Skip to main content

Cortical Neuron Loss in Post-Traumatic Higher Brain Dysfunction Using 123I-Iomazenil SPECT

  • Conference paper
  • First Online:
Brain Edema XV

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 118))

Abstract

In patients with higher brain dysfunction (HBD) after mild traumatic brain injury (MTBI), diagnostic imaging of cortical neuron loss in the frontal lobes was studied using SPECT with 123I-iomazenil (IMZ), as a radioligand for central benzodiazepine receptor (BZR). Statistical imaging analysis using three-dimensional stereotactic surface projections (3D-SSP) for 123I-IMZ SPECT was performed in 17 patients. In all patients with HBD defined by neuropsychological tests, cortical neuron loss was indicated in the bilateral medial frontal lobes in 14 patients (83 %). A comparison between the group of 17 patients and the normal database demonstrated common areas of cortical neuron loss in the bilateral medial frontal lobes involving the medial frontal gyrus (MFG) and the anterior cingulate gyrus (ACG). In an assessment of cortical neuron loss in the frontal medial cortex using the stereotactic extraction estimation (SEE) method (level 3), significant cortical neuron loss was observed within bilateral MFG in 9 patients and unilateral MFG in 4, and bilateral ACG in 12 and unilateral ACG in 3. Fourteen patients showed significant cortical neuron loss in bilateral MFG or ACG. In patients with MTBI, HBD seemed to correlate with selective cortical neuron loss within the bilateral MFG or ACG where the responsible lesion could be. 3D-SSP and SEE level 3 analysis for 123I-IMZ SPECT could be valuable for diagnostic imaging of HBD after MTBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masuzawa H, Hirakawa K, Tomita H et al (2004) Higher brain dysfunction due to traumatic brain injury through traffic accident. Jpn J Neurosurg (Tokyo) 13:104–110

    Google Scholar 

  2. Holm L, Cassidy JD, Carroll LJ et al (2005) Summary of the WHO collaborating centre for neurotrauma task force on mild traumatic brain injury. J Rehabil Med 37:137–141

    Article  PubMed  Google Scholar 

  3. Inglese M, Makani S, Johnson G et al (2005) Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg 103:298–303

    Article  PubMed  Google Scholar 

  4. Esselman PC, Uomoto JM (1995) Classification of the spectrum of mild traumatic brain injury. Brain Inj 9:417–424

    Article  PubMed  CAS  Google Scholar 

  5. Nakjima Y, Terashima A (eds) (2006) Hand book of higher brain dysfunction. Igaku-shoin, Tokyo

    Google Scholar 

  6. Minoshima S, Frey KA, Koeppe RA et al (1995) A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36:1238–1248

    PubMed  CAS  Google Scholar 

  7. Mizumura S, Kumita S, Cho K et al (2003) Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation. Ann Nucl Med 17:289–295

    Article  PubMed  Google Scholar 

  8. Mizumura S, Nakagawara J, Takahashi M et al (2004) Three-dimensional display in staging hemodynamic brain ischemia for JET study: objective evaluation using SEE analysis and 3D-SSP display. Ann Nucl Med 18:13–21

    Article  PubMed  Google Scholar 

  9. Hatazawa J, Satoh T, Shimosegawa E et al (1995) Evaluation of cerebral infarction with iodine-123-iomazenil SPECT. J Nucl Med 36:2154–2161

    PubMed  CAS  Google Scholar 

  10. Garcia JH, Lassen NA, Weiller C et al (1996) Ischemic stroke and incomplete infarction. Stroke 27:761–765

    Article  PubMed  CAS  Google Scholar 

  11. Nakagawara J, Sperling B, Lassen NA (1997) Incomplete brain infarction may be quantitated with iomazenil. Stroke 28:124–132

    Article  PubMed  CAS  Google Scholar 

  12. Sette G, Baron JC, Young AR et al (1993) In vivo mapping of brain benzodiazepine receptor changes by positron emission tomography after focal ischemia in the anesthetized baboon. Stroke 24:2046–2058

    Article  PubMed  CAS  Google Scholar 

  13. Nakagawara J (2010) Iomazenil SPECT (BZR-receptor). In: Cho B-K, Tominaga T (eds) Moyamoya disease update. Springer, Tokyo, pp 189–196

    Chapter  Google Scholar 

  14. Nakagawara J, Kamiyama K, Takahashi M et al (2010) Neuroimaging of post-traumatic higher brain dysfunction using 123I-iomazenil (IMZ) SPECT. Neurotraumatology 33:165–172

    Google Scholar 

  15. Kawai N, Okauchi M, Kawakita K et al (2010) Focal neuronal los in patients with neuropsychological impairment following traumatic brain injury: evaluation of central benzodiazepine receptor using 11C-flumazenil positron emission tomography. Neurotraumatology 33:173–179

    Google Scholar 

  16. Kato T, Nakayama N, Yasokawa Y et al (2007) Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. J Neurotrauma 24:919–926

    Article  PubMed  Google Scholar 

  17. Gennarelli TA, Thibault LE, Adams JH et al (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12:564–574

    Article  PubMed  CAS  Google Scholar 

  18. Niogi SN, Mukherjee P, Ghajar J et al (2008) Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor ­imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol 29:967–973

    Article  PubMed  CAS  Google Scholar 

  19. Fork M, Bartels C, Ebert AD et al (2005) Neuropsychological sequelae of diffuse traumatic brain injury. Brain Inj 19:101–108

    Article  PubMed  Google Scholar 

  20. Scheid R, Walther K, Guthke T et al (2006) Cognitive sequelae of diffuse axonal injury. Arch Neurol 63:418–424

    Article  PubMed  Google Scholar 

  21. Kawamata T, Katayama Y (2008) Diffuse axonal injury. In: Oota T, Matsutani M (eds) Neurosurgery. Kinpodo, Kyoto, pp 1272–1278

    Google Scholar 

  22. Watanabe D, Yuge K, Nishimoto T et al (2008) Head impact analysis related to the mechanism of diffuse axonal injury. Student papers from FISITA 2008. International Federation of Automotive Engineering Societies, 2008. Available from online. http://www.fisita.com/education/congress/sc08papers/f2008sc044.pdf. Accessed 27 Oct 2011

  23. Kleiven S (2006) Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int J Crashworthiness 11(1):65–79

    Article  Google Scholar 

  24. Kelley BJ, Farkas O, Lifshitz J et al (2006) Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and Wallerian degeneration. Exp Neurol 198:350–360

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

This study was supported by research funds from the general insurance association of Japan.

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoji Nakagawara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this paper

Cite this paper

Nakagawara, J., Kamiyama, K., Takahashi, M., Nakamura, H. (2013). Cortical Neuron Loss in Post-Traumatic Higher Brain Dysfunction Using 123I-Iomazenil SPECT. In: Katayama, Y., Maeda, T., Kuroiwa, T. (eds) Brain Edema XV. Acta Neurochirurgica Supplement, vol 118. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1434-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1434-6_46

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1433-9

  • Online ISBN: 978-3-7091-1434-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics