Skip to main content

Sphingolipids in Neuroinflammation

  • Chapter
  • First Online:
Sphingolipids in Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 216))

Abstract

Sphingolipids, the main component of cellular membranes, are cellular ‘jack-of-all-trades’, influencing a variety of functions including signal transduction, cell activation, membrane fluidity and cell–cell interactions.

In the last few years, sphingolipids have begun to be investigated in the pathophysiology of major diseases of the brain, e.g. multiple sclerosis and dementia. Modulation of neuroinflammatory responses, such as lymphocyte behaviour, is a chance to intervene in the pathways that cause disease. There is much research still to be done in this field, but the prospect of treating previously untreatable medical conditions compels us onwards. Here, we review the current knowledge of the link between sphingolipids and neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avota E, Gulbins E, Schneider-Schaulies S (2011) DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog 7(2):e1001290

    Article  PubMed  CAS  Google Scholar 

  • Barth BM, Gustafson SJ, Kuhn TB (2012) Neutral sphingomyelinase activation precedes NADPHoxidase-dependent damage in neurons exposed to the proinflammatory cytokine tumor necrosis factor-α. Neurosci Res 90:229–242

    Article  CAS  Google Scholar 

  • Ben-David O, Futerman HA (2010) The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases. Neuromol Med 12:341–350

    Article  CAS  Google Scholar 

  • Borri PF, Op den Velde WM, Hooghwinkel GJ, Bruyn GW (1967) Biochemical studies in Huntington’s chorea. VI. Composition of striatal neutral lipids, phospholipids, glycolipids, fatty acids, and amino acids. J Neurol 17(2):172–178

    Article  CAS  Google Scholar 

  • Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P (2010) Fingolimod (FTY729): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9:833–897

    Google Scholar 

  • Cameron NE, Cotter MA (2008) Pro-inflammatory mechanisms in diabetic neuropathy: focus on the nuclear factor kappa B pathway. Curr Drug Targets Jan 9(1):60–67

    Article  CAS  Google Scholar 

  • Choi JW, Chun J (2013) Lysophospholipids and their receptors in the central nervous system. Biochim Biophys Acta 1831(1):20–32

    Article  PubMed  CAS  Google Scholar 

  • Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, Teo ST, Yung YC, Lu M, Kennedy G, Chun J (2011) FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci USA 108(2):751–756

    Article  PubMed  CAS  Google Scholar 

  • Cohen JA, Chun J (2011) Mechanisms of fingolimod’s efficacy and adverse effects in multiple sclerosis. Ann Neurol 69:759–777

    Article  PubMed  CAS  Google Scholar 

  • Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, Pelletier J, Capra R, Gallo P, Izquierdo G, Tiel-Wilck K, de Vera A, Jin J, Stites T, Wu S, Aradhye S, Kappos L, TRANSFORMS Study Group (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362(5):402–415

    Article  PubMed  CAS  Google Scholar 

  • Crutcher KA, Gendelman HE, Kipnis J, Perez-Polo JR, Perry VH, Popovich PG, Weaver LC (2006) Debate: “is increasing neuroinflammation beneficial for neural repair?”. J Neuroimmune Pharmacol 1(3):195–211

    Article  PubMed  Google Scholar 

  • Cutler RG, Pedersen WA, Camandola S, Rothstein JD, Mattson MP (2002) Evidence that accumulation of ceramides and cholesterol esters mediates oxidative stress-induced death of motor neurons in amyotrophic lateral sclerosis. Ann Neurol 52(4):448–457

    Article  PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Deigner HP, Genovese T, Mazzon E, Esposito E, Crisafulli C, Di Paola R, Bramanti P, Matuschak G, Salvemini D (2009) Inhibition of ceramide biosynthesis ameliorates pathological consequences of spinal cord injury. Shock 31(6):634–644

    Article  PubMed  CAS  Google Scholar 

  • Czech B, Pfeilschifter W, Mazaheri-Omrani N, Strobel MA, Kahles T, Neumann-Haefelin T, Rami A, Huwiler A, Pfeilschifter J (2009) The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochem Biophys Res Commun 389(2):251–256

    Article  PubMed  CAS  Google Scholar 

  • Di Pardo A, Maglione V, Alpaugh M, Horkey M, Atwal RS, Sassone J, Ciammola A, Steffan JS, Fouad K, Truant R, Sipione S (2012) Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci USA 109(9):3528–3533

    Article  PubMed  Google Scholar 

  • Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120(1):1–34

    Article  PubMed  CAS  Google Scholar 

  • Etminan M, Gill S, Samii A (2003) Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies. BMJ 327(7407):128

    Article  PubMed  CAS  Google Scholar 

  • Fewou SN, Rupp A, Nickolay LE, Carrick K, Greenshields KN, Pediani J, Plomp JJ, Willison HJ (2012) Anti-ganglioside antibody internalization attenuates motor nerve terminal injury in a mouse model of acute motor axonal neuropathy. J Clin Invest 122(3):1037–1051

    Article  PubMed  CAS  Google Scholar 

  • Finney CAM, Hawkes CA, Kain DC, Dhabangi A, Musoke C, Cserti-Gazdewich C, Oravecz T, Liles WC, Kain KC (2011) S1P is associated with protection in human and experimental cerebral malaria. Mol Med 17(7–8):717–725

    PubMed  CAS  Google Scholar 

  • Foster CA, Mechtcheriakova D, Storch MK, Balatoni B, Howard LM, Bornancin F, Wlachos A, Sobanov J, Kinnunen A, Baumruker T (2009) FTY720 rescue therapy in the dark agouti rat model of experimental autoimmune encephalomyelitis: expression of central nervous system genes and reversal of blood–brain damage. Brain Pathol 19:254–266

    Article  PubMed  CAS  Google Scholar 

  • Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47

    Article  PubMed  Google Scholar 

  • Gassert E, Avota E, Harms H, Krohne G, Gulbins E, Schneider-Schaulies S (2009) Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog 5(10):e1000623

    Article  PubMed  Google Scholar 

  • Geisler FH, Dorsey FC, Coleman WP (1991) Recovery of motor function after spinal-cord injury–a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 324(26):1829–1838

    Article  PubMed  CAS  Google Scholar 

  • Geisler FH, Coleman WP, Grieco G, Poonian D, Sygen Study Group (2001) The Sygen multicenter acute spinal cord injury study. Spine 26(24 Suppl):S87–S98

    Article  PubMed  CAS  Google Scholar 

  • Giunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, Pedemonte E, Noonan D, Albini A, Bernardi G, Mancardi GL, Battistini L, Uccelli A (2003) Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol 73(5):584–590

    Article  PubMed  CAS  Google Scholar 

  • Gulbins E, Lee PL (2006) Physiological and pathophysiological aspects of ceramide. Am J Physiol Regul Integr Comp Physiol 290:11–26

    Article  Google Scholar 

  • Haggiag S, Steiner-Birmanns B, Wirguin I, Sicsic C, Brenner T, Steiner I (2004) Seroconversion of anti-GM1 antibodies in patients with amyotrophic lateral sclerosis. J Neurol 63(4):755–756

    Article  CAS  Google Scholar 

  • Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH (2010) Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke 41(2):368–374

    Article  PubMed  CAS  Google Scholar 

  • Huang SH, Long M, Wu CH, Kwon-Chung KJ, Chang YC, Chi F, Lee S, Jong A (2011) Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells is mediated through the lipid rafts-endocytic pathway via the dual specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3). J Biol Chem 286(40):34761–34769

    Article  PubMed  CAS  Google Scholar 

  • Hughes RA, Cornblath DR (2005) Guillain-Barré syndrome. Lancet 366(9497):1653–1666

    Article  PubMed  CAS  Google Scholar 

  • In t’Veld BA, Ruitenberg A, Hofman A (2001) Nonsteroidal anti-inflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 345:1515–1521

    Article  Google Scholar 

  • Jana A, Pahan K (2010) Sphingolipids in multiple sclerosis. Neuromolecular Med 12(4):351–361

    Article  PubMed  CAS  Google Scholar 

  • Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, Selmaj K, Agoropoulou C, Leyk M, Zhang-Auberson L, Burtin P, FREEDOMS Study Group (2010) A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med 362(5):387–401

    Article  PubMed  CAS  Google Scholar 

  • Kieseier BC, Kiefer R, Gold R, Hemmer B, Willison HJ, Hartung HP (2004) Advances in understanding and treatment of immune-mediated disorders of the peripheral nervous system. Muscle Nerve 30(2):131–156

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Steelman AJ, Zhang Y, Kinney HC, Li J (2012) Aberrant upregulation of astroglial ceramide potentiates oligodendrocyte injury. Brain Pathol 22(1):41–57

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Kiguchi N, Maeda T, Ozaki M, Kishioka S (2012) The critical role of spinal ceramide in the development of partial sciatic nerve ligation-induced neuropathic pain in mice. Biochem Biophys Res Commun 421(2):318–322

    Article  PubMed  CAS  Google Scholar 

  • Köhne AS, Stettner M, Jangouk P, Dehmel T, Hartung HP, Lehmann HC, Kieseier BC (2012) Fingolimod impedes Schwann cell-mediated myelination: implications for the treatment of immune neuropathies? Effect of Fingolimod on Schwann cells. Arch Neurol 2:1–10

    Google Scholar 

  • Kumar A, Negi G, Sharma SS (2012) Suppression of NF-κB and NF-κB regulated oxidative stress and neuroinflammation by BAY 11–7082 (IκB phosphorylation inhibitor) in experimental diabetic neuropathy. Biochimie 94(5):1158–1165

    Article  PubMed  CAS  Google Scholar 

  • Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. Exp Med 201(2):233–240

    Article  CAS  Google Scholar 

  • McColl BW, Allan SW, Rothwell NJ (2007) Systemic inflammation and stroke: aetiology, pathology and targets for therapy. Biochem Soc Trans 35:1163–1165

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG (2001) Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging 22:799–809

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Akiyama H, McGeer EG (1988) Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 24(4):574–576

    Article  PubMed  CAS  Google Scholar 

  • Myers RR, Shubayev VI (2011) The ology of neuropathy: an integrative review of the role of neuroinflammation and TNF-α axonal transport in neuropathic pain. J Peripher Nerv Syst 16(4):277–286

    Article  PubMed  CAS  Google Scholar 

  • Nayak D, Huo Y, Kwang WXT, Pushparaj PN, Kumar SD, Ling EA, Dheen ST (2010) Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience 166:132–144

    Article  PubMed  CAS  Google Scholar 

  • Novgorodov SA, Gudz TI (2011) Ceramide and mitochondria in ischemic brain injury. Int J Biochem Mol Biol 2(4):347–361

    PubMed  CAS  Google Scholar 

  • Orr CF, Rowe DB, Halliday GM (2002) An inflammatory review of Parkinson’s disease. Prog Neurobiol 68(5):325–340

    Article  PubMed  CAS  Google Scholar 

  • Pannu R, Won JS, Khan M, Singh AK, Singh I (2004) A novel role of lactosylceramide in the regulation of lipopolysaccharide/interferon-gamma-mediated inducible nitric oxide synthase gene expression: implications for neuroinflammatory diseases. J Neurosci 24(26):5942–5954

    Article  PubMed  CAS  Google Scholar 

  • Phong MC, Gutwein P, Kadel S, Hexel K, Altevogt P, Linderkamp O, Brenner B (2003) Molecular mechanisms of L-selectin-induced co-localization in rafts and shedding. Biochem Biophys Res Commun 300:563–569

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff RM (2012) Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity 31:711–721

    Article  Google Scholar 

  • Rao JS, Kellom M, Kim HW, Rapoport SI, Reese EA (2012) Neuroinflammation and synaptic loss. Neurochem Res 37(5):903–910

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Nico B, Crivellato E, Artico M (2006) Development of the blood–brain barrier: a historical point of view. Anat Rec 289B:3–8

    Article  Google Scholar 

  • Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9(6):429–430

    Article  PubMed  CAS  Google Scholar 

  • Rosenman SJ, Ganji AA, Tedder TF, Gallatin WM (1993) Syn-capping of human T lymphocyte adhesion/activation molecules and their redistribution during interaction with endothelial cells. J Leukoc Biol 53:1–10

    PubMed  CAS  Google Scholar 

  • Schneider JS, Sendek S, Daskalakis C, Cambi F (2010) GM1 ganglioside in Parkinson’s disease: results of a five year open study. J Neurol Sci 292(1–2):45–51

    Article  PubMed  CAS  Google Scholar 

  • Soeda S, Tsuji Y, Ochiai T, Mishima K, Iwasaki K, Fujiwara M, Yokomatsu T, Murano T, Shibuya S, Shimeno H (2004) Inhibition of sphingomyelinase activity helps to prevent neuron death caused by ischemic stress. Neurochem Int 45(5):619–626

    Article  PubMed  CAS  Google Scholar 

  • Stoffel B, Bauer P, Nix M, Geres K, Stoffel W (1998) Ceramide-independent CD28 and TCR signaling but reduced IL-2 secretion in T cells of acid sphingomyelinase-deficient mice. Eur J Immunol 28:874–880

    Article  PubMed  CAS  Google Scholar 

  • Streit WJ, Mrak RE, Griffin WST (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1(1):14

    Article  PubMed  Google Scholar 

  • Strong K, Mathers C, Bonita R (2007) Preventing stroke: saving lives around the world. Lancet Neurol 6(2):182–187

    Article  PubMed  Google Scholar 

  • Tajima O, Egashira N, Ohmi Y (2009) Reduced motor and sensory functions and emotional response in GM3-only mice: emergence from early stage of life and exacerbation with aging. Behav Brain Res 198:74–82

    Article  PubMed  Google Scholar 

  • Van Doorn R, Van Horssen J, Verzijl D, Witte M, Ronken E, Van Het Hof B, Lakeman K, Dijkstra CD, Van Der Valk P, Reijerkerk A, Alewijnse AE, Peters SLM, De Vries HE (2010) Sphingosine 1-Phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia 58:1465–1476

    PubMed  Google Scholar 

  • Van Doorn R, Nijland PG, Dekker N, Witte ME, Lopes-Pinheiro MA, van Het Hof B, Kooij G, Reijerkerk A, Dijkstra C, van van der Valk P, van Horssen J, de Vries HE (2012) Fingolimod attenuates ceramide-induced blood–brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes. Acta Neuropathol 124(3):397–410

    Google Scholar 

  • Wang J, Doré S (2007) Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 27:894–908

    Article  PubMed  CAS  Google Scholar 

  • Witton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150(8):963–976

    Article  Google Scholar 

  • Wu YP, Mizugishi K, Bektas M, Sandhoff R, Proia RL (2008) Sphingosine kinase 1/S1P receptor signaling axis controls glial proliferation in mice with Sandhoff disease. Hum Mol Genet 17:2257–2264

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Lu ZH, Kulkarni N, Amin R, Ledeen RW (2011) Mice lacking major brain gangliosides develop parkinsonism. Neurochem Res 36(9):1706–1714

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Xu J, Niu Y, Bromberg JS, Ding Y (2008) T-bet and eomesodermin play critical roles in directing T cell differentiation to Th1 versus Th17. J Immunol 181(12):8700–8710

    PubMed  CAS  Google Scholar 

  • Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50(Suppl):S440–S445

    Article  PubMed  Google Scholar 

  • Yu RK, Tsai YT, Ariga T (2012) Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 37(6):1230–1244

    Article  PubMed  CAS  Google Scholar 

  • Yuki N, Hartung HP (2012) Guillain-Barré syndrome. N Engl J Med 366(24):2294–2304

    Article  PubMed  CAS  Google Scholar 

  • Zappia M, Crescibene L, Bosco D, Arabia G, Nicoletti G, Bagalà A, Bastone L, Napoli ID, Caracciolo M, Bonavita S, Di Costanzo A, Gambardella A, Quattrone A (2002) Anti-GM1 ganglioside antibodies in Parkinson’s disease. Acta Neurol Scand 106(1):54–57

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Davies, L., Fassbender, K., Walter, S. (2013). Sphingolipids in Neuroinflammation. In: Gulbins, E., Petrache, I. (eds) Sphingolipids in Disease. Handbook of Experimental Pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4_21

Download citation

Publish with us

Policies and ethics