Skip to main content

Robotic Pouring of Aggregate Structures

Responsive motion planning strategies for online robot control of granular pouring processes with synthetic macro-scale particles

  • Conference paper

Abstract

Loose, designed macro-scale granulates can be used as architectural material systems. Combined with a digitallycontrolled emitter-head the pouring process can serve as an alternative to known additive manufacturing techniques. The potential of macro-scale granulates lies in their ability to re-configure as well as in being a functionally graded material. Given that these loose granulates merely display probable rather than certain behavior, the use of responsive motion-planning becomes a critical aspect. The research presented here introduces the field of synthetically produced architectural granulates. An overview of the current state of the art of robotically poured granulates is given. Within this context, the proposed robotic pouring process for designed granulates is outlined. The established feedback loop consisting of optical sensing, parametric motion-planning, and robotic actuation is described in detail. In conclusion, an outlook for further research is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagnold RA 1954, The Physics of Blown Sand and Desert Dunes, 2nd ed. 2005, Dover Publications, Mineola.

    Google Scholar 

  2. Ball P 2004, The Self-Made Tapestry: Pattern Formation in Nature, 2nd ed., Oxford University Press, Oxford.

    Google Scholar 

  3. Bonwetsch T, Gramazio F and Kohler M 2007, “Digitally Fabricating Non-Standardised Brick Walls”, ManuBuild Conference Proceedings, Rotterdam, The Netherlands, pp. 191–196.

    Google Scholar 

  4. Borenstein G 2012, Making Things See: 3D Vision with Kinect, Processing, Arduino, and MakerBot, O’Reilly, Sebastopol.

    Google Scholar 

  5. Brell-Çokcan S and Braumann J 2011, “Parametric Robot Control”, Proceedings of the ACADIA Conference 2011, Banff/Calgary, Canada, pp. 242–25.

    Google Scholar 

  6. Cambou, B (ed.) 1998, Behaviour of Granular Materials, CISM Courses and Lectures 385, Springer-Verlag, Wien/New York.

    MATH  Google Scholar 

  7. Dierichs K 2010, Verfahren zum Herstellen eines Formkörpers, German Patent No. 102008049408, Filed September 29, 2008, Issued April 8, 2010.

    Google Scholar 

  8. Dierichs K and Menges A 2010, “Natural Aggregation Processes as Models for Architectural Material Systems”, Proceedings of the Design and Nature Conference 2010, Pisa, Italy, pp. 17–27.

    Google Scholar 

  9. Dierichs K and Menges A 2012, “Aggregate Structures: Material and Machine Computation of Designed Granular Substances”, Architectural Design, Special Issue: Material Computation — Higher Integration in Morphogenetic Design (guest-edited by A. Menges), vol. 82, issue 2, pp. 74–81.

    Google Scholar 

  10. Duran J 2000, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials, Springer-Verlag, New York/Berlin/Heidelberg.

    Google Scholar 

  11. Featherstone R 2008, Rigid Body Dynamics Algorithms, Springer Science + Business Media, New York.

    Google Scholar 

  12. Gaß S and Otto F (eds.) 1990, Experimente / Experiments, Form-Kraft-Masse 5 / Form-Force-Mass 5, Mitteilungen des Instituts für leichte Flächentragwerke (IL) Universität Stuttgart 25 / Information of the Institute for Lightweight Structures (IL) University of Stuttgart 25, Karl Krämer Verlag, Stuttgart.

    Google Scholar 

  13. Hausladen G, de Saldanha M and Liedl, P 2006, ClimaSkin: Konzepte für Gebäudehüllen, die mit weniger Energie mehr leisten, Callway, München.

    Google Scholar 

  14. Hensel M and Menges A (eds.) 2006a, “Hani Fallaha-Adaptive Pneumatic Shelters 2003–2004” [Project Description] in Hensel M and Menges A (eds.), Morpho-Ecologies, AA Publications, & London, pp. 232–241.

    Google Scholar 

  15. Hensel M and Menges A (eds.) 2006b, “Eiichi Matsuda-Aggregates 01 2003–2004” [Project Descritpion] in Hensel M and Menges A(eds.), Morpho-Ecologies, AA Publications, London, pp. 262–271.

    Google Scholar 

  16. Hensel M and Menges A (eds.) 2006c, “Anne Hawkins and Catie Newell — Aggregates 02 2004” [project description] in Hensel M and Menges A (eds.), Morpho-Ecologies, AA Publications, London, pp. 274–283.

    Google Scholar 

  17. Hensel M and Menges A (eds.) 2006d, “Gen Takahashi-Aggregates 03 2005–2006” [project description] in Hensel M and Menges A (eds.), Morpho-Ecologies, AA Publications, London, pp. 286–295.

    Google Scholar 

  18. Hensel M and Menges A 2008a, “Aggregates”, Architectural Design, Special issue: Versatility and Vicissitude, Performance in Morpho-Ecological Design (guest-edited by M. Hensel and A. Menges), vol.78, issue 2, pp. 80–87.

    Google Scholar 

  19. Hensel M and Menges A 2008b, “Materialsysteme 05: Aggregate”, Arch+, Form Follows Performance: Zur Wechselwirkung von Material, Struktur, Umwelt, no. 188, pp. 76–85.

    Google Scholar 

  20. Hensel M, Menges A and Weinstock M 2010, Emergent Technologies and Design: Towards a Biological Paradigm for Architecture, Routledge, Abingdon.

    Google Scholar 

  21. Houben H and Guillaud H 1994, Earth Construction: A Comprehensive Guide, Intermediate Technology Publications, London.

    Google Scholar 

  22. Kohler M, Gramazio F and Willmann J 2012, “Die Operationalität von Daten und Material im digitalen Zeitalter”, Positionen zur Zukunft des Bauens-Methoden, Ziele, Ausblicke, detail-Institut für internationale Architektur-Dokumentation GmbH & Co, München, pp. 6–19.

    Google Scholar 

  23. Nicot F 2004, “Constitutive Modelling of Snow as a Cohesive-granular Material”, Granular Matter, vol. 6, issue 1, pp. 47–60.

    MATH  Google Scholar 

  24. Oxman N 2010, Material-Based Design Computation, Dissertation for the degree of Doctor of Philosophy in Architecture: Design and Computation, Massachusetts Institute of Technology, Cambridge Massachusetts.

    Google Scholar 

  25. Pan, Z, Polden, J, Larkin, N, Van Duin, S, and Norrish, J 2012, “Recent Progress on Programming Methods for Industrial Robots”, Robotics and Computer-Integrated Manufacturing, 28(2), Elsevier, pp. 87–94.

    Article  Google Scholar 

  26. Pöschel T and Schwager T 2005, Computational Granular Dynamics, Models and Algorithms, Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  27. Rognon, PG, Chevoir, F and Coussot, P 2008, “Rheology of Dense Snow Flows: Inferences from Steady State Chute-flow Experiments”, Journal of Rheology, vol. 52, issue 3, pp. 729–748.

    Google Scholar 

  28. Schaaf W 2005, Automatisiertes Modellieren großflächiger Sandgußformen, Jost Jetter Verlag, Heimsheim.

    Google Scholar 

  29. Schäpfer M, Schmidt F, Pardowitz M, and Ritter H 2010, “Open Source Real-Time Control Software for the KUKA Light Weight Robot”, Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, pp. 444–449.

    Google Scholar 

  30. Soar R and Andreen D 2012, “The Role of Additive Manufacturing and Physiomimetic Computational Design for Digital Construction”, Architectural Design, Special Issue: Material Computation-Higher Integration in Morphogenetic Design (guest-edited by A. Menges), vol. 82, issue 2, pp. 126–135.

    Google Scholar 

  31. Solvang B, Sziebig G and Korondi P 2008, “Robot Programming in Machining Operations” in Ceccarelli M (ed.), Robot Manipulators, InTech, Rijeka/Shanghai, pp. 479–496.

    Google Scholar 

  32. Treib M 1996, Space Calculated in Seconds: The Philips Pavilion, Le Corbusier, Edgar Varèse, Princeton University Press, Princeton/New Jersey, Chichester/ West Sussex.

    Google Scholar 

  33. Trummer P 2008, “Engineering Ecologies”, Architectural Design, Special issue: Versatility and Vicissitude, Performance in Morpho-Ecological Design (guestedited by M. Hensel and A. Menges), vol.78, issue 2, pp. 96–101.

    Google Scholar 

  34. Tsubaki K 2011, “Tumbling Units — Tectonics of Indeterminate Extension” in Gail, P and Meredith, M (eds.), Matter: Material Processes in Architectural Production, Routledge Press, Taylor & Francis Books, London, pp. 187–203.

    Google Scholar 

  35. Xie SQ, Haemmerle E, Cheng Y and Gamage P 2008, “Vision-Guided Robot Control for 3D Object Recognition and Manipulation” in Ceccarelli, M (ed.), Robot Manipulators, InTech, Rijeka/Shanghai, pp. 521–546.

    Google Scholar 

  36. European Clearing House for Open Robotics Development, http://www.echord.info/wikis/website/home, accessed July 15, 2012.

    Google Scholar 

  37. Gramazio & Kohler, Architektur und Digitale Fabrikation, ETH Zürich 2011a, Prozedurale Landschaften 1, ETH Zürich, 2011, http://www.dfab.arch.ethz.ch/web/d/lehre/208.html, accessed April 2, 2012.

    Google Scholar 

  38. Gramazio & Kohler, Architektur und Digitale Fabrikation, ETH Zürich 2011b, Prozedurale Landschaften 2, ETH Zurich, 2011, http://www.dfab.arch.ethz.ch/web/d/lehre/211.html, accessed April 2, 2012.

    Google Scholar 

  39. IAAC, Institute for Advanced Architecture of Catalonia 2011, RS 3/DS3: Digital Tectonics, Team 1, 4 and 6, http://www.iaacblog.com/digitaltectonics/category/teams/, accessed July 8, 2012.

    Google Scholar 

  40. IAAC, Institute for Advanced Architecture of Catalonia 2012, RS 3: Digital Tectonics, Sand Bot, http://www.iaac.net/students-research/digitaltectonics-8/rs3-sand-bot-116, accessed July 8, 2012.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag/Wien

About this paper

Cite this paper

Dierichs, K., Schwinn, T., Menges, A. (2013). Robotic Pouring of Aggregate Structures. In: Brell-Çokcan, S., Braumann, J. (eds) Rob | Arch 2012. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1465-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1465-0_23

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1464-3

  • Online ISBN: 978-3-7091-1465-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics