Skip to main content

Discussion and Outlook

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

With the MIMEAC friction simulation environment fully developed in the previous chapters, it is now time to embed the theory in the scope of engineering system analysis. Chapter 6 focused on the in-depth analysis of the specific transient behavior of dwell time-, velocity- and normal force-dependent friction. In this chapter, in the form of an outlook, it will be demonstrated how the present theory can be used to analyze complex system dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ABAQUS Inc.: ABAQUS Analysis User’s Manual. ABAQUS Inc., Providence (2004)

    Google Scholar 

  2. Abuzeid, O.M.: A linear thermo-visco-elastic creep model for the contact of nominal flat surfaces based on fractal geometry: Kelvin-Voigt medium. J. Qual. Maint. Eng. 9, 202–216 (2003)

    Google Scholar 

  3. Abuzeid, O.M.: A linear viscoelastic creep-contact model of a flat fractal surface: Kelvin-Voigt medium. Ind. Lubr. Tribol. 56, 334–340 (2004)

    Google Scholar 

  4. Abuzeid, O.M., Alabed, T.A.: Mathematical modeling of the thermal relaxation of nominally flat surfaces in contact using fractal geometry: Maxwell type medium. Tribol. Int. 42, 206–212 (2009)

    Google Scholar 

  5. Abuzeid, O.M., Eberhard, P.: Linear viscoelastic creep model for the contact of nominal flat surfaces based on fractal geometry: standard linear solid (SLS) material. J. Tribol. 129, 461–466 (2007)

    Google Scholar 

  6. Akay, A.: Acoustics of friction. J. Acoust. Soc. Am. 111, 1525–1548 (2002)

    Google Scholar 

  7. Alabed, T.A., Abuzeid, O.M., Barghash, M.: A linear viscoelastic relaxation-contact model of a flat fractal surface: a Maxwell type medium. Int. J. Adv. Manuf. Technol. 39, 423–430 (2008)

    Google Scholar 

  8. Ameida, L., Ramadoss, R., Jackson, R.L., Ishikawa, K., Yu, Q.: Study of the electrical contact resistance of multi-contact MEMS relays fabricated using the metalMUMPs process. J. Micromech. Microeng. 16, 1189–1194 (2006)

    Google Scholar 

  9. ANSYS Inc.: ANSYS Theory Manual, Release 11. ANSYS USA, Canonsburg (2007)

    Google Scholar 

  10. ANSYS Inc.: Programmer’s Manual for ANSYS, Release 11. ANSYS USA, Canonsburg (2007)

    Google Scholar 

  11. Archard, R.F.: Elastic deformation and the laws of friction. Proc. R. Soc. Lond. A 243, 190–205 (1957)

    Google Scholar 

  12. Armstrong-Hélouvry, B.: Control of machines with friction. Kluwer, Boston (1991)

    MATH  Google Scholar 

  13. Ashby, M.F., Jones, D.R.H.: Engineering Materials, vol. 1, 3rd edn. Butterworth-Heinemann, Oxford (2005)

    Google Scholar 

  14. Balluffi, R.W., Allen, S.M., Carter, W.C.: Kinetics of Materials. Wiley, Hoboken (2005)

    Google Scholar 

  15. Baltazar, A., Rokhlin, S.I., Percorari, C.: On the relationship between ultrasonic and micro-structural properties of imperfect interfaces in layered solids. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 18B, pp. 1463–1470. American Institute of Physics, New York (1999)

    Google Scholar 

  16. Barabási, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  17. Baumberger, T., Berthoud, P.: Sliding dynamics at a multicontact interface. In: Wolf, D.E., Grassberger, P. (eds.) Workshop on Friction, Arching, Contact Dynamics, Forschungszentrum Jülich, pp. 3–12. World Scientific, Singapore (1996)

    Google Scholar 

  18. Baumberger, T., Berthoud, P., Caroli, C.: Physical analysis of the state- and rate-dependent friction law: II. Dynamic friction. Phys. Rev. B 60, 3928–3939 (1999)

    Google Scholar 

  19. Baumberger, T., Caroli, C.: Solid friction from stick-slip down to pinning and aging. Adv. Phys. 55, 279–348 (2006)

    Google Scholar 

  20. Belotserkovets, A., Dubois, A., Dubar, M., Dubar, L., Deltombe, R., Vandekinderen, H., Damasse, J.: 2D asperity deformation of stainless steel strip in cold rolling. Int. J. Mater. Form. 1, 351–354 (2008)

    Google Scholar 

  21. Bengisu, M.T., Akay, A.: Stability of friction-induced vibrations in multi-degree-of-freedom systems. J. Sound Vib. 171, 557–570 (1994)

    MATH  Google Scholar 

  22. Berger, E.J.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55, 535–577 (2002)

    Google Scholar 

  23. Berry, M.V., Lewis, Z.V.: On the Weierstrass-Mandelbrot fractal function. Proc. R. Soc. Lond. A 370, 459–484 (1980)

    MathSciNet  MATH  Google Scholar 

  24. Berthoud, P., Baumberger, T., G’Sell, C., Hiver, J.M.: Physical analysis of the state- and rate-dependent friction law: I. Static friction. Phys. Rev. B 59, 14313–14327 (1999)

    Google Scholar 

  25. Bhushan, B. (ed.): Handbook of Micro/Nano Tribology. CRC Press, Boca Raton (1995)

    Google Scholar 

  26. Bhushan, B., Majumdar, A.: Elastic-plastic contact model for bifractal surfaces. Wear 153, 53–64 (1992)

    Google Scholar 

  27. Blau, P.J.: Friction Science and Technology. Marcel Dekker, New York (1996)

    Google Scholar 

  28. Bliman, P.A., Bonald, T., Sorine, M.: Hysteresis operators and tyre friction models: application to vehicle dynamic simulation. In: Proceedings of ICIAM/GAMM 95, Hamburg, Germany, 1996, pp. 309–312

    Google Scholar 

  29. Bliman, P.A., Sorine, M.: Friction modelling by hysteresis operators: application to Dahl, stiction and Stribeck effects. In: Proceedings of Conference Models of Hysteresis, Trento, Italy, 1991

    Google Scholar 

  30. Bliman, P.A., Sorine, M.: A system-theoretic approach of systems with hysteresis: application to friction modelling and compensation. In: Proceedings of the 2nd European Control Conference, pp. 1844–1849. Groningen, The Netherlands (1993)

    Google Scholar 

  31. Bo, L.C., Pavelescu, D.: The friction-speed relation and its influence on the critical velocity of stick-slip motion. Wear 82, 277–289 (1982)

    Google Scholar 

  32. Boettcher, M.S., Marone, C.: Effects of normal stress variation on the strength and stability of creeping faults. J. Geophys. Res. 109, B03406 (2004)

    Google Scholar 

  33. Bora, C.K., Flater, E.E., Street, M.D., Redmond, J.M., Starr, M.J., Carpick, R.W., Plesha, M.E.: Multiscale roughness and modeling of MEMS interfaces. Tribol. Lett. 19, 37–48 (2005)

    Google Scholar 

  34. Borodich, F.M.: Comment on “Elastoplastic contact between randomly rough surfaces”. Phys. Rev. Lett. 88, 069601(1) (2002)

    Google Scholar 

  35. Borri-Brunetto, M., Carpinteri, A., Chiaia, B.: Scaling phenomena due to fractal contact in concrete and rock fractures. Int. J. Fract. 95, 221–238 (1999)

    Google Scholar 

  36. Borri-Brunetto, M., Chiaia, B., Ciavarella, M.: Incipient sliding of rough surfaces in contact: a multiscale numerical analysis. Comput. Methods Appl. Mech. Eng. 190, 6053–6073 (2001)

    MATH  Google Scholar 

  37. Boucly, V., Nélias, D., Green, I.: Modeling of the rolling and sliding contact between two asperities. J. Tribol. 129, 235–245 (2007)

    Google Scholar 

  38. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1950)

    Google Scholar 

  39. Bowden, F.P., Tabor, D.: Friction: An Introduction to Tribology. Anchor Press, Garden City (1973)

    Google Scholar 

  40. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids (Oxford Classic Texts in the Physical Sciences). Oxford University, Oxford (2001)

    Google Scholar 

  41. Bower, A.F., Fleck, N.A., Needleman, A., Ogbonna, N.: Indentation of a power law creeping solid. Proc. R. Soc. Lond. A 441, 97–124 (1993)

    MATH  Google Scholar 

  42. Braunovic, M., Konchits, V.V., Myshkin, N.K.: Electrical Contacts: Fundamentals, Applications and Technology. CRC Press, Boca Raton (2007)

    Google Scholar 

  43. Brechet, Y., Estrin, Y.: The effect of strain rate sensitivity on dynamic friction of metals. Scr. Metall. Mater. 30, 1449–1454 (1994)

    Google Scholar 

  44. Brizmer, V.: Elastic-plastic contact of a sphere and a flat under combined normal and tangential loading. Ph.D. thesis, Technion, Israel (2006)

    Google Scholar 

  45. Brizmer, V., Kligerman, Y., Etsion, I.: A model for junction growth of a spherical contact under full stick condition. J. Tribol. 129, 783–790 (2007)

    Google Scholar 

  46. Brockley, C.A., Davis, H.R.: The time-dependence of static friction. J. Lubr. Technol. 90, 35–41 (1968)

    Google Scholar 

  47. Broniec, Z., Lenkiewicz, W.: Static friction processes under dynamic loads and vibration. Wear 80, 261–271 (1982)

    Google Scholar 

  48. Bronstein, I.N., Semendjaev, K.A.: Taschenbuch der Mathematik. Teubner, Leipzig (2003)

    Google Scholar 

  49. Brot, C.C., Etsion, I., Kligerman, Y.: A contact model for a creeping sphere and a rigid flat. Wear 265, 598–605 (2008)

    Google Scholar 

  50. Buckingman, E.: On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4, 345–376 (1914)

    Google Scholar 

  51. Bureau, L., Baumberger, T., Caroli, C.: Shear response of a frictional interface to a normal load modulation. Phys. Rev. E 62, 6810–6820 (2000)

    Google Scholar 

  52. Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35, 87–111 (1975)

    Google Scholar 

  53. Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Automat. Contr. 40, 419–425 (1995)

    Google Scholar 

  54. Chang, L., Zhang, H.: A mathematical model for frictional elastic-plastic sphere-on-flat contacts at sliding incipient. J. Appl. Mech. 74, 100–106 (2007)

    MATH  Google Scholar 

  55. Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. J. Tribol. 109, 257–263 (1987)

    Google Scholar 

  56. Chung, J.C., Lin, J.F.: Fractal model developed for elliptic elastic-plastic asperity microcontacts of rough surfaces. J. Tribol. 126, 646–654 (2004)

    Google Scholar 

  57. Church, E.L.: Fractal surface finish. Appl. Opt. 27, 1518–1526 (1988)

    Google Scholar 

  58. Ciavarella, M., Demelio, G.: Elastic multiscale contact of rough surfaces: Archard’s model revisited and comparisons with modern fractal models. J. Appl. Mech. 68, 496–498 (2001)

    MATH  Google Scholar 

  59. Ciavarella, M., Demelio, G., Barber, J.R., Jang, Y.H.: Linear elastic contact of the Weierstrass profile. Proc. R. Soc. Lond. A 456, 387–405 (2000)

    MathSciNet  MATH  Google Scholar 

  60. Cochard, A., Bureau, L., Baumberger, T.: Stabilization of frictional sliding by normal load modulation. J. Appl. Mech. 70, 220–226 (2003)

    MATH  Google Scholar 

  61. Coulomb, C.A.: Théorie des machines simples. Mém. Math. Phys. Acad. Sci. 10, 161–331 (1785)

    Google Scholar 

  62. Dahl, P.R.: A solid friction model. Technical report, The Aerospace Corporation, El Segundo, CA for Space and Missile Systems Organization, Air Force Systems Command, Los Angeles, CA (1968)

    Google Scholar 

  63. Derjaguin, B.V., Push, V.E., Tolstoi, D.M.: A theory of stick-slip sliding of solids. Sov. J. Tech. Phys. (in Russian) 26, 1329–1342 (1955)

    Google Scholar 

  64. Derjaguin, B.V., Push, V.E., Tolstoi, D.M.: A theory of stick-slip sliding of solids. In: Proceedings of the Conference Lubrication and Wear, pp. 265–269. The Institution of Mechanical Engineers, London (1957)

    Google Scholar 

  65. Dieterich, J.H.: Time-dependent friction and the mechanics of stick-slip. Pure Appl. Geophys. 116, 790–806 (1978)

    Google Scholar 

  66. Dieterich, J.H.: Modeling of rock friction, 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979)

    Google Scholar 

  67. Dieterich, J.H.: Modeling of rock friction, 2. Simulation of preseismic slip. J. Geophys. Res. 84, 2169–2176 (1979)

    Google Scholar 

  68. Dieterich, J.H.: Experimental and model study of fault constitutive properties. In: Nemet-Nasser, S. (ed.) Solid Earth Geophysics and Geotechnology, pp. 21–30. ASME, New York (1980)

    Google Scholar 

  69. Dieterich, J.H.: Constitutive properties of faults with simulated gouge. In: Carter, N.L., Friedman, M., Logan, J.M., Stearns, D.W. (eds.) Mechanical Behavior of Crustal Rocks. Geophysical Monograph Series, vol. 24, pp. 103–120. American Geophysical Union, Washington (1981)

    Google Scholar 

  70. Dieterich, J.H.: A model for the nucleation of earthquake slip. In: Das, S., Boatwright, J., Scholz, C.H. (eds.) Earthquake Source Mechanics. Geophysical Monograph Series, vol. 37, pp. 37–47. American Geophysical Union, Washington (1986)

    Google Scholar 

  71. Dieterich, J.H.: Nucleation and triggering of earthquake slip: effect of periodic stresses. Tectonophysics 144, 127–139 (1987)

    Google Scholar 

  72. Dieterich, J.H., Kilgore, B.: Direct observation of frictional contacts: new insights for state-dependent properties. Pure Appl. Geophys. 143, 283–302 (1994)

    Google Scholar 

  73. Dieterich, J.H., Linker, M.F.: Fault stability under conditions of variable normal stress. Geophys. Res. Lett. 19, 1691–1694 (1992)

    Google Scholar 

  74. Duan, C., Singh, R.: Influence of harmonically varying normal load on steady-state behavior of a 2dof torsional system with dry friction. J. Sound Vib. 294, 503–528 (2006)

    Google Scholar 

  75. Dupont, P.E.: Friction modeling in dynamic robot simulation. In: Proceedings of the 1990 IEEE International Conference on Robotics and Automation, Sacramento, CA, 1990, pp. 1370–1376

    Google Scholar 

  76. Dupont, P.E., Bapna, D.: Stability of sliding frictional surfaces with varying normal force. J. Vib. Acoust. 116, 237–242 (1994)

    Google Scholar 

  77. Dupont, P.E., Dunlap, E.P.: Friction modeling and control in boundary lubrication. In: Proceedings of the American Control Conference, San Francisco, CA, 1993

    Google Scholar 

  78. Dupont, P.E., Dunlap, E.P.: Friction modeling and PD compensation at very low velocities. J. Dyn. Syst. Meas. Control 117, 8–14 (1995)

    Google Scholar 

  79. Dutton, R.E., Rahaman, M.N.: Sintering, creep, and electrical conductivity of model glass-matrix composites. J. Am. Ceram. Soc. 75, 2146–2154 (2005)

    Google Scholar 

  80. Dwyer-Joyce, R.S., Drinkwater, B.W., Quinn, A.M.: The use of ultrasound in the investigation of rough surface interfaces. J. Tribol. 123, 8–16 (2001)

    Google Scholar 

  81. Edgar, G.: Measure, Topology, and Fractal Geometry. Springer, Berlin (2008)

    MATH  Google Scholar 

  82. Etsion, I., Kligermann, Y., Kadin, Y.: Unloading of an elastic-plastic loaded spherical contact. Int. J. Solids Struct. 42, 3716–3729 (2005)

    MATH  Google Scholar 

  83. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge University Press, Cambrige (1986)

    Google Scholar 

  84. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  85. Falk, M.L., Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192–7205 (1998)

    Google Scholar 

  86. Feeny, B.F., Liang, J.W.: Phase-space reconstructions and stick-slip. Nonlinear Dyn. 13, 39–57 (1997)

    MathSciNet  MATH  Google Scholar 

  87. Filippov, A.E., Popov, V.L.: Fractal Tomlinson model for mesoscopic friction: from microscopic velocity-dependent damping to macroscopic coulomb friction. Phys. Rev. E 75, 027,103(4) (2007)

    Google Scholar 

  88. Friedman, H.D., Levesque, P.: Reduction of static friction by sonic vibrations. J. Appl. Phys. 30, 1572–1575 (1959)

    Google Scholar 

  89. Frost, H.J., Ashby, M.F.: Deformation-mechanism maps: the plasticity and creep of metals and ceramics. Pergamon Press, Oxford (1982)

    Google Scholar 

  90. Fujii, H., Asakura, T.: Roughness measurements of metal surfaces using laser speckle. J. Opt. Soc. Am. 67, 1171–1176 (1977)

    Google Scholar 

  91. Fuller, D.D.: Theory and Practice of Lubrication for Engineers, pp. 336–338. Wiley, Hoboken (1956)

    Google Scholar 

  92. Gao, Y.F., Bower, A.F.: Elastic-plastic contact of a rough surface with Weierstrass profile. Proc. R. Soc. Lond. A 462, 319–348 (2006)

    MathSciNet  MATH  Google Scholar 

  93. Garofalo, F.: Fundamentals of Creep and Creep-Rupture in Metals. Macmillan Publishers, New York (1965)

    Google Scholar 

  94. Gitis, N.V., Volpe, L.: Nature of static friction time dependence. J. Phys. D Appl. Phys. 25, 605–612 (1992)

    Google Scholar 

  95. Glocker, C.: Set-valued force laws: dynamics of non-smooth systems. Springer, Berlin (2001)

    MATH  Google Scholar 

  96. Godfrey, D.: Vibration reduces metal to metal contact and causes an apparent reduction in friction. ASLE Trans. 10, 183–192 (1967)

    Google Scholar 

  97. Goedecke, A.: Kinetische Monte Carlo Simulationen zum Wachstum zweidimensionaler Kristalle. Master’s thesis, RWTH Aachen (2003)

    Google Scholar 

  98. Goedecke, A., Mock, R.: A new fractal model for dynamic contact phenomena including friction. In: Proceedings of the European COMSOL Conference 2008, Hannover, 2008, p. 6

    Google Scholar 

  99. Goedecke, A., Mock, R.: A novel dynamic friction model based on asperity creep. In: Proceedings of the 9th Biennial ASME Conference on Engineering Systems Design and Analysis (ESDA2008) Haifa Israel, 2008, p. 59366(10)

    Google Scholar 

  100. Goedecke, A., Mock, R.: Creep relaxation of an elastic-perfectly plastic hemisphere in fully plastic contact. J. Tribol. 131, 021407(10) (2009)

    Google Scholar 

  101. Goedecke, A., Mock, R.: Transient friction effects due to variable normal load in a multi-scale asperity-creep friction model. In: Proceedings of the ASME/STLE International Joint Tribology Conference IJTC 2010 (IJTC2010), San Francisco, California, 2010, p. 41190(3)

    Google Scholar 

  102. Greenwod, J.A., Rowe, G.W.: Deformation of surface asperities during bulk plastic flow. J. Appl. Phys. 36, 667–668 (1965)

    Google Scholar 

  103. Greenwood, J.A.: A simplified elliptic model of rough surface contact. Wear 261, 191–200 (2006)

    Google Scholar 

  104. Greenwood, J.A., Tripp, J.H.: The elastic contact of rough spheres. J. Appl. Mech. 34, 153–159 (1967)

    Google Scholar 

  105. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Google Scholar 

  106. Greenwood, J.A., Wu, J.J.: Surface roughness and contact: an apology. Meccanica 36, 617–630 (2001)

    MATH  Google Scholar 

  107. Guinea, F., Louis, E., Katz, J.: Fractures, fractals and foreign physics. Phys. Today 44, 13 (1991)

    Google Scholar 

  108. Haessig, D.A., Friedland, B.: On the modelling and simulation of friction. J. Dyn. Syst. Meas. Control 113, 354–362 (1992)

    Google Scholar 

  109. Hegazy, A.A.H.: Thermal joint conductance of comforming rough surfaces: effect of surface micro-hardness variation. Ph.D. thesis, University of Waterloo, UK (1985)

    Google Scholar 

  110. Hertz, H.: Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1881)

    Google Scholar 

  111. Heslot, F., Baumberger, T., Perrin, B., Caroli, B., Caroli, C.: Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys. Rev. E 49, 4973–4988 (1994)

    Google Scholar 

  112. Hess, D.P., Soom, A.: Friction at a lubricated line contact operating at oscillating sliding velocities. J. Tribol. 112, 147–152 (1990)

    Google Scholar 

  113. Hess, D.P., Soom, A., Kim, C.H.: Normal vibrations and friction at a Hertzian contact under random excitation: Theory and experiment. J. Sound Vib. 153, 491–508 (1991)

    Google Scholar 

  114. Hinrichs, N.: Reibungsschwingungen mit Selbst- und Fremderregung: Experiment, Modellierung und Berechnung. In: Fortschr.-Ber. VDI, Reihe 11, vol. 240. VDI-Verlag, Dsseldorf (1997)

    Google Scholar 

  115. Hobbs, B.E., Brady, B.H.G.: Normal stress changes and the constitutive law for rock friction (abstract). EOS Trans. Am. Geophys. Union 66, 382 (1985)

    Google Scholar 

  116. Höge, M.: Sensorische rückwirkung von piezoelektrischen aktoren und ihre anwendung im kraftfahrzeug. Ph.D. thesis, Johannes Kepler University, Linz, Austria (2007)

    Google Scholar 

  117. Howe, P.G., Benton, D.P., Puddington, I.E.: London - Van der Waals attractive forces between glass surfaces. Can. J. Chem. 33, 1375–1383 (1955)

    Google Scholar 

  118. Huber, C.: Modellbasierte regelkonzepte auf der basis sensorischer rückwirkung von schnell schaltenden aktoren. Ph.D. thesis, Johannes Kepler University (2011)

    Google Scholar 

  119. Hui, C.Y., Lin, Y.Y., Baney, J.M.: The mechanics of tack: viscoelastic contact on a rough surface. J. Polym. Sci. B Polym. Phys. 38, 1485–1495 (2000)

    Google Scholar 

  120. Hurd, A.J., Weitz, D.A., Mandelbrot, B.B. (eds.): Fractal Aspects of Materials: Disordered Systems. Materials Research Society, Pittsburgh (1987)

    Google Scholar 

  121. Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117(12) (2004)

    Google Scholar 

  122. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos. Part I: Mechanics of contact and friction. Appl. Mech. Rev. 47, 209–226 (1994)

    Google Scholar 

  123. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos. Part II: Dynamics and modeling. Appl. Mech. Rev. 47, 227–253 (1994)

    Google Scholar 

  124. Irfan, M.A., Prakash, V.: Time resolved friction during dry sliding of metal on metal. Int. J. Solids Struct. 37, 2859–2882 (2000)

    MATH  Google Scholar 

  125. Ishlinsky, A.Y., Kragelsky, I.Y.: On stick-slip in sliding (in Russian). J. Tech. Phys. 14, 276–282 (1944)

    Google Scholar 

  126. Jackson, R.L., Chusoipin, I., Green, I.: A finite element study of the residual stress and deformation in hemispherical contacts. J. Tribol. 127, 484–493 (2005)

    Google Scholar 

  127. Jackson, R.L., Duvvuru, R.S., Meghani, H., Mahajan, M.: An analysis of elasto-plastic sliding spherical asperity interaction. Wear 262, 210–219 (2006)

    Google Scholar 

  128. Jackson, R.L., Green, I.: A finite element study of elasto-plastic hemispherical contact against a rigid flat. J. Tribol. 127, 343–354 (2005)

    Google Scholar 

  129. Jackson, R.L., Green, I., Marghitu, D.B.: Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres. Nonlinear Dyn. 60, 217–229 (2009)

    Google Scholar 

  130. Jackson, R.L., Streator, J.L.: A multi-scale model for contact between rough surfaces. Wear 261, 1337–1347 (2006)

    Google Scholar 

  131. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  132. Johnson, T.: Time-dependent friction of granite: implications for precursory slip on faults. J. Geophys. Res. 86, 6017–6028 (1981)

    Google Scholar 

  133. Ju, Y., Farris, T.N.: Spectral analysis of two-dimensional contact problems. J. Tribol. 118, 320–328 (1996)

    Google Scholar 

  134. Jung, C.M., Feeny, B.F.: Friction-induced vibration in periodic linear elastic media. J. Sound Vib. 252, 945–954 (2002)

    Google Scholar 

  135. Kadin, Y., Kligerman, Y., Etsion, I.: Unloading an elastic-plastic contact of rough surfaces. J. Mech. Phys. Solids 54, 2652–2674 (2006)

    Google Scholar 

  136. Kadin, Y., Kligerman, Y., Etsion, I.: Jump-in induced plastic yield onset of approaching microcontacts in the presence of adhesion. J. Appl. Phys. 103, 013513 (2008)

    Google Scholar 

  137. Kadin, Y., Kligerman, Y., Etsion, I.: Loading-unloading of an elastic-plastic adhesive spherical microcontact. J. Colloid Interface Sci. 321, 242–250 (2008)

    Google Scholar 

  138. Kadin, Y., Kligermann, Y., Etsion, I.: Multiple loading-unloading of an elastic-plastic spherical contact. Int. J. Solids Struct. 43, 7119–7127 (2006)

    MATH  Google Scholar 

  139. Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107, 100–103 (1985)

    Google Scholar 

  140. Kato, S., Matsubayashi, T.: On the dynamic behavior of machine tool slideway. Bull. JSME 13, 170–179 (1970)

    Google Scholar 

  141. Kato, S., Sato, N., Matsubayashi, T.: Some considerations on characteristics of static friction in machine tool slideway. J. Lubr. Technol. 94, 234–247 (1972)

    Google Scholar 

  142. Kim, J.Y., Baltazar, A., Rokhlin, S.I.: Ultrasonic assessment of rough surface contact between solids from elastoplastic loading-unloading hysteresis cycle. J. Mech. Phys. Solids 52, 1911–1934 (2004)

    Google Scholar 

  143. Kligerman, Y., Etsion, I., Brizmer, V., Kadin, Y.: Friction and contact between rough surfaces based on elastic-plastic sphere and rigid flat interaction. In: Wiggers, P., Nackenhorst, U. (eds.) Analysis and Simulation of Contact Problems, pp. 223–229. Springer, Berlin (2006)

    Google Scholar 

  144. Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69, 657–662 (2002)

    MATH  Google Scholar 

  145. Kogut, L., Etsion, I.: A semi-analytical solution for the sliding inception of a spherical contact. J. Tribol. 125, 499–506 (2003)

    Google Scholar 

  146. Kragelsky, I.V., Alisin, V.V., Palkin, F., Palkin, V.: Tribology: lubrication, friction and wear. Wiley, Hoboken (2005)

    Google Scholar 

  147. Krallis, M., Hess, D.P.: Stick-slip in the presence of a normal vibration. Tribotest J. 8–3, 205–219 (2002)

    Google Scholar 

  148. Krithivasan, V., Jackson, R.L.: An analysis of three-dimensional elasto-plastic sinusoidal contact. Tribol. Lett. 27, 31–43 (2007)

    Google Scholar 

  149. Kucharski, S., Klimczak, T., Polijaniuk, A., Kaczmarek, J.: Finite-elements model for the contact of rough surfaces. Wear 177, 1–13 (1994)

    Google Scholar 

  150. Lau, J.H. (ed.): Ball Grid Array Technology. McGraw-Hill, New York (1995)

    Google Scholar 

  151. Laursen, T.A.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)

    MATH  Google Scholar 

  152. Lin, L.P., Lin, J.F.: An elastoplastic microasperity contact model for metallic materials. J. Tribol. 127, 666–672 (2005)

    Google Scholar 

  153. Linker, M.F., Dieterich, J.H.: Effects of variable normal stress on rock friction: observations and constitutive equations. J. Geophys. Res. 95, 4923–4940 (1992)

    Google Scholar 

  154. Lockner, D.A., Summers, R., Byerlee, J.D.: Effects of temperature and sliding rate on frictional strength of granite. Pure Appl. Geophys. 124, 445–469 (1986)

    Google Scholar 

  155. Longuet-Higgins, M.S.: Statistical properties of an isotropic random surface. Proc. R. Soc. Lond. A 250, 157–174 (1957)

    MathSciNet  MATH  Google Scholar 

  156. Lu, C.J., Kuo, M.C.: Coefficients of restitution based on a fractal surface model. J. Appl. Mech. 70, 339–345 (2003)

    MATH  Google Scholar 

  157. Luo, J., Liu, S., Wen, S.: Contact ratio and deformation of asperity in nano-partial lubrication. Sci. China A 44, 78–85 (2001)

    Google Scholar 

  158. Majumdar, A., Bhushan, B.: Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J. Tribol. 112, 205–216 (1990)

    Google Scholar 

  159. Majumdar, A., Bhushan, B.: Fractal model of elastic-plastic contact between rough surfaces. J. Tribol. 113, 1–11 (1991)

    Google Scholar 

  160. Majumdar, A., Tien, C.L.: Fractal characterization and simulation of rough surfaces. Wear 136, 313–327 (1990)

    Google Scholar 

  161. Majumdar, A., Tien, C.L.: Fractal network model for contact conductance. J. Heat Transfer 113, 516–525 (1991)

    Google Scholar 

  162. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Co., New York (1982)

    MATH  Google Scholar 

  163. Manners, W., Greenwood, J.A.: Some observations on Persson’s diffusion theory of elastic contact. Wear 261, 600–610 (2006)

    Google Scholar 

  164. Marone, C.: Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998)

    Google Scholar 

  165. McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear 107, 37–60 (1986)

    Google Scholar 

  166. Michaelis, S.: Entwicklung von mikromechanischen schaltern für neuartige mems-produkte unter aspekten industrieller fertigungsprozesse. Ph.D. thesis, University Bremen (2001)

    Google Scholar 

  167. Michely, T., Krug, J.: Islands, Mounds, and Atoms: Patterns and Processes in Crystal Growth Far from Equilibrium. Springer, Berlin (2004)

    Google Scholar 

  168. Mikic, B.B.: Thermal contact conductance: theoretical considerations. Int. J. Heat Mass Transf. 17, 205–214 (1974)

    Google Scholar 

  169. Moore, A.C., Tabor, D.: Some mechanical and adhesive properties of indium. Br. J. Appl. Phys. 3, 299–301 (1952)

    Google Scholar 

  170. Moore, A.J.W.: Deformation of metals in static and in sliding contact. Proc. R. Soc. Lond. A 195, 231–244 (1948)

    Google Scholar 

  171. Morag, Y., Etsion, I.: Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces. Wear 262, 624–629 (2007)

    Google Scholar 

  172. Mulhearn, T.O., Tabor, D.: Creep and hardness of metals: a physical study. J. Inst. Met. 89, 7–12 (1960)

    Google Scholar 

  173. Müser, M.H.: Rigorous field-theoretical approach to the contact mechanics of rough elastic solids. Phys. Rev. Lett. 100, 055,504(4) (2008)

    Google Scholar 

  174. Nayak, P.R.: Random process model of rough surfaces. J. Lubr. Technol. 93, 398–407 (1971)

    Google Scholar 

  175. Nayak, P.R.: Random process model of rough surfaces in plastic contact. Wear 26, 305–333 (1973)

    Google Scholar 

  176. Nayak, P.R.: Some aspects of surface roughness measurement. Wear 26, 165–174 (1973)

    Google Scholar 

  177. Nix, W.D., Gao, H.J.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)

    MATH  Google Scholar 

  178. Oden, J.T., Martins, J.A.C.: Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 52, 527–634 (1985)

    MathSciNet  MATH  Google Scholar 

  179. Ogbonna, N., Fleck, N.A., Cocks, C.F.: Transient creep analysis of ball indentation. Int. J. Mech. Sci. 37, 1179–1202 (1995)

    MATH  Google Scholar 

  180. Okamura, K., Matsubara, T., Noro, S., Yamane, T.: Study of frictional vibration (theoretical analysis). J. Jpn. Soc. Precis. Eng. 34, 31–36 (1968)

    Google Scholar 

  181. Olsson, H.: Control systems with friction. Ph.D. thesis, Lund Institute of Technology, Lund, Sweden (1996)

    Google Scholar 

  182. Olsson, W.A.: Normal stress history effects on friction in tuff. EOS Trans. Am. Geophys. Union 66, 1101 (1985)

    Google Scholar 

  183. Olsson, W.A.: The effects of changes in normal stress on rock friction. In: Desai, C.S., Krempl, E., Kiousis, P.D., Kundu, T. (eds.) Constitutive Laws for Engineering Materials – Theory and Applications, pp. 1059–1066. Elsevier, New York (1987)

    Google Scholar 

  184. Olsson, W.A.: Rock joint compliance studies. Technical Report, SAND86–0177, Sandia National Laboratories Report, Abuquerque (1987)

    Google Scholar 

  185. Olsson, W.A.: The effects of normal stress history on rock friction. In: Cundall, P.A., Starfield, A.M., Sterling, R.L. (eds.) Key Questions in Rock Mechanics: Proceedings of the 29th US Symposium on Rock Mechanics, pp. 111–117 (1988)

    Google Scholar 

  186. Olsson, W.A.: The effects of shear and normal stress paths on rock friction. In: Barton, N., Stephansson, O. (eds.) Rock Joints: Proceedings of the International Symposium on Rock Joints, pp. 475–479 (1990)

    Google Scholar 

  187. Ossa, E.A., Deshpande, V.S., Cebon, D.: Spherical indentation behaviour of bitumen. Acta Mater. 53, 3103–3113 (2005)

    Google Scholar 

  188. Panagiotopoulos, P.D.: Fractals and fractal approximation in structural mechanics. Meccanica 27, 25–33 (1992)

    MATH  Google Scholar 

  189. Perfettini, H., Schmittbuhl, J., Rice, J.R., Cocco, M.: Frictional response induced by time-dependent fluctuations of the normal loading. J. Geophys. Res. 106, 13455–13472 (2001)

    Google Scholar 

  190. Persson, B.N.J.: Theory of friction: Stress domains, relaxation, and creep. Phys. Rev. E 51, 13568–13585 (1995)

    Google Scholar 

  191. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  192. Persson, B.N.J.: Theory of time-dependent plastic deformation in disordered solids. Phys. Rev. B 61, 5949–5966 (2000)

    Google Scholar 

  193. Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116101(4) (2001)

    Google Scholar 

  194. Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)

    Google Scholar 

  195. Persson, B.N.J.: Reply to Borodich’s comment on “Elastoplastic contact between randomly rough surfaces”. Phys. Rev. Lett. 88, 069602(1) (2002)

    Google Scholar 

  196. Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)

    MathSciNet  Google Scholar 

  197. Persson, B.N.J.: Relation between interfacial separation and load: a general theory of contact mechanics. Phys. Rev. Lett. 99, 125502(4) (2007)

    Google Scholar 

  198. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17, R1–R62 (2005)

    Google Scholar 

  199. Persson, B.N.J., Bucher, F., Chiaia, B.: Elastic contact between randomly rough surfaces: comparison of theory with numerical results. Phys. Rev. B 65, 184106(7) (2002)

    Google Scholar 

  200. Persson, B.N.J., Tosatti, E. (eds.): Physics of Sliding Friction. In: NATO ASI Series, Series E: Applied Sciences, vol. 311. Kluwer, Dordrecht (1996)

    Google Scholar 

  201. Pilipchuk, V.N., Tan, C.A.: Creep-slip capture as a possible source of squeal during decelerated sliding. Nonlinear Dyn. 35, 259–285 (2004)

    MATH  Google Scholar 

  202. Pinto da Costa, A., Martins, J.A.C., Figueiredo, I.N., Júdice, J.J.: The directional instability problem in systems with frictional contacts. Comput. Methods Appl. Mech. Eng. 193, 357–384 (2004)

    Google Scholar 

  203. Prakash, V.: Frictional response of sliding interfaces subjected to time varying normal pressures. J. Tribol. 120, 97–102 (1998)

    Google Scholar 

  204. Quicksall, J.J., Jackson, R.L., Green, I.: Elasto-plastic hemispherical contact models for various mechanical properties. Proc. Inst. Mech. Eng. J Eng. Tribol. 218, 313–322 (2004)

    Google Scholar 

  205. Rabinowicz, E.: The instrinsic variables affecting the stick-slip process. Proc. Phys. Soc. 71, 668–675 (1958)

    Google Scholar 

  206. Rabinowicz, E.: Friction and Wear of Materials. Wiley, Hoboken (1965)

    Google Scholar 

  207. Ramesh Kumar, M.V., Narasimhan, R.: Analysis of spherical indentation of linear viscoelastic materials. Curr. Sci. 87, 1088–1095 (2004)

    Google Scholar 

  208. Rice, J.R., Lapusta, N., Ranjith, K.: Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Solids 49, 1865–1898 (2001)

    MATH  Google Scholar 

  209. Rice, J.R., Ruina, A.L.: Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983)

    MATH  Google Scholar 

  210. Richardson, E., Marone, C.: Effects of normal stress vibrations on frictional healing. J. Geophys. Res. 104, 28859–28878 (1999)

    Google Scholar 

  211. Ruina, A.L.: Friction laws and instabilities: A quasistatic analysis of some dry frictional behavior. Ph.D. thesis, Brown University, Providence, USA (1980)

    Google Scholar 

  212. Ruina, A.L.: Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983)

    Google Scholar 

  213. Russ, J.C.: Fractal Surfaces. Plenum Press, New York (1994)

    Google Scholar 

  214. Ryabov, V.B., Ito, H.M.: Multistability and chaos in a spring-block model. Phys. Rev. E 52, 6101–6112 (1995)

    Google Scholar 

  215. Sahoo, P., Banerjee, A.: Asperity interaction in elastic-plastic contact of rough surfaces in presence of adhesion. J. Phys. D Appl. Phys. 38, 2841–2847 (2005)

    Google Scholar 

  216. Scholz, C.H.: Earthquakes and friction laws. Nature 391, 37–42 (1998)

    Google Scholar 

  217. Scholz, C.H.: The Mechanics of Earthquakes and Faulting, 2nd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  218. Sellgren, U., Olofsson, U.: Application of a constitutive model for micro-slip in finite element analysis. Comput. Methods Appl. Mech. Eng. 170, 65–77 (1999)

    MATH  Google Scholar 

  219. Sextro, W.: Dynamical Contact Problems with Friction: Models, Methods, Experiments and Applications, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  220. Sheng, G.: Friction-Induced Vibrations and Sound: Principles and Applications. CRC Press, Boca Raton (2007)

    Google Scholar 

  221. Singer, I.L., Pollock, H.M. (eds.): Fundamentals of Friction: Macroscopic and Microscopic Processes. NATO ASI Series, Series E: Applied Sciences, vol. 220. Kluwer, Dordrecht (1992)

    Google Scholar 

  222. Soom, A., Kim, C.: Interactions between dynamic normal and frictional forces during unlubricated sliding. J. Lubr. Technol. 105, 221–229 (1983)

    Google Scholar 

  223. Spurr, R.T.: Creep and static friction. Br. J. Appl. Phys. 6, 402–403 (1955)

    Google Scholar 

  224. Spurr, R.T., Newcomb, T.P.: The adhesion theory of friction. Proc. Phys. Soc. B 70, 98–101 (1957)

    Google Scholar 

  225. Spurr, R.T., Newcomb, T.P.: The variation of friction with velocity. Proc. Phys. Soc. B 70, 198–200 (1957)

    Google Scholar 

  226. Srinivasan, S., Russ, J.C., Scattergood, R.O.: Fractal analysis of erosion surfaces. J. Mater. Res. 5, 2616–2619 (1990)

    Google Scholar 

  227. Stanley, H.M., Kato, T.: An FFT-based method for rough surface contact. J. Tribol. 119, 481–485 (1997)

    Google Scholar 

  228. Stribeck, R.: Die wesentlichen Eigenschaften der Gleit-und Rollenlager. Z. Verein. Deut. Ing. 46, 1341–1348 (1902)

    Google Scholar 

  229. Tabor, D.: The Hardness of Metals. Clarendon Press, Oxford (1951)

    Google Scholar 

  230. Tabor, D.: Friction – the present state of our understanding. J. Lubr. Technol. 103, 169–179 (1981)

    Google Scholar 

  231. Tariku, F.A.: Simulation of dynamic mechanical systems with stick-slip friction (master’s thesis). Master’s thesis, University of New Brunswick, Canada (1998)

    Google Scholar 

  232. Tariku, F.A., Rogers, R.J.: Improved dynamic friction models for simulation of one-dimensional and two-dimensional stick-slip motion. J. Tribol. 123, 661–669 (2001)

    Google Scholar 

  233. Taylor, J.H., Kebede, D.: Modeling and simulation of hybrid systems. In: 34th Proceedings of the IEEE Conference on Decision and Control, pp. 2685–2687 (1995)

    Google Scholar 

  234. Taylor, J.H., Kebede, D.: Rigorous hybrid systems simulation of an electro-mechanical pointing system with discrete-time control. In: Proceedings of the 1997 American Control Conference, pp. 2786–2789 (1997)

    Google Scholar 

  235. Thomas, K.: Cold welding. In: ASM Handbook, vol. 6. Welding, Brazing, and Soldering, pp. 307–310. ASM International, Russell Township (1993)

    Google Scholar 

  236. Thompson, M.K., Thompson, J.M.: Considerations for the incorporation of measured surfaces in finite element models. Scanning 32, 183–198 (2010)

    Google Scholar 

  237. Tolstoi, D.M.: Significance of the normal degree of freedom and natural normal vibrations in contact friction. Wear 10, 199–213 (1967)

    Google Scholar 

  238. Tucker, K., Green, I.: Finite element analysis of electromagnetic effects on hemispherical contacts. In: Proceedings of the 9th Biennial ASME Conference on Engineering Systems Design and Analysis (ESDA2008), Haifa Israel, 2008, p. 59040(6)

    Google Scholar 

  239. Tworzydlo, W.W., Becker, E.: Influence of forced vibrations on the static coefficient of friction – numerical modeling. Wear 143, 175–196 (1991)

    Google Scholar 

  240. Tworzydlo, W.W., Hamzeh, O.N.: On the importance of normal vibrations in modeling of stick slip in rock sliding. J. Geophys. Res. 102, 15091–15103 (1997)

    Google Scholar 

  241. Ullah, H., Irfan, M.A., Prakash, V.: State and rate dependent friction laws for modeling high-speed frictional slip at metal-on-metal interfaces. J. Tribol. 129, 17–22 (2007)

    Google Scholar 

  242. Wang, W., Scholz, C.H.: Micromechanics of the velocity and normal stress dependence of rock friction. Pure Appl. Geophys. 143, 303–315 (1994)

    Google Scholar 

  243. Wang, Z., Dohda, K., Haruyama, Y.: Effects of entraining velocity of lubricant and sliding velocity on friction behavior in stainless steel sheet rolling. Wear 260, 249–257 (2006)

    Google Scholar 

  244. Warren, T.L., Krajcinovic, D.: Random cantor set models for the elastic-perfectly plastic contact of rough surfaces. Wear 196, 1–15 (1996)

    Google Scholar 

  245. Westergaard, H.M.: Bearing pressures and cracks. J. Appl. Mech. 6, 49–53 (1939)

    Google Scholar 

  246. Williamson, J.B.P., Hunt, R.T.: Asperity persistence and the real area of contact between rough surfaces. Proc. R. Soc. Lond. A 327, 147–157 (1972)

    Google Scholar 

  247. Willner, K.: Elasto-plastic normal contact of three-dimensional fractal surfaces using halfspace theory. J. Tribol. 126, 28–33 (2004)

    Google Scholar 

  248. Wolf, D.E., Grassberger, P. (eds.): HLRZ Workshop on Friction, Arching, Contact Dynamics. World Scientific, Singapore (1997)

    Google Scholar 

  249. Wong, P.Z., Bray, A.J.: Small-angle scattering by rough and fractal surfaces. J. Appl. Crystallogr. 21, 786–794 (1988)

    Google Scholar 

  250. Yan, W., Komvopoulos, K.: Contact analysis of elastic-plastic fractal surfaces. J. Appl. Phys. 84, 3617–3624 (1998)

    Google Scholar 

  251. Yang, C., Persson, B.N.J.: Contact mechanics: Contact area and interfacial separation from small contact to full contact. J. Phys. Condens. Matter 20, 215214(13) (2008)

    Google Scholar 

  252. Yang, C., Persson, B.N.J., Israelachvili, J., Rosenberg, K.: Contact mechanics with adhesion: interfacial separation and contact area. Europhys. Lett. 84, 46004(5) (2008)

    Google Scholar 

  253. Yang, C., Tartaglino, U., Persson, B.N.J.: A multiscale molecular dynamics approach to contact mechanics. Eur. Phys. J. E 19, 47–58 (2006)

    Google Scholar 

  254. Yang, J., Komvopoulos, K.: A mechanics approach to static friction of elastic-plastic fractal surfaces. J. Tribol. 127, 315–324 (2005)

    Google Scholar 

  255. Yashioka, N.: A review of the micromechanical approach to the physics of contacting surfaces. Tectonophysics 277, 29–40 (1997)

    Google Scholar 

  256. Zavarise, G., Borri-Brunetto, M., Paggi, M.: On the resolution dependence of micromechanical contact models. Wear 262, 42–54 (2007)

    Google Scholar 

  257. Zhao, Y., Chang, L.: A model of asperity interactions in elastic-plastic contact of rough surfaces. J. Tribol. 123, 857–864 (2001)

    Google Scholar 

  258. Zhuang, W.D., Chang, P.C., Chou, F.Y., Shiue, R.K.: Effect of solder creep on the reliability of large area die attachment. Microelectron. Reliab. 41, 2011–2021 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Goedecke, A. (2013). Discussion and Outlook. In: Transient Effects in Friction. Engineering Materials. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1506-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1506-0_7

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1505-3

  • Online ISBN: 978-3-7091-1506-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics