Skip to main content

The Impact of Multichannel Microelectrode Recording (MER) in Deep Brain Stimulation of the Basal Ganglia

  • Conference paper
  • First Online:
Stereotactic and Functional Neurosurgery

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 117))

Abstract

Deep brain stimulation (DBS) of the basal ganglia (Ncl. subthalamicus, Ncl. ventralis intermedius thalami, globus pallidus internus) has become an evidence-based and well-established treatment option in otherwise refractory movement disorders. The Ncl. subthalamicus (STN) is the target of choice in Parkinson’s disease.

However, a considerable discussion is currently ongoing with regard to the necessity for micro-electrode recording (MER) in DBS surgery.

The present review provides an overview on deep brain stimulation and (MER) of the STN in patients with Parkinson’s disease. Detailed description is given concerning the multichannel MER systems nowadays available for DBS of the basal ganglia, especially of the STN, as a useful tool for target refinement. Furthermore, an overview is given of the historical aspects, spatial mapping of the STN by MER, and its impact for accuracy and precision in current functional stereotactic neurosurgery.

The pros concerning target refinement by MER means on the one hand, and cons including increased bleeding risk, increased operation time, local or general anesthesia, and single versus multichannel microelectrode recording are discussed in detail. Finally, the authors favor the use of MER with intraoperative testing combined with imaging to achieve a more precise electrode placement, aiming to ameliorate clinical outcome in therapy-resistant movement disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing [see comments]. Trends Neurosci 13:266–271

    Article  PubMed  CAS  Google Scholar 

  2. Alterman RL, Reiter GT, Shils J, Skolnick B, Arle JE, Lesutis M et al (1999) Targeting for thalamic deep brain stimulator implantation without computer guidance: assessment of targeting accuracy. Stereotact Funct Neurosurg 72:150–153

    Article  PubMed  CAS  Google Scholar 

  3. Amirnovin R, Williams ZM, Cosgrove GR, Eskandar EN (2006) Experience with microelectrode guided subthalamic nucleus deep brain stimulation. Neurosurgery 58:ONS96–ONS102

    Article  PubMed  Google Scholar 

  4. Amtage F, Henschel K, Schelter B, Vesper J, Timmer J, Lucking CH et al (2008) Tremor-correlated neuronal activity in the subthalamic nucleus of Parkinsonian patients. Neurosci Lett 442:195–199

    Article  PubMed  CAS  Google Scholar 

  5. Andy OJ, Jurko MF (1965) Alteration in Parkinson tremor during electrode insertion. Confin Neurol 26:378–381

    PubMed  CAS  Google Scholar 

  6. Benabid AL, Benazzouz A, Hoffmann D, Limousin P, Krack P, Pollak P (1998) Long-term electrical inhibition of deep brain targets in movement disorders. Mov Disord 13(Suppl 3):119–125

    PubMed  Google Scholar 

  7. Benabid AL, Koudsie A, Benazzouz A, Vercueil L, Fraix V, Chabardes S et al (2001) Deep brain stimulation of the corpus luysi (subthalamic nucleus) and other targets in Parkinson’s disease. Extension to new indications such as dystonia and epilepsy. J Neurol 248:III37–III47

    Article  PubMed  Google Scholar 

  8. Benabid AL, Wallace B, Mitrofanis J, Xia R, Piallat B, Chabardes S et al (2005) A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta Neurol Belg 105:149–157

    PubMed  Google Scholar 

  9. Ben Haim S, Asaad WF, Gale JT, Eskandar EN (2009) Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design. Neurosurgery 64:754–762

    Article  PubMed  Google Scholar 

  10. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438

    Article  PubMed  CAS  Google Scholar 

  11. Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520

    PubMed  CAS  Google Scholar 

  12. Binder DK, Rau GM, Starr PA (2005) Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery 56:722–732

    Article  PubMed  Google Scholar 

  13. Burchiel KJ, Anderson VC, Favre J, Hammerstad JP (1999) Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: results of a randomized, blinded pilot study. Neurosurgery 45:1375–1382

    Article  PubMed  CAS  Google Scholar 

  14. Carpenter MB, Carpenter CS (1951) Analysis of somatotropic relations of the corpus luysi in man and monkey; relation between the site of dyskinesia and distribution of lesions within the subthalamic nucleus. J Comp Neurol 95:349–370

    Article  PubMed  CAS  Google Scholar 

  15. Coenen VA, Gielen FL, Castro-Prado F, Abdel RA, Honey CR (2008) Noradrenergic modulation of subthalamic nucleus activity in human: metoprolol reduces spiking activity in microelectrode recordings during deep brain stimulation surgery for Parkinson’s disease. Acta Neurochir (Wien) 150(8):757–762; discussion 762

    Article  CAS  Google Scholar 

  16. Counelis GJ, Simuni T, Forman MS, Jaggi JL, Trojanowski JQ, Baltuch GH (2003) Bilateral subthalamic nucleus deep brain stimulation for advanced PD: correlation of intraoperative MER and postoperative MRI with neuropathological findings. Mov Disord 18:1062–1065

    Article  PubMed  Google Scholar 

  17. DeLong MR, Georgopoulos AP, Crutcher MD, Mitchell SJ, Richardson RT, Alexander GE (1984) Functional organization of the basal ganglia: contributions of single-cell recording studies. Ciba Found Symp 107:64–82

    PubMed  CAS  Google Scholar 

  18. Duffner F, Schiffbauer H, Breit S, Friese S, Freudenstein D (2002) Relevance of image fusion for target point determination in functional neurosurgery. Acta Neurochir (Wien) 144:445–451

    Article  CAS  Google Scholar 

  19. Falkenberg JH, McNames J, Burchiel KJ (2006) Automatic microelectrode recording analysis and visualization of the globus pallidus interna and stereotactic trajectory. Stereotact Funct Neurosurg 84:28–34

    Article  PubMed  Google Scholar 

  20. Favre J, Taha JM, Baumann T, Burchiel KJ (1999) Computer analysis of the tonic, phasic, and kinesthetic activity of pallidal discharges in Parkinson patients. Surg Neurol 51:665–672

    Article  PubMed  CAS  Google Scholar 

  21. Fedele E, Stefani A, Bassi A, Pepicelli O, Altibrandi MG, Frasca S et al (2001) Clinical and electrophysiological effects of apomorphine in Parkinson’s disease patients are not paralleled by amino acid release changes: a microdialysis study. Funct Neurol 16:57–66

    PubMed  CAS  Google Scholar 

  22. Forster A, Eljamel MS, Varma TR, Tulley M, Latimer M (1999) Audit of neurophysiological recording during movement disorder surgery. Stereotact Funct Neurosurg 72:154–156

    Article  PubMed  CAS  Google Scholar 

  23. Ganes T (1975) Barbiturate spindle activity in the thalamic lateral ventro-posterior nucleus and the second somato-sensory area of the cortex. Brain Res 98:473–483

    Article  PubMed  CAS  Google Scholar 

  24. Garonzik IM, Hua SE, Ohara S, Lenz FA (2002) Intraoperative microelectrode and semi-microelectrode recording during the physiological localization of the thalamic nucleus ventral intermediate. Mov Disord 17:S135–S144

    Article  PubMed  Google Scholar 

  25. Gerschlager W, Bloem BR, Alesch F, Lang W, Deecke L, Cunnington R (2001) Bilateral subthalamic nucleus stimulation does not improve prolonged P300 latencies in Parkinson’s disease. J Neurol 248:285–289

    Article  PubMed  CAS  Google Scholar 

  26. Guridi J, Gorospe A, Ramos E, Linazasoro G, Rodriguez MC, Obeso JA (1999) Stereotactic targeting of the globus pallidus internus in Parkinson’s disease: imaging versus electrophysiological mapping [see comments]. Neurosurgery 45:278–287

    Article  PubMed  CAS  Google Scholar 

  27. Guridi J, Rodriguez-Oroz MC, Lozano AM, Moro E, Albanese A, Nuttin B et al (2000) Targeting the basal ganglia for deep brain stimulation in Parkinson’s disease. Neurology 55:S21–S28

    PubMed  CAS  Google Scholar 

  28. Gutknecht C (2001) Parkinson therapy 2001, especially apomorphine in idiopathic Parkinson syndrome. Schweiz Rundsch Med Prax 90:1024–1034

    CAS  Google Scholar 

  29. Hariz M, Blomstedt P, Limousin P (2004) The myth of microelectrode recording in ensuring a precise location of the DBS electrode within the sensorimotor part of the subthalamic nucleus. Mov Disord 19:863–864

    Article  PubMed  Google Scholar 

  30. Hariz MI (1999) Current controversies in pallidal surgery. Adv Neurol 80:593–602

    PubMed  CAS  Google Scholar 

  31. Hariz MI, Bergenheim AT (1990) A comparative study on ventriculographic and computerized tomography-guided determinations of brain targets in functional stereotaxis. J Neurosurg 73:565–571

    Article  PubMed  CAS  Google Scholar 

  32. Hariz MI, Fodstad H (1999) Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg 72:157–169

    Article  PubMed  CAS  Google Scholar 

  33. Hariz MI, Fodstad H (2002) Deep brain stimulation in Parkinson’s disease. N Engl J Med 346:452–453

    Article  PubMed  Google Scholar 

  34. Hirabayashi H, Hariz MI, Fagerlund M (1998) Comparison between stereotactic CT and MRI coordinates of pallidal and thalamic targets using the Laitinen noninvasive stereoadapter. Stereotact Funct Neurosurg 71:117–130

    Article  PubMed  CAS  Google Scholar 

  35. Kalenka A, Schwarz A (2009) Anaesthesia and Parkinson’s disease: how to manage with new therapies? Curr Opin Anaesthesiol 22:419–424

    Article  PubMed  Google Scholar 

  36. Khatib R, Ebrahim Z, Rezai A, Cata JP, Boulis NM, John DD et al (2008) Perioperative events during deep brain stimulation: the experience at Cleveland Clinic. J Neurosurg Anesthesiol 20:36–40

    Article  PubMed  Google Scholar 

  37. Kim MS, Jung YT, Sim JH, Kim SJ, Kim JW, Burchiel KJ (2006) Microelectrode recording: lead point in STN-DBS surgery. Acta Neurochir Suppl 99:37–42

    Article  PubMed  CAS  Google Scholar 

  38. Kirschman DL, Milligan B, Wilkinson S, Overman J, Wetzel L, Batnitzky S et al (2000) Pallidotomy microelectrode targeting: neurophysiology-based target refinement. Neurosurgery 46:613–622

    Article  PubMed  CAS  Google Scholar 

  39. Klostermann F, Funk T, Vesper J, Siedenberg R, Curio G (2000) Propofol narcosis dissociates human intrathalamic and cortical high-frequency (> 400 hz) SEP components. Neuroreport 11:2607–2610

    Article  PubMed  CAS  Google Scholar 

  40. Klostermann F, Vesper J, Curio G (2003) Identification of target areas for deep brain stimulation in human basal ganglia substructures based on median nerve sensory evoked potential criteria. J Neurol Neurosurg Psychiatry 74:1031–1035

    Article  PubMed  CAS  Google Scholar 

  41. Lanotte MM, Rizzone M, Bergamasco B, Faccani G, Melcarne A, Lopiano L (2002) Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiological, and outcome correlations with the effects of stimulation. J Neurol Neurosurg Psychiatry 72:53–58

    Article  PubMed  CAS  Google Scholar 

  42. Lefaucheur JP, Gurruchaga JM, Pollin B, von Raison F, Mohsen N, Shin M et al (2008) Outcome of bilateral subthalamic nucleus stimulation in the treatment of Parkinson’s disease: correlation with intra-operative multi-unit recordings but not with the type of anaesthesia. Eur Neurol 60:186–199

    Article  PubMed  Google Scholar 

  43. Lenz FA, Jaeger CJ, Seike MS, Lin YC, Reich SG, DeLong MR et al (1999) Thalamic single neuron activity in patients with ­dystonia: dystonia-related activity and somatic sensory reorganization. J Neurophysiol 82:2372–2392

    PubMed  CAS  Google Scholar 

  44. Lozano AM, Hutchison WD, Tasker RR, Lang AE, Junn F, Dostrovsky JO (1998) Microelectrode recordings define the ventral posteromedial pallidotomy target. Stereotact Funct Neurosurg 71:153–163

    Article  PubMed  CAS  Google Scholar 

  45. Lozano AM, Kumar R, Gross RE, Giladi N, Hutchison WD, Dostrovsky JO et al (1997) Globus pallidus internus pallidotomy for generalized dystonia. Mov Disord 12:865–870

    Article  PubMed  CAS  Google Scholar 

  46. Lozano AM, Lang AE, Levy R, Hutchison W, Dostrovsky J (2000) Neuronal recordings in Parkinson’s disease patients with dyskinesias induced by apomorphine. Ann Neurol 47:S141–S146

    Article  PubMed  CAS  Google Scholar 

  47. Marsden CD, Obeso JA (1994) The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease [see comments]. Brain 117:877–897

    Article  PubMed  Google Scholar 

  48. Morishita T, Foote KD, Wu SS, Jacobson CE, Rodriguez RL, Haq IU et al (2010) Brain penetration effects of microelectrodes and deep brain stimulation leads in ventral intermediate nucleus stimulation for essential tremor. J Neurosurg 112:491–496

    Article  PubMed  Google Scholar 

  49. Nandi D, Chir M, Liu X, Bain P, Parkin S, Joint C et al (2002) Electrophysiological confirmation of the zona incerta as a target for surgical treatment of disabling involuntary arm movements in multiple sclerosis: use of local field potentials. J Clin Neurosci 9:64–68

    Article  PubMed  CAS  Google Scholar 

  50. Oh MY, Hodaie M, Kim SH, Alkhani A, Lang AE, Lozano AM (2001) Deep brain stimulator electrodes used for lesioning: proof of principle. Neurosurgery 49:363–367

    PubMed  CAS  Google Scholar 

  51. Ondo W, Dat VK, Almaguer M, Jankovic J, Simpson RK (2001) Thalamic deep brain stimulation: effects on the nontarget limbs. Mov Disord 16:1137–1142

    Article  PubMed  CAS  Google Scholar 

  52. Pierantozzi M, Mazzone P, Bassi A, Rossini PM, Peppe A, Altibrandi MG et al (1999) The effect of deep brain stimulation on the frontal N30 component of somatosensory evoked potentials in advanced Parkinson’s disease patients [see comments]. Clin Neurophysiol 110:1700–1707

    Article  PubMed  CAS  Google Scholar 

  53. Pierantozzi M, Palmieri MG, Mazzone P, Marciani MG, Rossini PM, Stefani A et al (2002) Deep brain stimulation of both subthalamic nucleus and internal globus pallidus restores intracortical inhibition in Parkinson’s disease paralleling apomorphine effects: a paired magnetic stimulation study. Clin Neurophysiol 113:108–113

    Article  PubMed  CAS  Google Scholar 

  54. Pinter MM, Alesch F, Murg M, Helscher RJ, Binder H (1999) Apomorphine test: a predictor for motor responsiveness to deep brain stimulation of the subthalamic nucleus. J Neurol 246:907–913

    Article  PubMed  CAS  Google Scholar 

  55. Pinter MM, Murg M, Alesch F, Freundl B, Helscher RJ, Binder H (1999) Does deep brain stimulation of the nucleus ventralis intermedius affect postural control and locomotion in Parkinson’s disease? Mov Disord 14:958–963

    Article  PubMed  CAS  Google Scholar 

  56. Pinsker MO, Volkmann J, Falk D, Herzog J, Steigerwald F, Deuschl G et al (2009) Deep brain stimulation of the internal globus pallidus in dystonia: target localisation under general anaesthesia. Acta Neurochir (Wien) 151:751–758

    Article  CAS  Google Scholar 

  57. Pollak P, Benabid AL, Limousin P, Benazzouz A (1997) Chronic intracerebral stimulation in Parkinson’s disease. Adv Neurol 74:213–220

    PubMed  CAS  Google Scholar 

  58. Rodriguez MC, Obeso JA, Olanow CW (1998) Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann Neurol 44:S175–S188

    PubMed  CAS  Google Scholar 

  59. Sansur CA, Frysinger RC, Pouratian N, Fu KM, Bittl M, Oskouian RJ et al (2007) Incidence of symptomatic hemorrhage after stereotactic electrode placement. J Neurosurg 107:998–1003

    Article  PubMed  Google Scholar 

  60. Schuurman PR, Bosch DA, Bossuyt PM, Bonsel GJ, van Someren EJ, de Bie RM et al (2000) A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 342:461–468

    Article  PubMed  CAS  Google Scholar 

  61. Senatus PB, Teeple D, McClelland S III, Pullman SL, Yu Q, Ford B et al (2006) A technique for minimally altering anatomically based subthalamic electrode targeting by microelectrode recording. Neurosurg Focus 20:E8

    Article  PubMed  Google Scholar 

  62. Starr PA, Subramanian T, Bakay RA, Wichmann T (2000) Electrophysiological localization of the substantia nigra in the parkinsonian nonhuman primate. J Neurosurg 93:704–710

    Article  PubMed  CAS  Google Scholar 

  63. Starr PA, Turner RS, Rau G, Lindsey N, Heath S, Volz M et al (2004) Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. Neurosurg Focus 17:E4

    Article  PubMed  Google Scholar 

  64. Starr PA, Turner RS, Rau G, Lindsey N, Heath S, Volz M et al (2006) Microelectrode-guided implantation of deep brain stimulators into the globus pallidus internus for dystonia: techniques, electrode locations, and outcomes. J Neurosurg 104:488–501

    Article  PubMed  Google Scholar 

  65. Sterio D, Zonenshayn M, Mogilner AY, Rezai AR, Kiprovski K, Kelly PJ et al (2002) Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery 50:58–67

    PubMed  Google Scholar 

  66. Struppler A, Jacobi HM, Krott HM (1969) Significance of thalamic neuronal activity in stereotaxic operations. Electroencephalogr Clin Neurophysiol 26:443–444

    PubMed  CAS  Google Scholar 

  67. Vayssiere N, Hemm S, Zanca M, Picot MC, Bonafe A, Cif L et al (2000) Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children. J Neurosurg 93:784–790

    Article  PubMed  CAS  Google Scholar 

  68. Venkatraghavan L, Luciano M, Manninen P (2010) Review article: anesthetic management of patients undergoing deep brain stimulator insertion. Anesth Analg 110:1138–1145

    PubMed  Google Scholar 

  69. Vesper J, Haak S, Ostertag C, Nikkhah G (2007) Subthalamic nucleus deep brain stimulation in elderly patients – analysis of outcome and complications. BMC Neurol 7:7

    Article  PubMed  Google Scholar 

  70. Vesper J, Steinhoff B, Rona S, Wille C, Bilic S, Nikkhah G et al (2007) Chronic high-frequency deep brain stimulation of the STN/SNr for progressive myoclonic epilepsy. Epilepsia 48:1984–1989

    Article  PubMed  Google Scholar 

  71. Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530

    PubMed  CAS  Google Scholar 

  72. Wichmann T, DeLong MR, Vitek J (2000) Pathophysiological considerations in basal ganglia surgery: role of the basal ganglia in hypokinetic and hyperkinetic movement disorders. In: Lozano AM (ed) Movement disorder surgery. Karger, Basel, pp 31–57

    Chapter  Google Scholar 

  73. Zonenshayn M, Rezai AR, Mogilner AY, Beric A, Sterio D, Kelly PJ (2000) Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47:282–292

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Thomas M. Kinfe has received DBS training grant from Medtronic Inc. and training support from St. Jude Medical, Inc. Jan Vesper has been supported for travel and conference presentations from Medtronic Inc. and from St. Jude Medical, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Kinfe MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this paper

Cite this paper

Kinfe, T.M., Vesper, J. (2013). The Impact of Multichannel Microelectrode Recording (MER) in Deep Brain Stimulation of the Basal Ganglia. In: Nikkhah, G., Pinsker, M. (eds) Stereotactic and Functional Neurosurgery. Acta Neurochirurgica Supplement, vol 117. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1482-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1482-7_5

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1481-0

  • Online ISBN: 978-3-7091-1482-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics