cells in vitro and in vivo. Cancer Biol Ther 8:54–63

    Article  PubMed  CAS  Google Scholar 

  • Wollin M, FitzGerald TJ, Santucci MA, Menon M, Longcope C, Reale F, Carlson J, Sakakeeny MA, Greenberger JS (1989) Radiosensitivity of human prostate cancer and malignant melanoma cell lines. Radiother Oncol 15:285–293

    Article  PubMed  CAS  Google Scholar 

  • Wu J (1996) Apoptosis and angiogenesis: two promising tumor markers in breast cancer. Anticancer Res 16:2233–2239

    PubMed  CAS  Google Scholar 

  • Zelefsky MJ, Leibel SA, Gaudin PB, Kutcher GJ, Fleshner NE, Venkatramen ES, Reuter VE, Fair WR, Ling CC, Fuks Z (1998) Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int J Radiat Oncol Biol Phys 41:491–500

    Article  PubMed  CAS  Google Scholar 

  • Zelefsky MJ, Reuter VE, Fuks Z, Scardino P, Shippy A (2008) Influence of local tumor control on distant metastases and cancer related mortality after external beam radiotherapy for prostate cancer. J Urol 179:1368–1373 (discussion 1373)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Haimovitz-Friedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Hajj, C., Haimovitz-Friedman, A. (2013). Sphingolipids’ Role in Radiotherapy for Prostate Cancer. In: Gulbins, E., Petrache, I. (eds) Sphingolipids in Disease. Handbook of Experimental Pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4_6

Download citation

Publish with us

Policies and ethics