Skip to main content

Models to Study Glioma Cell Invasion

  • Chapter
  • First Online:
Glioma Cell Biology

Abstract

Gliomas represent the most common primary intracranial tumors. The aggressive clinical behavior of these tumors stems from the highly invasive properties of neoplastic glial cells. Fundamental to the development of an effective clinical treatment is the need to therapeutically target this invasive potential. Research into the mechanisms of invasion is imperative to better understand the various biological processes that could be targeted to treat the invading glioma cells. Such research is ideally conducted with reliable and relevant models. We describe some of the most commonly used models in glioma invasion research. Each model has its benefits and drawbacks and the nature of the experiments being conducted will help choose the type of model most suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

A disintegrin and metalloproteinase

ECM:

Extracellular matrix

EGFP:

Enhanced green fluorescent protein

EGFR:

Epidermal growth factor receptor

ENU:

N-Ethyl-N nitrosourea

GBM:

Glioblastoma multiforme

GFAP:

Glial fibrillary acidic protein

MCS:

Multicellular spheroid

MMP:

Matrix metalloproteinase

MNU:

Methynitrosourea

MRI:

Magnetic resonance imaging

PDGF:

Platelet-derived growth factor

PTEN:

Phosphatase and tensin homolog deleted from chromosome 10

Rb:

Retinoblastoma protein

RFP:

Red fluorescent protein

VEGF:

Vascular endothelial cell growth factor

References

  • Abbott A (2003) Cell culture: biology’s new dimension. Nature 424(6951):870–872

    CAS  PubMed  Google Scholar 

  • Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, Kozlowski JM et al (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47(12):3239–3245

    CAS  PubMed  Google Scholar 

  • Alvord EC Jr, Shaw CM (1991) Neoplasms affecting the nervous system in the elderly. In: Duckett S (ed) The pathology of the aging human nervous system. Lea and Febiger, Philadelphia, PA

    Google Scholar 

  • Amar AP, DeArmond SJ, Spencer DR, Coopersmith PF, Ramos DM, Rosenblum ML (1994) Development of an in vitro extracellular matrix assay for studies of brain tumor cell invasion. J Neurooncol 20(1):1–15

    CAS  PubMed  Google Scholar 

  • Asai A, Miyagi Y, Sugiyama A, Gamanuma M, Hong SH, Takamoto S et al (1994) Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells. Implication of the tumor suppressor genes for gene therapy. J Neurooncol 19(3):259–268

    CAS  PubMed  Google Scholar 

  • Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ et al (2002) Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1(3):269–277

    CAS  PubMed  Google Scholar 

  • Baker AH, George SJ, Zaltsman AB, Murphy G, Newby AC (1999) Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer 79(9–10):1347–1355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barker M, Hoshino T, Gurcay O, Wilson CB, Nielsen SL, Downie R et al (1973) Development of an animal brain tumor model and its response to therapy with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Res 33(5):976–986

    CAS  PubMed  Google Scholar 

  • Barth RF, Kaur B (2009) Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 94(3):299–312

    PubMed Central  PubMed  Google Scholar 

  • Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS, Canoll P (2008) The role of myosin II in glioma invasion of the brain. Mol Biol Cell 19(8):3357–3368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bell E Jr, Karnosh LJ (1949) Cerebral hemispherectomy; report of a case 10 years after operation. J Neurosurg 6(4):285–293

    PubMed  Google Scholar 

  • Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161(3839):370–371

    CAS  PubMed  Google Scholar 

  • Benda P, Someda K, Messer J, Sweet WH (1971) Morphological and immunochemical studies of rat glial tumors and clonal strains propagated in culture. J Neurosurg 34(3):310–323

    CAS  PubMed  Google Scholar 

  • Bernstein JJ, Goldberg WJ, Laws ER Jr, Conger D, Morreale V, Wood LR (1990) C6 glioma cell invasion and migration of rat brain after neural homografting: ultrastructure. Neurosurgery 26(4):622–628

    CAS  PubMed  Google Scholar 

  • Bjerkvig R, Laerum OD, Mella O (1986) Glioma cell interactions with fetal rat brain aggregates in vitro and with brain tissue in vivo. Cancer Res 46(8):4071–4079

    CAS  PubMed  Google Scholar 

  • Bjerkvig R, Tønnesen A, Laerum OD, Backlund EO (1990) Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg 72(3):463–475

    CAS  PubMed  Google Scholar 

  • Bryant MJ, Chuah TL, Luff J, Lavin MF, Walker DG (2008) A novel rat model for glioblastoma multiforme using a bioluminescent F98 cell line. J Clin Neurosci 15(5):545–551

    CAS  PubMed  Google Scholar 

  • Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE et al (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 85(2):133–148

    PubMed Central  PubMed  Google Scholar 

  • Chambers AF, Wilson SM, Tuck AB, Denhardt GH, Cairncross JG (1990) Comparison of metastatic properties of a variety of mouse, rat, and human cells in assays in nude mice and chick embryos. In Vivo 4(4):215–219

    CAS  PubMed  Google Scholar 

  • Chambers AF, Denhardt GH, Wilson SM, Cairncross JG (1991) Malignant properties of P635 glioma are independent of glial fibrillary acidic protein expression. J Neurooncol 11(1):43–48

    CAS  PubMed  Google Scholar 

  • Chicoine MR, Silbergeld DL (1995) Invading C6 glioma cells maintaining tumorigenicity. J Neurosurg 83(4):665–671

    CAS  PubMed  Google Scholar 

  • Chow LML, Endersby R, Zhu X, Rankin S, Qu C, Zhang J et al (2011) Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell 19(3):305–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cretu A, Fotos JS, Little BW, Galileo DS (2005) Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model. Clin Exp Metastasis 22(3):225–236

    PubMed  Google Scholar 

  • Curtin JF, Candolfi M, Xiong W, Lowenstein PR, Castro MG (2008) Turning the gene tap off; implications of regulating gene expression for cancer therapeutics. Mol Cancer Ther 7(3):439–448

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Ridder L, Cornelissen M, de Ridder D (2000) Autologous spheroid culture: a screening tool for human brain tumour invasion. Crit Rev Oncol Hematol 36(2–3):107–122

    PubMed  Google Scholar 

  • Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neurooncol 70(2):217–228

    PubMed  Google Scholar 

  • Ding H, Shannon P, Lau N, Wu X, Roncari L, Baldwin RL et al (2003) Oligodendrogliomas result from the expression of an activated mutant epidermal growth factor receptor in a RAS transgenic mouse astrocytoma model. Cancer Res 63(5):1106–1113

    CAS  PubMed  Google Scholar 

  • Djordjevic B, Lange CS (2004) Hybrid spheroids as a tool for prediction of radiosensitivity in tumor therapy. Indian J Exp Biol 42(5):443–447

    PubMed  Google Scholar 

  • Endersby R, Zhu X, Hay N, Ellison DW, Baker SJ (2011) Nonredundant functions for Akt isoforms in astrocyte growth and gliomagenesis in an orthotopic transplantation model. Cancer Res 71(12):4106–4116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engebraaten O, Bjerkvig R, Lund-Johansen M, Wester K, Pedersen PH, Mørk S et al (1990) Interaction between human brain tumour biopsies and fetal rat brain tissue in vitro. Acta Neuropathol (Berl) 81(2):130–140

    CAS  Google Scholar 

  • Erkell LJ, Schirrmacher V (1988) Quantitative in vitro assay for tumor cell invasion through extracellular matrix or into protein gels. Cancer Res 48(23):6933–6937

    CAS  PubMed  Google Scholar 

  • Ernestus RI, Wilmes LJ, Hoehn-Berlage M (1992) Identification of intracranial liqor metastases of experimental stereotactically implanted brain tumors by the tumor-selective MRI contrast agent MnTPPS. Clin Exp Metastasis 10(5):345–350

    CAS  PubMed  Google Scholar 

  • Fishman MC (2001) Genomics. Zebrafish–the canonical vertebrate. Science 294(5545):1290–1291

    CAS  PubMed  Google Scholar 

  • Fukai J, Nohgawa M, Uematsu Y, Itakura T, Kamei I (2010) Immunoglobulin D multiple myeloma involving the sella manifesting as oculomotor palsy: case report. Neurosurgery 67(2):E505–E506

    PubMed  Google Scholar 

  • Geiger GA, Fu W, Kao GD (2008) Temozolomide-mediated radiosensitization of human glioma cells in a zebrafish embryonic system. Cancer Res 68(9):3396–3404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghods AJ, Irvin D, Liu G, Yuan X, Abdulkadir IR, Tunici P et al (2007) Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells 25(7):1645–1653

    CAS  PubMed  Google Scholar 

  • Golembieski WA, Ge S, Nelson K, Mikkelsen T, Rempel SA (1999) Increased SPARC expression promotes U87 glioblastoma invasion in vitro. Int J Dev Neurosci 17(5–6):463–472

    CAS  PubMed  Google Scholar 

  • Goodenough DA, Goliger JA, Paul DL (1996) Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475–502

    CAS  PubMed  Google Scholar 

  • Graham CH, Connelly I, MacDougall JR, Kerbel RS, Stetler-Stevenson WG, Lala PK (1994) Resistance of malignant trophoblast cells to both the anti-proliferative and anti-invasive effects of transforming growth factor-beta. Exp Cell Res 214(1):93–99

    CAS  PubMed  Google Scholar 

  • Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7(3):211–224

    CAS  PubMed  Google Scholar 

  • Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML (1997) Construction of adenovirus vectors through Cre-lox recombination. J Virol 71(3):1842–1849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harpold HLP, Alvord EC Jr, Swanson KR (2007) The evolution of mathematical modeling of glioma proliferation and invasion. J Neuropathol Exp Neurol 66(1):1–9

    PubMed  Google Scholar 

  • Hattermann K, Held-Feindt J, Mentlein R (2011) Spheroid confrontation assay: a simple method to monitor the three-dimensional migration of different cell types in vitro. Ann Anat 193(3):181–184

    PubMed  Google Scholar 

  • Heidner GL, Kornegay JN, Page RL, Dodge RK, Thrall DE (1991) Analysis of survival in a retrospective study of 86 dogs with brain tumors. J Vet Intern Med 5(4):219–226

    CAS  PubMed  Google Scholar 

  • Held-Feindt J, Hattermann K, Müerköster SS, Wedderkopp H, Knerlich-Lukoschus F, Ungefroren H et al (2010) CX3CR1 promotes recruitment of human glioma-infiltrating microglia/macrophages (GIMs). Exp Cell Res 316(9):1553–1566

    CAS  PubMed  Google Scholar 

  • Holtfreter J (1944) A study of the mechanics of gastrulation. J Exp Zool 95(2):171–212

    Google Scholar 

  • Ivkovic S, Beadle C, Noticewala S, Massey SC, Swanson KR, Toro LN et al (2012) Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Mol Biol Cell 23(4):533–542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacques TS, Swales A, Brzozowski MJ, Henriquez NV, Linehan JM, Mirzadeh Z et al (2010) Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J 29(1):222–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jesuthasan S (2002) Genetics and development. Zebrafish in the spotlight. Science 297(5586):1484–1485

    CAS  PubMed  Google Scholar 

  • Jung S, Kim H-W, Lee J-H, Kang S-S, Rhu H-H, Jeong Y-I et al (2002) Brain tumor invasion model system using organotypic brain-slice culture as an alternative to in vivo model. J Cancer Res Clin Oncol 128(9):469–476

    PubMed  Google Scholar 

  • Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 15(5):365–377

    PubMed  Google Scholar 

  • Kleinman HK, Jacob K (2001) Invasion assays. Curr Protoc Cell Biol. Editorial Board Juan S Bonifacino et al. Chapter 12:Unit 12.2

    Google Scholar 

  • Ko L, Koestner A, Wechsler W (1980) Morphological characterization of nitrosourea-induced glioma cell lines and clones. Acta Neuropathol (Berl) 51(1):23–31

    CAS  Google Scholar 

  • Kobayashi N, Allen N, Clendenon NR, Ko LW (1980) An improved rat brain-tumor model. J Neurosurg 53(6):808–815

    CAS  PubMed  Google Scholar 

  • Krajewski S, Kiwit JC, Wechsler W (1986) RG2 glioma growth in rat cerebellum after subdural implantation. J Neurosurg 65(2):222–229

    CAS  PubMed  Google Scholar 

  • Kramer RH, Bensch KG, Wong J (1986) Invasion of reconstituted basement membrane matrix by metastatic human tumor cells. Cancer Res 46(4 Pt 2):1980–1989

    CAS  PubMed  Google Scholar 

  • Kruse CA, Molleston MC, Parks EP, Schiltz PM, Kleinschmidt-DeMasters BK, Hickey WF (1994) A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J Neurooncol 22(3):191–200

    CAS  PubMed  Google Scholar 

  • Lal S, Lacroix M, Tofilon P, Fuller GN, Sawaya R, Lang FF (2000) An implantable guide-screw system for brain tumor studies in small animals. J Neurosurg 92(2):326–333

    CAS  PubMed  Google Scholar 

  • Landen JW, Hau V, Wang M, Davis T, Ciliax B, Wainer BH et al (2004) Noscapine crosses the blood-brain barrier and inhibits glioblastoma growth. Clin Cancer Res 10(15):5187–5201

    CAS  PubMed  Google Scholar 

  • Leavesley DI, Ferguson GD, Wayner EA, Cheresh DA (1992) Requirement of the integrin beta 3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J Cell Biol 117(5):1101–1107

    CAS  PubMed  Google Scholar 

  • Lijun S (2011) Animal models of glioma. Glioma – Explor. Its Biol. Pr. Relev. [Internet]. Intech. Available from: http://www.intechopen.com/books/glioma-exploring-its-biology-and-practical-relevance/animal-models-of-glioma [cited 20 Jun 2013]

  • Lin R-Z, Lin R-Z, Chang H-Y (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3(9–10):1172–1184

    CAS  PubMed  Google Scholar 

  • Lordo CD, Stroude EC, Del Maestro RF (1987) The effects of diphenylhydantoin on murine astrocytoma radiosensitivity. J Neurooncol 5(4):339–350

    CAS  PubMed  Google Scholar 

  • M D, Brooks SA (2001) In vitro invasion assay using matrigel®. Methods Mol Med 58:61–70

    CAS  PubMed  Google Scholar 

  • Madden KS, Zettel ML, Majewska AK, Brown EB (2013) Brain tumor imaging: live imaging of glioma by two-photon microscopy. Cold Spring Harb Protoc 2013(3):231–236

    Google Scholar 

  • Maeda M, Namikawa K, Kobayashi I, Ohba N, Takahara Y, Kadono C et al (2006) Targeted gene therapy toward astrocytoma using a Cre/loxP-based adenovirus system. Brain Res 1081(1):34–43

    CAS  PubMed  Google Scholar 

  • Matsumura H, Ohnishi T, Kanemura Y, Maruno M, Yoshimine T (2000) Quantitative analysis of glioma cell invasion by confocal laser scanning microscopy in a novel brain slice model. Biochem Biophys Res Commun 269(2):513–520

    CAS  PubMed  Google Scholar 

  • Mohanam S, Chandrasekar N, Yanamandra N, Khawar S, Mirza F, Dinh DH et al (2002) Modulation of invasive properties of human glioblastoma cells stably expressing amino-terminal fragment of urokinase-type plasminogen activator. Oncogene 21(51):7824–7830

    CAS  PubMed  Google Scholar 

  • Moscona A, Moscona H (1952) The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat 86(3):287–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagano O, Saya H (2004) Mechanism and biological significance of CD44 cleavage. Cancer Sci 95(12):930–935

    CAS  PubMed  Google Scholar 

  • Onishi M, Ichikawa T, Kurozumi K, Date I (2011) Angiogenesis and invasion in glioma. Brain Tumor Pathol 28(1):13–24

    CAS  PubMed  Google Scholar 

  • Oudar O (2000) Spheroids: relation between tumour and endothelial cells. Crit Rev Oncol Hematol 36(2–3):99–106

    CAS  PubMed  Google Scholar 

  • Owens GC, Orr EA, DeMasters BK, Muschel RJ, Berens ME, Kruse CA (1998) Overexpression of a transmembrane isoform of neural cell adhesion molecule alters the invasiveness of rat CNS-1 glioma. Cancer Res 58(9):2020–2028

    CAS  PubMed  Google Scholar 

  • Oxmann D, Held-Feindt J, Stark AM, Hattermann K, Yoneda T, Mentlein R (2008) Endoglin expression in metastatic breast cancer cells enhances their invasive phenotype. Oncogene 27(25):3567–3575

    CAS  PubMed  Google Scholar 

  • Ozawa T, Hu JL, Hu LJ, Kong EL, Bollen AW, Lamborn KR et al (2005) Functionality of hypoxia-induced BAX expression in a human glioblastoma xenograft model. Cancer Gene Ther 12(5):449–455

    CAS  PubMed  Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845

    CAS  PubMed  Google Scholar 

  • Pedersen PH, Edvardsen K, Garcia-Cabrera I, Mahesparan R, Thorsen J, Mathisen B et al (1995) Migratory patterns of lac-z transfected human glioma cells in the rat brain. Int J Cancer 62(6):767–771

    CAS  PubMed  Google Scholar 

  • Pilkington GJ, Bjerkvig R, De Ridder L, Kaaijk P (1997) In vitro and in vivo models for the study of brain tumour invasion. Anticancer Res 17(6B):4107–4109

    CAS  PubMed  Google Scholar 

  • Platten M, Wick W, Wild-Bode C, Aulwurm S, Dichgans J, Weller M (2000) Transforming growth factors beta(1) (TGF-beta(1)) and TGF-beta(2) promote glioma cell migration via Up-regulation of alpha(V)beta(3) integrin expression. Biochem Biophys Res Commun 268(2):607–611

    CAS  PubMed  Google Scholar 

  • Rankin SL, Zhu G, Baker SJ (2012) Review: insights gained from modelling high-grade glioma in the mouse. Neuropathol Appl Neurobiol 38(3):254–270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rong Y, Durden DL, Van Meir EG, Brat DJ (2006) “Pseudopalisading” necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65(6):529–539

    PubMed  Google Scholar 

  • Saini M, Roser F, Samii M, Bellinzona M (2004) A model for intratumoural chemotherapy in the rat brain. Acta Neurochir (Wien) 146(7):731–734

    CAS  Google Scholar 

  • Saito R, Bringas J, Mirek H, Berger MS, Bankiewicz KS (2004) Invasive phenotype observed in 1,3-bis(2-chloroethyl)-1-nitrosourea-resistant sublines of 9L rat glioma cells: a tumor model mimicking a recurrent malignant glioma. J Neurosurg 101(5):826–831

    PubMed  Google Scholar 

  • Schlegel J, Piontek G, Kersting M, Schuermann M, Kappler R, Scherthan H et al (1999) The p16/Cdkn2a/Ink4a gene is frequently deleted in nitrosourea-induced rat glial tumors. Pathobiol J Immunopathol Mol Cell Biol 67(4):202–206

    CAS  Google Scholar 

  • Schmidek HH, Nielsen SL, Schiller AL, Messer J (1971) Morphological studies of rat brain tumors induced by N-nitrosomethylurea. J Neurosurg 34(3):335–340

    CAS  PubMed  Google Scholar 

  • Seidl P, Huettinger R, Knuechel R, Kunz-Schughart LA (2002) Three-dimensional fibroblast-tumor cell interaction causes downregulation of RACK1 mRNA expression in breast cancer cells in vitro. Int J Cancer 102(2):129–136

    CAS  PubMed  Google Scholar 

  • Shen G, Shen F, Shi Z, Liu W, Hu W, Zheng X et al (2008) Identification of cancer stem-like cells in the C6 glioma cell line and the limitation of current identification methods. In Vitro Cell Dev Biol Anim 44(7):280–289

    CAS  PubMed  Google Scholar 

  • Sibenaller ZA, Etame AB, Ali MM, Barua M, Braun TA, Casavant TL et al (2005) Genetic characterization of commonly used glioma cell lines in the rat animal model system. Neurosurg Focus 19(4):E1

    PubMed  Google Scholar 

  • Smalley KSM, Lioni M, Herlyn M (2006) Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim 42(8–9):242–247

    CAS  PubMed  Google Scholar 

  • Soroceanu L, Manning TJ Jr, Sontheimer H (2001) Reduced expression of connexin-43 and functional gap junction coupling in human gliomas. Glia 33(2):107–117

    CAS  PubMed  Google Scholar 

  • Steel GG (1977) Growth kinetics of tumours: cell population kinetics in relation to the growth and treatment of cancer. Clarendon Press, Oxford

    Google Scholar 

  • Stoica G, Kim H-T, Hall DG, Coates JR (2004) Morphology, immunohistochemistry, and genetic alterations in dog astrocytomas. Vet Pathol 41(1):10–19

    CAS  PubMed  Google Scholar 

  • Stoica G, Lungu G, Martini-Stoica H, Waghela S, Levine J, Smith R III (2009) Identification of cancer stem cells in dog glioblastoma. Vet Pathol 46(3):391–406

    CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    CAS  PubMed  Google Scholar 

  • Sughrue ME, Yang I, Kane AJ, Rutkowski MJ, Fang S, James CD et al (2009) Immunological considerations of modern animal models of malignant primary brain tumors. J Transl Med 7:84

    PubMed Central  PubMed  Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240(4849):177–184

    CAS  PubMed  Google Scholar 

  • Sutherland RM, McCredie JA, Inch WR (1971) Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst 46(1):113–120

    CAS  PubMed  Google Scholar 

  • Tamaki M, McDonald W, Amberger VR, Moore E, Del Maestro RF (1997) Implantation of C6 astrocytoma spheroid into collagen type I gels: invasive, proliferative, and enzymatic characterizations. J Neurosurg 87(4):602–609

    CAS  PubMed  Google Scholar 

  • Timmins NE, Dietmair S, Nielsen LK (2004) Hanging-drop multicellular spheroids as a model of tumour angiogenesis. Angiogenesis 7(2):97–103

    PubMed  Google Scholar 

  • Tonn JC, Goldbrunner R (2003) Mechanisms of glioma cell invasion. Acta Neurochir Suppl 88:163–167

    CAS  PubMed  Google Scholar 

  • Tonn JC, Kerkau S, Hanke A, Bouterfa H, Mueller JG, Wagner S et al (1999) Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80(5):764–772

    CAS  PubMed  Google Scholar 

  • Tsurushima H, Yuan X, Dillehay LE, Leong KW (2007) Radioresponsive tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy for malignant brain tumors. Cancer Gene Ther 14(8):706–716

    CAS  PubMed  Google Scholar 

  • Wang S, Zhou J (2012) Diffusion tensor magnetic resonance imaging of rat glioma models: a correlation study of MR imaging and histology. J Comput Assist Tomogr 36(6):739–744

    PubMed Central  PubMed  Google Scholar 

  • Wei Q, Clarke L, Scheidenhelm DK, Qian B, Tong A, Sabha N et al (2006) High-grade glioma formation results from postnatal pten loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model. Cancer Res 66(15):7429–7437

    CAS  PubMed  Google Scholar 

  • Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H et al (2003) Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 63(7):1589–1595

    CAS  PubMed  Google Scholar 

  • Weizsäcker M, Nagamune A, Winkelströter R, Vieten H, Wechsler W (1982) Radiation and drug response of the rat glioma RG2. Eur J Cancer Clin Oncol 18(9):891–895

    PubMed  Google Scholar 

  • Wick W, Platten M, Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53(2):177–185

    CAS  PubMed  Google Scholar 

  • Wild-Bode C, Weller M, Wick W (2001) Molecular determinants of glioma cell migration and invasion. J Neurosurg 94(6):978–984

    CAS  PubMed  Google Scholar 

  • Woodward DE, Cook J, Tracqui P, Cruywagen GC, Murray JD, Alvord EC Jr (1996) A mathematical model of glioma growth: the effect of extent of surgical resection. Cell Prolif 29(6):269–288

    CAS  PubMed  Google Scholar 

  • Yang X-J, Cui W, Gu A, Xu C, Yu S-C, Li T-T et al (2013) A novel zebrafish xenotransplantation model for study of glioma stem cell invasion. PLoS One 8(4):e61801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen A-J et al (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455(7216):1129–1133

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moneeb Ehtesham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Khan, I.S., Ehtesham, M. (2014). Models to Study Glioma Cell Invasion. In: Sedo, A., Mentlein, R. (eds) Glioma Cell Biology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1431-5_14

Download citation

Publish with us

Policies and ethics