Skip to main content

Ceramide in Cystic Fibrosis

  • Chapter
  • First Online:
Book cover Sphingolipids in Disease

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 216))

Abstract

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) molecule; these mutations result in a defect in chloride secretion in epithelial cell layers. The disease is characterized by severe gastrointestinal and pulmonary symptoms, but it is the pulmonary symptoms that dominate the clinical course of the disease and determine patients’ life expectancy. These pulmonary symptoms include reduced mucociliary clearance, chronic inflammation, and recurrent and chronic pulmonary infections with Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia cepacia, and Haemophilus influenzae. Recent studies have shown that sphingolipids, especially ceramide, play a crucial role in the pathogenesis of cystic fibrosis. These studies have demonstrated that ceramide accumulates in the lungs of cystic fibrosis patients and mice, causing inflammation and high susceptibility to bacterial infections. The results of initial clinical studies suggest that interfering with sphingolipids may be a novel treatment strategy for cystic fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bajmoczi M, Gadjeva M, Alper SL, Pier GB, Golan DE (2009) Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa. Am J Physiol Cell Physiol 297:C263–C277

    Article  PubMed  CAS  Google Scholar 

  • Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, al-Awqati Q (1991) Defective acidification of intracellular organelles in cystic fibrosis. Nature 352:70–73

    Article  PubMed  CAS  Google Scholar 

  • Becker KA, Riethmüller J, Lüth A, Döring G, Kleuser B, Gulbins E (2010a) Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am J Respir Cell Mol Biol 42:716–724

    Article  PubMed  CAS  Google Scholar 

  • Becker KA, Tümmler B, Gulbins E, Grassmé H (2010b) Accumulation of ceramide in the trachea and intestine of cystic fibrosis mice causes inflammation and cell death. Biochem Biophys Res Commun 403:368–374

    Article  PubMed  CAS  Google Scholar 

  • Becker KA, Henry B, Ziobro R, Tümmler B, Gulbins E, Grassmé H (2012) Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. J Mol Med 90:1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Bodas M, Min T, Mazur S, Vij N (2011a) Critical modifier role of membrane-cystic fibrosis transmembrane conductance regulator-dependent ceramide signaling in lung injury and emphysema. J Immunol 186:602–613

    Article  PubMed  CAS  Google Scholar 

  • Bodas M, Min T, Vij N (2011b) Critical role of CFTR-dependent lipid rafts in cigarette smoke-induced lung epithelial injury. Am J Physiol Lung Cell Mol Physiol 300:L811–L820

    Article  PubMed  CAS  Google Scholar 

  • Bonfield TL, Konstan MW, Burfeind P, Panuska JR, Hilliard JB, Berger M (1995) Normal bronchial epithelial cells constitutively produce the anti-inflammatory cytokine interleukin-10, which is downregulated in cystic fibrosis. Am J Respir Cell Mol Biol 13:257–261

    Article  PubMed  CAS  Google Scholar 

  • Brodlie M, McKean MC, Johnson GE, Gray J, Fisher AJ, Corris PA, Lordan JL, Ward C (2010) Ceramide is increased in the lower airway epithelium of people with advanced cystic fibrosis lung disease. Am J Respir Crit Care Med 182:369–375

    Article  PubMed  CAS  Google Scholar 

  • Charizopoulou N, Jansen S, Dorsch M, Stanke F, Dorin JR, Hedrich H-J, Tümmler B (2004) Instability of the insertional mutation in CftrTgH(neoim)Hgu cystic fibrosis mouse model. BMC Genet 5:6

    Article  PubMed  Google Scholar 

  • Charizopoulou N, Wilke M, Dorsch M, Bot A, Jorna H, Jansen S, Stanke F, Hedrich H-J, de Jonge HR, Tümmler B (2006) Spontaneous rescue from cystic fibrosis in a mouse model. BMC Genet 7:18

    Article  PubMed  Google Scholar 

  • Cystic fibrosis registry of the USA. http://www.cff.org

  • Di A, Brown ME, Deriy LV, Li C, Szeto FL, Chen Y, Huang P, Tong J, Naren AP, Bindokas V, Palfrey HC, Nelson DJ (2006) CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 8:933–944

    Article  PubMed  CAS  Google Scholar 

  • Durie I, Amsellem C, Paulin C, Chambe MT, Bienvenu J, Bellon G, Pacheco Y (1999) Fas and Fas ligand expression in cystic fibrosis airway epithelium. Thorax 54:1093–1098

    Article  Google Scholar 

  • Durie PR, Kent G, Phillips MJ, Ackerley CA (2004) Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model. Am J Pathol 164:1481–1493

    Article  PubMed  Google Scholar 

  • Gadjeva M, Paradis-Bleau C, Priebe GP, Fichorova R, Pier GB (2010) Caveolin-1 modifies the immunity to Pseudomonas aeruginosa. J Immunol 184:296–302

    Article  PubMed  CAS  Google Scholar 

  • Goldstein W, Döring G (1986) Lysosomal enzymes from polymorphonuclear leukocytes and protease inhibitors in patients with cystic fibrosis. Am Rev Respir Dis 134:49–56

    PubMed  CAS  Google Scholar 

  • Grassmé H, Jendrossek V, Riehle A, von Kurthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330

    Article  PubMed  Google Scholar 

  • Haggie PM, Verkman AS (2007) Cystic fibrosis transmembrane conductance regulator-independent phagosomal acidification in macrophages. J Biol Chem 282:31422–31428

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz R, Ferlinz K, Sandhoff K (1994) The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler 375:447–450

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Massion PP, Ueki IF, Grattan KM, Hara M, Dohrman AF, Chan B, Lausier JA, Golden JA, Nadel JA (1994) Pseudomonas stimulates interleukin-8 mRNA expression selectively in airway epithelium, in gland ducts, and in recruited neutrophils. Am J Respir Cell Mol Biol 11:651–663

    Article  PubMed  CAS  Google Scholar 

  • Kent G, Oliver M, Foskett JK, Frndova H, Durie P, Forstner J, Forstner GG, Riordan JR, Percy D, Buchwald M (1996) Phenotypic abnormalities in long-term surviving cystic fibrosis mice. Pediatr Res 40:233–241

    Article  PubMed  CAS  Google Scholar 

  • Kent G, Iles R, Bear CE, Huan LJ, Griesenbach U, McKerlie C, Frndova H, Ackerley C, Gosselin D, Radzioch D, O’Brodovich H, Tsui LC, Buchwald M, Transwell AK (1997) Lung disease in mice with cystic fibrosis. J Clin Invest 100:3060–3069

    Article  PubMed  CAS  Google Scholar 

  • Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245: 1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Kerem E, Reisman J, Corey M, Canny GJ, Levison H (1992) Prediction of mortality in patients with cystic fibrosis. N Engl J Med 326:1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151:1075–1082

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E (2008) Identification of new functional inhibitors of acid sphingomyelinase using a structure–property-activity relation model. J Med Chem 51:219–237

    Article  PubMed  CAS  Google Scholar 

  • Kowalski MP, Pier GB (2004) Localization of cystic fibrosis transmembrane conductance regulator to lipid rafts of epithelial cells is required for Pseudomonas aeruginosa-induced cellular activation. J Immunol 172:418–425

    PubMed  CAS  Google Scholar 

  • Kumar V, Becker T, Jansen S, van Barneveld A, Boztug K, Wolfl S, Tümmler B, Stanke F (2008) Expression levels of FAS are regulated through an evolutionary conserved element in intron 2, which modulates cystic fibrosis disease severity. Genes Immun 9:689–696

    Article  PubMed  CAS  Google Scholar 

  • Maiuri L, Raia V, De Marco G, Coletta S, de Ritis G, Londei M, Auricchio S (1997) DNA fragmentation is a feature of cystic fibrosis epithelial cells: a disease with inappropriate apoptosis? FEBS Lett 408:225–231

    Article  PubMed  CAS  Google Scholar 

  • Matsui H, Verghese MW, Kesimer M, Schwab UE, Randell SH, Sheehan JK, Grubb BR, Boucher RC (2005) Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. J Immunol 175:1090–1099

    PubMed  CAS  Google Scholar 

  • Munder A, Wölbeling F, Kerber-Momot T, Wedekind D, Baumann U, Gulbins E, Tümmler B (2011) Acute intratracheal Pseudomonas aeruginosa infection in cystic fibrosis mice is age-independent. Respir Res 12:148

    Article  PubMed  Google Scholar 

  • Oceandy D, McMorran BJ, Smith SN, Schreiber R, Kunzelmann K, Alton EW, Hume DA, Wainwright BJ (2002) Gene complementation of airway epithelium in the cystic fibrosis mouse is necessary and sufficient to correct the pathogen clearance and inflammatory abnormalities. Hum Mol Genet 11:1059–1067

    Article  PubMed  CAS  Google Scholar 

  • Pier GB, Grout M, Zaidi TS, Olsen JC, Johnson LG, Yankaskas JR, Goldberg JB (1996) Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections. Science 271: 64–67

    Article  PubMed  CAS  Google Scholar 

  • Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 91:5340–5344

    Article  PubMed  CAS  Google Scholar 

  • Riethmüller J, Anthonysamy J, Emilio Serra E, Schwab M, Döring G, Gulbins E (2009) Therapeutic efficacy and safety of amitriptyline in patients with cystic fibrosis. Cell Physiol Biochem 24:65–72

    Article  PubMed  Google Scholar 

  • Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N et al (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    Article  PubMed  CAS  Google Scholar 

  • Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, Nelson GA IV, Chang EH, Taft PJ, Ludwig PS, Estin M, Hornick EE, Launspach JL, Samuel M, Rokhlina T, Karp PH, Ostedgaard LS, Uc A, Starner TD, Horswill AR, Brogden KA, Prather RS, Richter SS, Shilyansky J, McCray PB Jr, Zabner J, Welsh MJ (2010) Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2:29ra31

    Article  PubMed  Google Scholar 

  • Tabary O, Escotte S, Couetil JP, Hubert D, Dusser D, Puchelle E, Jacquot J (2001) Relationship between IkappaBalpha deficiency, NFkappaB activity and interleukin-8 production in CF human airway epithelial cells. Pflugers Arch 443(Suppl 1):S40–S44

    Article  PubMed  CAS  Google Scholar 

  • Teichgräber V, Ulrich M, Endlich N, Riethmüller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kürthy G, Schmid KW, Weller M, Tümmler B, Lang F, Grassmé H, Döring G, Gulbins E (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391

    Article  PubMed  Google Scholar 

  • Tirouvanziam R, de Bentzmann S, Hubeau C, Hinnrasky J, Jacquot J, Peault B, Puchelle E (2000) Inflammation and infection in naive human cystic fibrosis airway grafts. Am J Respir Cell Mol Biol 23:121–127

    Article  PubMed  CAS  Google Scholar 

  • Ulrich M, Worlitzsch D, Viglio S, Siegmann N, Iadarola P, Shute JK, Geiser M, Pier GB, Friedel G, Barr ML, Schuster A, Meyer KC, Ratjen F, Bjarnsholt T, Gulbins E, Döring G (2010) Alveolar inflammation in cystic fibrosis. J Cyst Fibros 9:217–227

    Article  PubMed  CAS  Google Scholar 

  • Venkatakrishnan A, Stecenko AA, King G, Blackwell TR, Brigham KL, Christman JW, Blackwell TS (2000) Exaggerated activation of nuclear factor-kappaB and altered IkappaB-beta processing in cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol 23: 396–403

    Article  PubMed  CAS  Google Scholar 

  • Verhaeghe C, Delbecque K, de Leval L, Oury C, Bours V (2007) Early inflammation in the airways of a cystic fibrosis foetus. J Cyst Fibros 6:304–308

    Article  PubMed  CAS  Google Scholar 

  • Welsh MJ, Anderson MP, Rich DP, Berger HA, Sheppard DN (1994) The CFTR chloride channel. In: Guggino WB (ed) Chloride channels. Academic, San Diego, pp 153–171

    Chapter  Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:148

    Article  Google Scholar 

  • Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas JR, Randell S, Boucher RC, Döring G (2002) Reduced oxygen concentrations in airway mucus contribute to the early and late pathogenesis of Pseudomonas aeruginosa CF airways infection. J Clin Invest 109:317–325

    PubMed  CAS  Google Scholar 

  • Zaas DW, Duncan MJ, Li G, Wright JR, Abraham SN (2005) Pseudomonas invasion of type I pneumocytes is dependent on the expression and phosphorylation of caveolin-2. J Biol Chem 280:4864–4872

    Article  PubMed  CAS  Google Scholar 

  • Zhang AY, AY, Yi F, Jin S, Xia M, Chen QZ, Gulbins E, Li PL (2007) Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9:817–828

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Li X, Grassmé H, Döring G, Gulbins E (2009) Alterations in ceramide concentration and pH determine the release of reactive oxygen species by Cftr-deficient macrophages on infection. J Immunol 184:5104–5111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Gulbins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Grassmé, H., Riethmüller, J., Gulbins, E. (2013). Ceramide in Cystic Fibrosis. In: Gulbins, E., Petrache, I. (eds) Sphingolipids in Disease. Handbook of Experimental Pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4_13

Download citation

Publish with us

Policies and ethics