Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 545))

Abstract

This chapter provides an overview of the present understanding of jet noise from both an experimental and analytical viewpoint. First, a general review of experimental observations is provided. Only single axisymmetric jets are considered. Then a historical review of theoretical contributions to jet noise understanding and prediction is provided. The emphasis is on both the assumptions and shortcomings of the approaches, in addition to their successes. The present understanding of jet noise generation mechanisms and noise predictions is then presented. It is shown that there remain two competing explanations of many observed phenomena. The ability of the different approaches to predict jet noise is assessed. Both subsonic and supersonic jets are considered. Finally, recent prediction methods and experimental observations are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • A. Agarwal, P. J. Morris, and R. Mani. The calculation of sound propagation in nonuniform flows: Suppression of instability waves. AIAA Journal, 42(1):80–88, 2004.

    Article  Google Scholar 

  • K. K. Ahuja and K. W. Bushell. An experimental study of subsonic jet noise and comparison with theory. Journal of Sound and Vibration, 30 (3):317–341, 1973.

    Article  Google Scholar 

  • R. K. Amiet. Correction of open jet wind tunnel measurements for shear layer refraction. AIAA Paper 75-532, 1975.

    Google Scholar 

  • R. K. Amiet. Refraction of sound by a shear layer. Journal of Sound and Vibration, 58(4):467–482, 1978.

    Article  Google Scholar 

  • M. O. Anderson. Propagation of a spherical N wave in an absorbing medium and its diffraction for a circular aperture. ARL-TR 74-25, Applied Research Laboratories, University of Texas at Austin, Austin, TX, 1974.

    Google Scholar 

  • J. Atvars, L. K. Schubert, and H. S. Ribner. Refraction of sound from a point source placed in an air jet. Journal of the Acoustical Society of America, 37:168–170, 1965.

    Article  Google Scholar 

  • T. F. Balsa. Fluid shielding of low frequency convected sources by arbitrary jets. Journal of Fluid Mechanics, 70:17–36, 1975.

    Article  Google Scholar 

  • T. F. Balsa. The far field of high frequency convected singularities in sheared flows, with application to jet-noise prediction. Journal of Fluid Mechanics, 74:193–208, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  • T. F. Balsa and P. R. Gliebe. Aerodynamics and noise of coaxial jets. AIAA Journal, 15(11):1550–1558, 1977.

    Article  MATH  Google Scholar 

  • T. F. Balsa, P. R. Gliebe, R. A. Kantola, R. Mani, E. J. Stringas, and J. C. F. Wang. High velocity jet noise source location and reduction. Task 2 - theoretical developments and basic experiments. RD 76-79 Vol. 2, FAA, (Available from DTIC as AD A094291), 1978.

    Google Scholar 

  • T. R. S. Bhat, P. J. Morris, and R. S. Baty. A linear shock cell model of non-circular jets using conformal mapping with a pseudo-spectral hybrid scheme. AIAA Paper 90-3960, 1990.

    Google Scholar 

  • R. H. Bolt. The aircraft noise problem. Journal of the Acoustical Society of America, 25(3):363–366, 1953.

    Article  MathSciNet  Google Scholar 

  • K. S. Brentner and F. Farassat. Analytical comparison of acoustic analogy and Kirchhoff formulation for moving surfaces. AIAA Journal, 36(8): 1379–1386, 1998.

    Article  Google Scholar 

  • K. W. Bushell. Measurement and prediction of jet noise in flight. AIAA Paper 75-461, 1975.

    Google Scholar 

  • Y. Y. Chan. Spatial waves in turbulent jets. Physics of Fluids, 17(1):46–53, 1974a.

    Article  Google Scholar 

  • Y. Y. Chan. Spatial waves in turbulent jets. Part II. Physics of Fluids, 17 (9):1667–1670, 1974b.

    Article  Google Scholar 

  • Y. Y. Chan. Nonlinear spatial wave development in an axisymmetrical turbulent jet. Aeronautical report LR-585, National Research Council Canada, 1975.

    Google Scholar 

  • Y. Y. Chan and R. Westley. Directional acoustic radiation generated by spatial jet instability. C.A.S.I. Transactions, 6(1):36–41, 1973.

    Google Scholar 

  • W. T. Chu. Turbulence measurements relevant to jet noise. UTIAS Report 119, Institute for Aerospace Studies, University of Toronto, ON, Canada, 1966.

    Google Scholar 

  • B. J. Cocking and W. D. Bryce. Subsonic jet noise in flight based on some recent wind tunnel results. AIAA Paper 75-462, 1975.

    Google Scholar 

  • D. G. Crighton. Basic principles of aerodynamic noise generation. Progress in Aerospace Sciences, 16(1):31–95, 1975.

    Article  Google Scholar 

  • D. G. Crighton, J. E. Ffowcs Williams, and I. C. Cheeseman. The outlook for simulation of forward flight effects on aircraft noise. AIAA Paper 76-530, 1976.

    Google Scholar 

  • M. D. Dahl. The Aeroacoustics of Supersonic Coaxial Jets. PhD thesis, Department of Aerospace Engineering, Penn State University, 1994.

    Google Scholar 

  • M. G. Davies and D. E. S. Oldfield. Tones from a choked axisymmetric jet. II. The self-excited loop and mode of oscillation. Acustica, 12:267–277, 1962.

    Google Scholar 

  • P. O. A. L. Davies, M. J. Fisher, and M. J. Barratt. The characteristics of the turbulence in the mixing region of a round jet. Journal of Fluid Mechanics, 15:337–367, 1963.

    Article  MATH  Google Scholar 

  • A. P. Dowling, J. E. Ffowcs Williams, and M. E. Goldstein. Sound production in a moving stream. Philosophical Transactions of the Royal Society of London, A288:321–349, 1978.

    Google Scholar 

  • P. A. Durbin. High frequency green function for aerodynamic noise in moving media. part i: General theory. Part II: Noise from a spreading jet. Journal of Sound and Vibration, 91(4):519–538, 1983.

    Article  MATH  Google Scholar 

  • S. Earnshaw. On the mathematical theory of sound. Philosophical Transactions of the Royal Society of London, Series A, 50:133–148, 1860.

    Google Scholar 

  • J. E. Ffowcs Williams. The noise from turbulence convected at high-speed. Philosophical Transactions of the Royal Society of London, Series A, 255: 469–503, 1963.

    Article  Google Scholar 

  • J. E. Ffowcs Williams. Aeroacoustics. Annual Review of Fluid Mechanics, 9:447–468, 1977.

    Article  Google Scholar 

  • J. E. Ffowcs Williams and D. L. Hawkings. Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London, Series A, 264:321–342, 1969.

    Article  MATH  Google Scholar 

  • J. E. Ffowcs Williams, J. Simson, and V. J. Virchis. Crackle: an annoying component of jet noise. Journal of Fluid Mechanics, 71(2):251–271, 1975.

    Article  Google Scholar 

  • M. J. Fisher. Comment on “jet mixing noise from fine-scale turbulence”. AIAA Journal, 2(379), 38.

    Google Scholar 

  • K. L. Gee. Prediction of nonlinear jet noise propagation. PhD thesis, Graduate Program in Acoustics, Penn State University, 2005.

    Google Scholar 

  • P. R. Gliebe and T. F Balsa. Aeroacoustics of axisymmetric single- and dual-flow exhaust nozzles. Journal of Aircraft, 15(11):743–749, 1978.

    Article  Google Scholar 

  • P. R. Gliebe, J. F. Brausch, R. K. Majjigi, and R. Lee. Aeroacoustics of Flight Vehicles: Theory and Practice, Volume 2: Noise Control, chapter Jet Noise Suppression, pages 207–269. The Acoustical Society of America, Woodbury, NY, 1995.

    Google Scholar 

  • M. E. Goldstein. Aeroacoustics. McGraw-Hill, New York, NY, 1976.

    MATH  Google Scholar 

  • M. E. Goldstein. High frequency sound emission from moving point multipole sources embedded in arbitrary transversely sheared mean flows. Journal of Sound and Vibration, 80(4):499–522, 1982.

    Article  MATH  Google Scholar 

  • M. E. Goldstein. Aeroacoustics of turbulent shear flows. Annual Review of Fluid Mechanics, 16:263–285, 1984.

    Article  Google Scholar 

  • M. E. Goldstein. Aeroacoustics of Flight Vehicles: Theory and Practice, Volume 1: Noise Sources, chapter Noise From Turbulent Shear Flows, pages 291–310. The Acoustical Society of America, Woodbury, NY, 1995.

    Google Scholar 

  • M. E. Goldstein. A generalized acoustic analogy. Journal of Fluid Mechanics, 488:315–333, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  • M. E. Goldstein and S. J. Leib. The aeroacoustics of slowly diverging supersonic jets. Journal of Fluid Mechanics, 600:291–337, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  • A. G. Hammitt. The oscillation and noise of an overpressure sonic jet. Journal of Aerospace Sciences, 28:673–680, 1961.

    MATH  Google Scholar 

  • M. Harper-Bourne and M. J. Fisher. The noise from shock waves in supersonic jets. In Noise Mechanisms, AGARD-CP-131, pages 1–13, 1974.

    Google Scholar 

  • J. A. Hay and E. G. Rose. In-flight shock cell noise. Journal of Sound and Vibration, 11(4):411–420, 1970.

    Article  Google Scholar 

  • H. H. Hubbard and J. W. Lassiter. Experimental studies of jet noise. Journal of the Acoustical Society of America, 25(3):381–384, 1953.

    Article  Google Scholar 

  • S.A. Karabasov, M.Z. Afsar, A.P. Hynes, T.P. andDowling, W.A. McMullan, C.D. Pokora, G.J. Page, and McGuirk J.J. Jet noise - acoustic analogy informed by large eddy simulation. AIAA Journal, 48(7):1312–1325, 2010.

    Article  Google Scholar 

  • A. Khavaran. Role of anisotropy in turbulent mixing noise. AIAA Journal, 37(7):832–841, 1999.

    Article  Google Scholar 

  • A. Khavaran, E. A. Krejsa, and C. M. Kim. Computation of supersonic jet mixing noise for an axisymmetric convergent-divergent nozzle. Journal of Aircraft, 31(3):603–609, 1994.

    Article  Google Scholar 

  • D. R. S. Ko, T. Kubota, and L. Lees. Finite disturbance effect on the stability of a laminar incompressible wake behind a flat plate. Journal of Fluid Mechanics, 40:315–341, 1970.

    Article  MATH  Google Scholar 

  • C. Kuo, D. K. McLaughlin, and P. J. Morris. Effects of supersonic jet conditions on broadband shock-associated noise. AIAA Paper 2011-1032, 2011.

    Google Scholar 

  • S. Lee, P. J. Morris, and K. S. Brentner. Improved algorithm for nonlinear sound propagation with aircraft and helicopter noise applications. AIAA Journal, 48(11):2586–2595, 2010.

    Article  Google Scholar 

  • M. J. Lighthill. On sound generated aerodynamically: I. general theory. Proceedings of the Royal Society of London, Series A:, 211:564–581, 1952.

    Article  MathSciNet  MATH  Google Scholar 

  • M. J. Lighthill. On sound generated aerodynamically: Ii. turbulence as a source of sound. Proceedings of the Royal Society of London, Series A:, 222:1–32, 1954.

    Article  MathSciNet  MATH  Google Scholar 

  • M. J. Lighthill. Jet noise. AIAA Journal, 1(7):1507–1517, 1963.

    Article  MATH  Google Scholar 

  • G. M. Lilley. The generation and radiation of supersonic jet noise. IV. Theory of turbulence generated jet noise, noise radiation from upstream sources and combustion noise. TR-72-53, United States Air Force Aeropropulsion Laboratory, 1972.

    Google Scholar 

  • G. M. Lilley. On the noise from air jets. In Noise Mechanisms, number 131 in AGARD-CP, pages 13.1–13.12, 1973.

    Google Scholar 

  • G. M. Lilley. Aeroacoustics of Flight Vehicles: Theory and Practice, Volume 1: Noise Sources, chapter Jet Noise Classical Theory and Experiments, pages 211–289. The Acoustical Society of America, Woodbury, NY, 1995.

    Google Scholar 

  • G. M. Lilley. The radiated noise from isotropic turbulence with applications to the theory of jet noise. Journal of Sound and Vibration, 190(3):463–476, 1996.

    Article  Google Scholar 

  • J. T. C. Liu. Developing large-scale wavelike eddies and the near jet noise field. Journal of Fluid Mechanics, 62(3):437–464, 1974.

    Article  MATH  Google Scholar 

  • P. A. Lush. Measurements of subsonic jet noise and comparison with theory. Journal of Fluid Mechanics, 46(3):477–500, 1971.

    Article  Google Scholar 

  • R. Mani. The influence of jet flow on jet noise. Part 1. The noise of unheated jets. Part 2. The noise of heated jets,. Journal of Fluid Mechanics, 73 (4):753–793, 1976.

    Article  MATH  Google Scholar 

  • D. K. McLaughlin, G. L. Morrison, and T. R. Troutt. Experiments on the instability waves in a supersonic jet and their acoustic radiation. Journal of Fluid Mechanics, 69(1):73–95, 1975.

    Article  Google Scholar 

  • D. K. McLaughlin, G. L. Morrison, and T. R. Troutt. Reynolds number dependence in supersonic jet noise. AIAA Journal, 15:526–532, 1977.

    Article  Google Scholar 

  • A. Michalke and U. Michel. Prediction of jet noise in flight from static tests. Journal of Sound and Vibration, 67(3):341–367, 1979.

    Article  MATH  Google Scholar 

  • S. A. E. Miller and P. J. Morris. The prediction of broadband shockassociated noise including propagation effects. AIAA Paper 2011-2923, 2011.

    Google Scholar 

  • C. L. Morfey and G. P. Howell. Nonlinear propagation of aircraft noise in the atmosphere. AIAA Journal, 19(8):986–992, 1981.

    Article  Google Scholar 

  • C. L. Morfey and V. M. Szewczyk. Jet noise modelling by geometric acoustics. Part I: Theory and prediction outside the cone of silence. ISVR Technical Report No. 91, University of Southampton, 1977a.

    Google Scholar 

  • C. L. Morfey and V. M. Szewczyk. Jet noise modelling by geometric acoustics. Part II: Theory and prediction inside the cone of silence. ISVR Technical Report No. 91, University of Southampton, 1977b.

    Google Scholar 

  • C. L. Morfey and V. M. Szewczyk. New scaling laws for hot and cold jet mixing noise based on a geometric acoustics model. Journal of Sound and Vibration, 73:255–292, 1978.

    Article  Google Scholar 

  • P. J. Morris. A model for the structure of jet turbulence as a source of noise. AIAA Paper 1974-0001, 1974.

    Google Scholar 

  • P. J. Morris. Turbulence measurements in subsonic and supersonic jets in a parallel stream. AIAA Journal, 14(10):1468–1475, 1976.

    Article  Google Scholar 

  • P. J Morris. Flow characteristics of the large scale wave-like structure of a supersonic round jet. Journal of Sound and Vibration, 53(2):223–244, 1977.

    Article  Google Scholar 

  • P. J. Morris. A note on noise generation by large scale turbulent structures in subsonic and supersonic jets. International Journal of Aeroacoustics, 8(4):301–315, 2009.

    Article  Google Scholar 

  • P. J. Morris and S. Boluriaan. The prediction of jet noise from CFD data. AIAA Paper 2004-2977, 2004.

    Google Scholar 

  • P. J. Morris and F. Farassat. The acoustic analogy and alternative theories for jet noise prediction. AIAA Journal, 40(4):671–680, 2002.

    Article  Google Scholar 

  • P. J. Morris and S. A. E. Miller. Prediction of broadband shock-associated noise using Reynolds-averaged Navier-Stokes computational fluid dynamics. AIAA Journal, 48(12):2931–2961, 2010.

    Article  Google Scholar 

  • P. J. Morris and C. K. W. Tam. Mechanics of Sound Generation in Flows, chapter On the Radiation of Sound by the Instability Waves of a Compressible Axisymmetric Jet, pages 55–61. Springer-Verlag, New York, NY, 1979.

    Chapter  Google Scholar 

  • P. J. Morris and H. K. Tanna. The noise from normal-velocity-profile coannular jets. Journal of Sound and Vibration, 98(2):213–234, 1985.

    Article  Google Scholar 

  • P. J. Morris, T. R. S. Bhat, and G Chen. A linear shock cell model for jets of arbitrary exit geometry. Journal of Sound and Vibration, 132: 199–211, 1989.

    Article  MATH  Google Scholar 

  • P. J. Morris, M. G. Giridharan, and G. M. Lilley. On the turbulent mixing of compressible free shear layers. Proceedings of the Royal Society of London, A431:219–243, 1990.

    Google Scholar 

  • P. J. Morris, S. Boluriaan, G. M. Lilley, and L. N. Long. Two-point cross correlations of turbulence and noise predictions: Analysis and simulation. AIAA Paper 2002-0071, 2002.

    Google Scholar 

  • A. H. Nayfeh. Perturbation Methods. John Wiley & Sons, Inc., New York, NY, 1973.

    MATH  Google Scholar 

  • T. D. Norum. Screech suppression in supersonic jets. AIAA Journal, 21(2): 235–240, 1983.

    Article  Google Scholar 

  • T. D. Norum and M. C. Brown. Simulated high speed flight effects on supersonic jet noise. AIAA Paper 93-4388, 1993.

    Google Scholar 

  • T. D. Norum and J. M. Seiner. Measurements of static pressure and far field acoustics of shock-containing supersonic jets. Technical report, NASA TM 84521, 1982a.

    Google Scholar 

  • T. D. Norum and J. M. Seiner. Broadband shock noise from supersonic jets. AIAA Journal, 20:68–73, 1982b.

    Article  Google Scholar 

  • T. D. Norum and G. Shearin. Shock structure and noise of supersonic jets in simulated flight to Mach 0.4. Technical report, NASA TP 2785, 1988.

    Google Scholar 

  • D. C. Pack. A note on Prandtl’s formula for the wavelength of a supersonic gas jet. Quarterly Journal of Mechanics and Applied Mathematics, 3: 173–181, 1950.

    Article  MathSciNet  MATH  Google Scholar 

  • A. B. Packman, K. W. Ng, and R. W. Paterson. Effect of simulated forward flight on subsonic jet exhaust noise. AIAA Paper 75-869, 1975.

    Google Scholar 

  • J. Panda. Shock oscillation in underexpanded screeching jets. Journal of Fluid Mechanics, 363:173–198, 1998.

    Article  MATH  Google Scholar 

  • J. Panda. An experimental investigation of screech noise generation. Journal of Fluid Mechanics, 378:71–96, 1999.

    Article  Google Scholar 

  • N. A. Peart, M. J. T. Smith, B. Magliozzi, and H. Sternfeld. Aeroacoustics of Flight Vehicles: Theory and Practice, Volume 2: Noise Control, chapter Flyover-Noise Measurement and Prediction, pages 357–382. The Acoustical Society of America, Woodbury, NY, 1995.

    Google Scholar 

  • O. M. Phillips. On the generation of sound by supersonic turbulent shear layers. Journal of Fluid Mechanics, 9:1–28, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  • M. K. Ponton, J. C. Manning, and J. M. Seiner. Far-field acoustics of supersonic rectangular nozzles with various throat aspect ratios. Technical report, NASA TM 89002, 1986.

    Google Scholar 

  • A. Powell. The noise of choked jets. Journal of the Acoustical Society of America, 25(3):385–389, 1953a.

    Article  Google Scholar 

  • A. Powell. On the noise emanating from a two-dimensional jet above the critical pressure. Aeronautical Quarterly, IV:103–122, 1953b.

    Google Scholar 

  • A. Powell. On the mechanism of choked jet noise. Proceedings of the Physical Society of London, B66:1039–1056, 1953c.

    Google Scholar 

  • A. Powell. A survey of experiments on jet noise. Aircraft Engineering, 26 (299):2–9, 1954.

    Google Scholar 

  • L. Prandtl. Über die stationaren Wellen in einem Gasstrahl. Physikalische Zeitschrift, 5:599–601, 1904.

    MATH  Google Scholar 

  • D. C. Pridmore-Brown. Sound propagation in a fluid flowing through an attenuating duct. Journal of Fluid Mechanics, 4:393–406, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  • I. Proudman. The generation of noise by isotropic turbulence. Proceedings of the Royal Society of London, A214:119–132, 1952.

    MathSciNet  Google Scholar 

  • G. Raman. Advances in understanding supersonic jet screech: review and perspective. Progress in Aerospace Sciences, 34:45–106, 1998.

    Article  Google Scholar 

  • G. Raman. Supersonic jet screech: half-century from Powell to the present. Journal of Sound and Vibration, 225(3):543–571, 1999.

    Article  MathSciNet  Google Scholar 

  • R. Reba, S. Narayanan, and T. Colonius. Wave-packet models for largescale mixing noise. International Journal of Aeroacoustics, 9(4 & 5): 533–558, 2010.

    Article  Google Scholar 

  • H. Reichardt. Über eine neue Theorie der freien Turbulenz. Zeitschrift für angewandte Mathematik und Mechanik, 21:257–264, 1941.

    Article  Google Scholar 

  • H. S. Ribner. The generation of sound by turbulent jets. Advances in Applied Mechanics, 8:103–182, 1964.

    Article  Google Scholar 

  • H. S. Ribner. Quadrupole correlations governing the pattern of jet noise. Journal of Fluid Mechanics, 38(1):1–24, 1969.

    Article  MATH  Google Scholar 

  • H. S. Ribner. Comment on, “Jet mixing noise from fine-scale turbulence”. AIAA Journal, 38(2):377–378, 2000.

    Article  Google Scholar 

  • T. J. Rosfjord and H. L. Toms. Recent observations including temperature dependence of axisymmetric jet screech. AIAA Journal, 13:1384–1386, 1975.

    Article  Google Scholar 

  • SAE. Gas Turbine Jet Exhaust Noise Prediction, Revision D. Number ARP876. Society of Automotive Engineers, A21, Aircraft Noise Measurement Committee, 1994.

    Google Scholar 

  • S. Saxena, P. J. Morris, and K. Viswanathan. Algorithm for the nonlinear propagation of broadband jet noise. AIAA Journal, 47(1):186–194, 2009.

    Article  Google Scholar 

  • J. M. Seiner. Advances in high speed jet aeroacoustics. AIAA Paper 84-2275, 1984.

    Google Scholar 

  • J. M. Seiner and T. D. Norum. Experiments on shock associated noise of supersonic jets. AIAA Paper 79-1526, 1979.

    Google Scholar 

  • J. M. Seiner and T. D. Norum. Aerodynamic aspects of shock containing jet plumes. AIAA Paper 80-0965, 1980.

    Google Scholar 

  • J. M. Seiner and J. C. Yu. Acoustic near field and local flow properties associated with broadband shock noise. AIAA Paper 81-1975, 1981.

    Google Scholar 

  • J. M. Seiner and J. C. Yu. Acoustic near-field properties associated with broadband shock noise. AIAA Journal, 22:1207–1215, 1984.

    Article  Google Scholar 

  • J. M. Seiner, M. K. Ponton, and J. C Manning. The preferred spatial mode of instability for a Mach 2 jet. AIAA Paper 86-1942, 1986.

    Google Scholar 

  • J. M. Seiner, M. K. Ponton, and J. C. Manning. Model and full scale study of twin supersonic plume resonance. AIAA Paper 87-0244, 1987.

    Google Scholar 

  • H. Shen and C. K. W. Tam. Numerical simulation of the generation of axisymmetric mode jet screech tones. AIAA Journal, 36(10):1801–1807, 1998.

    Article  Google Scholar 

  • H. Shen and C. K. W. Tam. Effects of jet temperature and nozzle-lip thickness on screech tones. AIAA Journal, 38(5):762–767, 2000.

    Article  Google Scholar 

  • H. Shen and C. K. W. Tam. Three-dimensional numerical simulation of the jet screech phenomenon. AIAA Journal, 40(1):33–41, 2002.

    Article  Google Scholar 

  • P. M. Sherman, D. R. Glass, and K. G. Duleep. Jet flow field during screech. Applied Science Research, 32:282–303, 1976.

    Article  Google Scholar 

  • M. L. Shur, P. R. Spalart, and M. Kh. Strelets. Noise prediction for increasingly complex jets. Part I: methods and tests. Part II applications. International Journal of Aeroacoustics, 4(3& 4):213–266, 2005.

    Article  Google Scholar 

  • M. J. T. Smith. Aircraft Noise. Cambridge University Press, Cambridge, UK, 1989.

    Book  Google Scholar 

  • C. K. W. Tam. Directional acoustic radiation from a supersonic jet generated by shear layer instability. Journal of Fluid Mechanics, 46(4): 757–768, 1971.

    Article  Google Scholar 

  • C. K. W. Tam. Supersonic noise generated by large scale disturbances. Journal of Sound and Vibration, 38(1):51–79, 1975.

    Article  Google Scholar 

  • C. K. W. Tam. Stochastic model theory of broadband shock associated noise from supersonic jets. Journal of Sound and Vibration, 116:265–302, 1987.

    Article  Google Scholar 

  • C. K. W. Tam. The shock-cell structures and screech tone frequencies of rectangular and non-axisymmetric supersonic jets. Journal of Sound and Vibration, 121(1):135–147, 1988.

    Article  Google Scholar 

  • C. K. W. Tam. Broadband shock-associated noise of moderately imperfectly expanded supersonic jets. Journal of Sound and Vibration, 140(1):55–71, 1990.

    Article  Google Scholar 

  • C. K. W. Tam. Broadband shock associated noise from supersonic jets in flight. Journal of Sound and Vibration, 151:131–147, 1991.

    Article  Google Scholar 

  • C. K. W. Tam. Broadband shock associated noise from supersonic jets measured by a ground observer. AIAA Journal, 30:2395–2401, 1992.

    Article  Google Scholar 

  • C. K. W. Tam. Aeroacoustics of Flight Vehicles: Theory and Practice, Volume 1: Noise Sources, chapter Noise generated by Large-Scale Coherent Motion, pages 311–390. The Acoustical Society of America, Woodbury, NY, 1995a.

    Google Scholar 

  • C. K. W. Tam. Supersonic jet noise. Annual Review of Fluid Mechanics, 27:17–43, 1995b.

    Article  Google Scholar 

  • C. K. W. Tam. Influence of nozzle geometry on the noise of high-speed jets. AIAA Journal, 36(8):1396–1400, 1998a.

    Article  Google Scholar 

  • C. K. W. Tam. Jet noise: since 1952. Theoretical and Computational Fluid Dynamics, 10:393–405, 1998b.

    Article  Google Scholar 

  • C. K. W. Tam and L. Auriault. Mean flow refraction effects on sound radiated from localized sources in a jet. Journal of Fluid Mechanics, 370:149–174, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  • C. K. W. Tam and L. Auriault. Jet mixing noise from fine-scale turbulence. AIAA Journal, 37(2):145–153, 1999.

    Article  Google Scholar 

  • C. K. W. Tam and D. E. Burton. Sound generated by instability waves of supersonic flows. Part 1. Two-dimensional mixing layers; Part 2. Axisymmetric jets. Journal of Fluid Mechanics, 138:249–295, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  • C. K. W. Tam and K. C. Chen. A statistical model of turbulence in two-dimensional mixing layers. Journal of Fluid Mechanics, 92:303–326, 1979.

    Article  MATH  Google Scholar 

  • C. K. W. Tam and P. J. Morris. The radiation of sound by the instability waves of a compressible plane turbulent shear layer. Journal of Fluid Mechanics, 98:349–381, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  • C. K. W. Tam and P. J. Morris. Tone excited jets, Part V: a theoretical model and comparison with experiment. Journal of Sound and Vibration, 102(1):119–151, 1985.

    Article  Google Scholar 

  • C. K. W. Tam and N. N. Reddy. Prediction method for broadband shockassociated noise from supersonic rectangular jets. Journal of Aircraft, 33 (2):298–303, 1996.

    Article  Google Scholar 

  • C. K. W. Tam and H. K. Tanna. Shock associated noise of supersonic jets from convergent-divergent nozzles. Journal of Sound and Vibration, 81 (3):337–358, 1982.

    Article  MATH  Google Scholar 

  • C. K. W. Tam and K. B. M. Q. Zaman. Subsonic jet noise from nonaxisymmetric and tabbed nozzles. AIAA Journal, 38(4):592–599, 2000.

    Article  Google Scholar 

  • C. K. W. Tam, J. A. Jackson, and J. M. Seiner. A multiple-scales model of the shock-cell structure of imperfectly expanded supersonic jets. Journal of Fluid Mechanics, 153:123–149, 1985.

    Article  MATH  Google Scholar 

  • C. K. W. Tam, J. M. Seiner, and J. C. Yu. Proposed relationship between broadband shock associated noise and screech tones. Journal of Sound and Vibration, 110(2):309–321, 1986.

    Article  Google Scholar 

  • C. K. W. Tam, K. K. Ahuja, and R. R. Jones. Screech tones from free and ducted supersonic jets. AIAA Journal, 32(5):917–922, 1994.

    Article  Google Scholar 

  • C. K. W. Tam, M. Golebiowski, and J. M. Seiner. On the two components of turbulent mixing noise from supersonic jets. AIAA Paper 96-1716, 1996.

    Google Scholar 

  • C. K. W. Tam, N. Pastouchenko, and L. Auriault. Effects of forward flight on jet mixing noise from fine-scale turbulence. AIAA Journal, 39(7): 1261–1269, 2001.

    Article  Google Scholar 

  • C. K. W. Tam, K. Viswanathan, K. K. Ahuja, and J. Panda. The sources of jet noise: experimental evidence. Journal of Fluid Mechanics, 615: 253–292, 2008.

    Article  MATH  Google Scholar 

  • C. K. W. Tam, N. N. Pastouchenko, and K. Viswanathan. Broadband shock-cell noise from dual stream jets. Journal of Sound and Vibration, 324:861–891, 2009.

    Article  Google Scholar 

  • H. K. Tanna. An experimental study of jet noise. Part I. Turbulent mixing noise; Part II. Shock associated noise. Journal of Sound and Vibration, 50(3):405–444, 1977.

    Article  Google Scholar 

  • H. K. Tanna and P. J. Morris. In-flight simulation experiments on turbulent jet mixing noise. Journal of Sound and Vibration, 53(3):389–405, 1977.

    Article  Google Scholar 

  • B. J. Tester and C. L. Morfey. Developments in jet noise modelling - Theoretical predicitons and comparisons with measured data. Journal of Sound and Vibration, 46(1):79–103, 1976.

    Article  Google Scholar 

  • A. T. Thies and C. K. W. Tam. Computation of turbulent axisymmetric and non-axisymmetric jet flows using the k − ε model. AIAA Journal, 34(2):309–316, 1996.

    Article  MATH  Google Scholar 

  • K. Viswanathan. Assessment of jet noise theory/prediction methods. In Proceedings of the Jet Noise Workshop, NASA-CP 2001-211152, pages 979–1010, 2001.

    Google Scholar 

  • K. Viswanathan. Aeroacoustics of hot jets. Journal of Fluid Mechanics, 516:39–82, 2004.

    Article  Google Scholar 

  • K. Viswanathan. Scaling laws and a method for identifying components of jet noise. AIAA Journal, 44(10):2274–2285, 2006.

    Article  Google Scholar 

  • K. Viswanathan. Improved method for the prediction of noise from single jets. AIAA Journal, 45(1):151–161, 2007.

    Article  MathSciNet  Google Scholar 

  • K. Viswanathan. Mechanisms of jet noise generation: classical theories and recent developments. International Journal of Aeroacoustics, 8(4): 355–408, 2009.

    Article  Google Scholar 

  • K. Viswanathan and M. J. Czech. Measurement and modeling of effect of forward flight on jet noise. AIAA Journal, 49(1):216–234, 2011.

    Article  Google Scholar 

  • K. Viswanathan and P. J. Morris. Predictions of turbulent mixing in axisymmetric compressible shear layers. AIAA Journal, 30(6):1529–1536, 1992.

    Article  MATH  Google Scholar 

  • K. Viswanathan, M. B. Alkislar, and M. J. Czech. Characteristics of the shock noise component of jet noise. AIAA Journal, 48(1):25–46, 2009.

    Article  Google Scholar 

  • H. E. von Gierke. Physical characteristics of aircraft noise sources. Journal of the Acoustical Society of America, 25(3):367–378, 1953.

    Article  Google Scholar 

  • U. Von Glahn, D. Groesbeck, and J. Goodykoontz. Velocity decay and acoustic characteristics of various nozzle geometries in forward flight. AIAA Paper 73-629, 1973.

    Google Scholar 

  • R. Westley and G. M. Lilley. An investigation of the noise from a small jet and methods for its reduction. Report 53, College of Aeronautics, Cranfield, 1952.

    Google Scholar 

  • R. Westley and J. H. Woolley. The nearfield sound pressures of a choked jet during a screech cycle. In Aircraft Engine Noise and Sonic Boom, number 42 in AGARD-CP, pages 23.1–23.13, 1969.

    Google Scholar 

  • R. Westley and J. H. Woolley. The near field sound pressures of a choked jet when oscillating in the spinning mode. AIAA Paper 75-479, 1975.

    Google Scholar 

  • M. S. Wochner, A. A. Atchley, and V. W. Sparrow. Numerical simulation of finite amplitude wave propagation in air using a realistic atmospheric absorption model. Journal of the Acoustical Society of America, 118(5): 2891–2898, 2005.

    Article  Google Scholar 

  • K. Yamamoto, J. F. Brausch, B. A. Janardan, D. J. Hoerst, A. O. Price, and P. R. Knott. Experimental investigation of shock-cell noise reduction for single-stream nozzles in simulated flight. Test nozzles and acoustic data, comprehensive data report, Vol. 1, NACA CR-168234, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 CISM, Udine

About this chapter

Cite this chapter

Morris, P.J., Viswanathan, K. (2013). Jet Noise. In: Camussi, R. (eds) Noise Sources in Turbulent Shear Flows: Fundamentals and Applications. CISM International Centre for Mechanical Sciences, vol 545. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1458-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1458-2_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1457-5

  • Online ISBN: 978-3-7091-1458-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics