Skip to main content

Insights into Roles of Immediate-Early Genes in Angiogenesis

  • Chapter
  • First Online:
Angiogenesis and Vascularisation

Abstract

Immediate-early genes are those that are rapidly induced in response to a cellular stimulus in the absence of protein synthesis and can influence the biology and pathobiology of the cell. These span transcription factors, cytokines, growth factors, enzymes, secreted factors, cytoskeletal proteins, transporters and anti-apoptotic proteins that are attractive targets for the control of pathologic angiogenesis. This chapter focuses on immediate-early genes and specifically their regulation of processes underpinning angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sweeney C et al (2001) Growth factor-specific signaling pathway stimulation and gene expression mediated by ErbB receptors. J Biol Chem 276(25):22685–22698

    CAS  PubMed  Google Scholar 

  2. Khachigian LM, Collins T (1997) Inducible expression of Egr-1-dependent genes. A paradigm of transcriptional activation in vascular endothelium. Circ Res 81(4):457–461

    CAS  PubMed  Google Scholar 

  3. Lau LF, Nathans D (1987) Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci USA 84(5):1182–1186

    CAS  PubMed  Google Scholar 

  4. Healy S, Khan P, Davie JR (2013) Immediate early response genes and cell transformation. Pharmacol Ther 137(1):64–77

    CAS  PubMed  Google Scholar 

  5. Tullai JW et al (2007) Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J Biol Chem 282(33):23981–23995

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Herschman HR (1991) Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60:281–319

    CAS  PubMed  Google Scholar 

  7. O’Donnell A, Odrowaz Z, Sharrocks AD (2012) Immediate-early gene activation by the MAPK pathways: what do and don’t we know? Biochem Soc Trans 40(1):58–66

    PubMed  Google Scholar 

  8. McKay MM, Morrison DK (2007) Integrating signals from RTKs to ERK/MAPK. Oncogene 26(22):3113–3121

    CAS  PubMed  Google Scholar 

  9. Dunn KL et al (2005) The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 83(1):1–14

    CAS  PubMed  Google Scholar 

  10. Yang SH, Sharrocks AD, Whitmarsh AJ (2003) Transcriptional regulation by the MAP kinase signaling cascades. Gene 320:3–21

    CAS  PubMed  Google Scholar 

  11. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    CAS  PubMed  Google Scholar 

  12. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    CAS  PubMed  Google Scholar 

  13. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    CAS  PubMed  Google Scholar 

  14. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974

    CAS  PubMed  Google Scholar 

  15. O’Donovan KJ et al (1999) The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci 22(4):167–173

    PubMed  Google Scholar 

  16. Madden SL, Rauscher FJ 3rd (1993) Positive and negative regulation of transcription and cell growth mediated by the EGR family of zinc-finger gene products. Ann N Y Acad Sci 684:75–84

    CAS  PubMed  Google Scholar 

  17. Gashler A, Sukhatme VP (1995) Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 50:191–224

    CAS  PubMed  Google Scholar 

  18. Cao XM et al (1990) Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol Cell Biol 10(5):1931–1939

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Khachigian LM et al (1997) Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter. Arterioscler Thromb Vasc Biol 17(10):2280–2286

    CAS  PubMed  Google Scholar 

  20. Lee SL et al (1996) Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 273(5279):1219–1221

    CAS  PubMed  Google Scholar 

  21. Silverman ES, Collins T (1999) Pathways of Egr-1-mediated gene transcription in vascular biology. Am J Pathol 154(3):665–670

    CAS  PubMed  Google Scholar 

  22. Lucerna M et al (2003) NAB2, a corepressor of EGR-1, inhibits vascular endothelial growth factor-mediated gene induction and angiogenic responses of endothelial cells. J Biol Chem 278(13):11433–11440

    CAS  PubMed  Google Scholar 

  23. Kundumani-Sridharan V et al (2010) 15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires Src-mediated Egr-1-dependent rapid induction of FGF-2 expression. Blood 115(10):2105–2116

    CAS  PubMed  Google Scholar 

  24. Szabo IL et al (2001) NSAIDs inhibit the activation of egr-1 gene in microvascular endothelial cells. A key to inhibition of angiogenesis? J Physiol Paris 95(1–6):379–383

    CAS  PubMed  Google Scholar 

  25. Worden B et al (2005) Hepatocyte growth factor/scatter factor differentially regulates expression of proangiogenic factors through Egr-1 in head and neck squamous cell carcinoma. Cancer Res 65(16):7071–7080

    CAS  PubMed  Google Scholar 

  26. Abdel-Malak NA et al (2009) Early growth response-1 regulates angiopoietin-1-induced endothelial cell proliferation, migration, and differentiation. Arterioscler Thromb Vasc Biol 29(2):209–216

    CAS  PubMed  Google Scholar 

  27. Fahmy RG et al (2003) Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med 9(8):1026–1032

    CAS  PubMed  Google Scholar 

  28. Abe M, Sato Y (2001) cDNA microarray analysis of the gene expression profile of VEGF-activated human umbilical vein endothelial cells. Angiogenesis 4(4):289–298

    CAS  PubMed  Google Scholar 

  29. Suehiro J et al (2010) Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood 115(12):2520–2532

    CAS  PubMed  Google Scholar 

  30. Patwardhan S et al (1991) EGR3, a novel member of the Egr family of genes encoding immediate-early transcription factors. Oncogene 6(6):917–928

    CAS  PubMed  Google Scholar 

  31. Liu D et al (2008) The zinc-finger transcription factor, early growth response 3, mediates VEGF-induced angiogenesis. Oncogene 27(21):2989–2998

    CAS  PubMed  Google Scholar 

  32. Moll UM, Marchenko N, Zhang XK (2006) p53 and Nur77/TR3 – transcription factors that directly target mitochondria for cell death induction. Oncogene 25(34):4725–4743

    CAS  PubMed  Google Scholar 

  33. Liu D et al (2003) Vascular endothelial growth factor-regulated gene expression in endothelial cells: KDR-mediated induction of Egr3 and the related nuclear receptors Nur77, Nurr1, and Nor1. Arterioscler Thromb Vasc Biol 23(11):2002–2007

    CAS  PubMed  Google Scholar 

  34. Ha CH et al (2008) Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis. J Biol Chem 283(21):14590–14599

    CAS  PubMed  Google Scholar 

  35. Zeng H et al (2006) Orphan nuclear receptor TR3/Nur77 regulates VEGF-A-induced angiogenesis through its transcriptional activity. J Exp Med 203(3):719–729

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Arkenbout EK et al (2003) TR3 orphan receptor is expressed in vascular endothelial cells and mediates cell cycle arrest. Arterioscler Thromb Vasc Biol 23(9):1535–1540

    CAS  PubMed  Google Scholar 

  37. Qin L et al (2013) The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1. Blood 121(11):2154–2164

    CAS  PubMed  Google Scholar 

  38. Zhao D et al (2011) Orphan nuclear transcription factor TR3/Nur77 regulates microvessel permeability by targeting endothelial nitric oxide synthase and destabilizing endothelial junctions. Proc Natl Acad Sci USA 108(29):12066–12071

    CAS  PubMed  Google Scholar 

  39. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3(11):859–868

    CAS  PubMed  Google Scholar 

  40. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20(19):2390–2400

    CAS  PubMed  Google Scholar 

  41. Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136

    CAS  PubMed  Google Scholar 

  42. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072(2–3):129–157

    CAS  PubMed  Google Scholar 

  43. Vleugel MM et al (2006) c-Jun activation is associated with proliferation and angiogenesis in invasive breast cancer. Hum Pathol 37(6):668–674

    CAS  PubMed  Google Scholar 

  44. Kraemer M et al (1999) Rat embryo fibroblasts transformed by c-Jun display highly metastatic and angiogenic activities in vivo and deregulate gene expression of both angiogenic and antiangiogenic factors. Cell Growth Differ 10(3):193–200

    CAS  PubMed  Google Scholar 

  45. Michel JB et al (1994) Biphasic induction of immediate early gene expression accompanies activity-dependent angiogenesis and myofiber remodeling of rabbit skeletal muscle. J Clin Invest 94(1):277–285

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Jiao X et al (2008) Disruption of c-Jun reduces cellular migration and invasion through inhibition of c-Src and hyperactivation of ROCK II kinase. Mol Biol Cell 19(4):1378–1390

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Katiyar S et al (2007) Somatic excision demonstrates that c-Jun induces cellular migration and invasion through induction of stem cell factor. Mol Cell Biol 27(4):1356–1369

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Giles N et al (2008) A peptide inhibitor of c-Jun promotes wound healing in a mouse full-thickness burn model. Wound Repair Regen 16(1):58–64

    PubMed  Google Scholar 

  49. Zhang G et al (2004) Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents. J Natl Cancer Inst 96(9):683–696

    CAS  PubMed  Google Scholar 

  50. Fahmy RG et al (2006) Suppression of vascular permeability and inflammation by targeting of the transcription factor c-Jun. Nat Biotechnol 24(7):856–863

    CAS  PubMed  Google Scholar 

  51. Cai H et al (2012) DNAzyme targeting c-jun suppresses skin cancer growth. Sci Transl Med 4(139):139ra82

    PubMed  Google Scholar 

  52. Marconcini L et al (1999) c-Fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proc Natl Acad Sci USA 96(17):9671–9676

    CAS  PubMed  Google Scholar 

  53. Saez E et al (1995) c-Fos is required for malignant progression of skin tumors. Cell 82(5):721–732

    CAS  PubMed  Google Scholar 

  54. Lai HC et al (2004) Effect of EGCG, a major component of green tea, on the expression of Ets-1, c-Fos, and c-Jun during angiogenesis in vitro. Cancer Lett 213(2):181–188

    CAS  PubMed  Google Scholar 

  55. Belguise K et al (2005) FRA-1 expression level regulates proliferation and invasiveness of breast cancer cells. Oncogene 24(8):1434–1444

    CAS  PubMed  Google Scholar 

  56. Kustikova O et al (1998) Fra-1 induces morphological transformation and increases in vitro invasiveness and motility of epithelioid adenocarcinoma cells. Mol Cell Biol 18(12):7095–7105

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Hilfiker-Kleiner D et al (2005) Lack of JunD promotes pressure overload-induced apoptosis, hypertrophic growth, and angiogenesis in the heart. Circulation 112(10):1470–1477

    PubMed  Google Scholar 

  58. Schmidt D et al (2007) Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis. EMBO J 26(3):710–719

    CAS  PubMed  Google Scholar 

  59. Brown PH, Chen TK, Birrer MJ (1994) Mechanism of action of a dominant-negative mutant of c-Jun. Oncogene 9(3):791–799

    CAS  PubMed  Google Scholar 

  60. Kang MI et al (2012) Targeting of noncanonical Wnt5a signaling by AP-1 blocker dominant-negative Jun when it inhibits skin carcinogenesis. Genes Cancer 3(1):37–50

    PubMed Central  PubMed  Google Scholar 

  61. Andersen H et al (2005) Immediate and delayed effects of E-cadherin inhibition on gene regulation and cell motility in human epidermoid carcinoma cells. Mol Cell Biol 25(20):9138–9150

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Shiratsuchi T, Ishibashi H, Shirasuna K (2002) Inhibition of epidermal growth factor-induced invasion by dexamethasone and AP-1 decoy in human squamous cell carcinoma cell lines. J Cell Physiol 193(3):340–348

    CAS  PubMed  Google Scholar 

  63. Weber WM et al (2006) TPA-induced up-regulation of activator protein-1 can be inhibited or enhanced by analogs of the natural product curcumin. Biochem Pharmacol 72(8):928–940

    CAS  PubMed  Google Scholar 

  64. Matsuo M et al (2007) Curcumin inhibits the formation of capillary-like tubes by rat lymphatic endothelial cells. Cancer Lett 251(2):288–295

    CAS  PubMed  Google Scholar 

  65. Tsuchida K et al (2004) Design, synthesis, and biological evaluation of new cyclic disulfide decapeptides that inhibit the binding of AP-1 to DNA. J Med Chem 47(17):4239–4246

    CAS  PubMed  Google Scholar 

  66. Tsuchida K et al (2006) Discovery of nonpeptidic small-molecule AP-1 inhibitors: lead hopping based on a three-dimensional pharmacophore model. J Med Chem 49(1):80–91

    CAS  PubMed  Google Scholar 

  67. Ruocco KM et al (2007) A high-throughput cell-based assay to identify specific inhibitors of transcription factor AP-1. J Biomol Screen 12(1):133–139

    CAS  PubMed  Google Scholar 

  68. Aikawa Y et al (2008) Treatment of arthritis with a selective inhibitor of c-Fos/activator protein-1. Nat Biotechnol 26(7):817–823

    CAS  PubMed  Google Scholar 

  69. Hai T et al (1999) ATF3 and stress responses. Gene Expr 7(4–6):321–335

    CAS  PubMed  Google Scholar 

  70. Volpert OV et al (2002) Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2(6):473–483

    CAS  PubMed  Google Scholar 

  71. Nawa T et al (2002) Expression of transcriptional repressor ATF3/LRF1 in human atherosclerosis: colocalization and possible involvement in cell death of vascular endothelial cells. Atherosclerosis 161(2):281–291

    CAS  PubMed  Google Scholar 

  72. Okamoto A, Iwamoto Y, Maru Y (2006) Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Mol Cell Biol 26(3):1087–1097

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18(19):3004–3016

    CAS  PubMed  Google Scholar 

  74. Shanmugham R et al (2004) Tumour angiogenesis and C-myc expression in breast carcinomas. Indian J Pathol Microbiol 47(3):340–342

    PubMed  Google Scholar 

  75. Fodinger M et al (2000) Erythropoietin-inducible immediate-early genes in human vascular endothelial cells. J Investig Med 48(2):137–149

    CAS  PubMed  Google Scholar 

  76. Baudino TA et al (2002) c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev 16(19):2530–2543

    CAS  PubMed  Google Scholar 

  77. Souders CA et al (2012) c-Myc is required for proper coronary vascular formation via cell- and gene-specific signaling. Arterioscler Thromb Vasc Biol 32(5):1308–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Ngo CV et al (2000) An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ 11(4):201–210

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Janz A et al (2000) Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res 28(11):2268–2275

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Dews M et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38(9):1060–1065

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Lelievre E et al (2001) The Ets family contains transcriptional activators and repressors involved in angiogenesis. Int J Biochem Cell Biol 33(4):391–407

    CAS  PubMed  Google Scholar 

  82. Hashiya N et al (2004) In vivo evidence of angiogenesis induced by transcription factor Ets-1: Ets-1 is located upstream of angiogenesis cascade. Circulation 109(24):3035–3041

    CAS  PubMed  Google Scholar 

  83. Sato Y (1998) Transcription factor ETS-1 as a molecular target for angiogenesis inhibition. Hum Cell 11(4):207–214

    CAS  PubMed  Google Scholar 

  84. Iwasaka C et al (1996) Ets-1 regulates angiogenesis by inducing the expression of urokinase-type plasminogen activator and matrix metalloproteinase-1 and the migration of vascular endothelial cells. J Cell Physiol 169(3):522–531

    CAS  PubMed  Google Scholar 

  85. Oettgen P (2010) The role of ets factors in tumor angiogenesis. J Oncol 2010:767384

    PubMed Central  PubMed  Google Scholar 

  86. Wei G et al (2009) Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis. Blood 114(5):1123–1130

    CAS  PubMed  Google Scholar 

  87. Pesce S, Benezra R (1993) The loop region of the helix-loop-helix protein Id1 is critical for its dominant-negative activity. Mol Cell Biol 13(12):7874–7880

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Lyden D et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401(6754):670–677

    CAS  PubMed  Google Scholar 

  89. Ling MT et al (2005) Overexpression of Id-1 in prostate cancer cells promotes angiogenesis through the activation of vascular endothelial growth factor (VEGF). Carcinogenesis 26(10):1668–1676

    CAS  PubMed  Google Scholar 

  90. Mellick AS et al (2010) Using the transcription factor inhibitor of DNA binding 1 to selectively target endothelial progenitor cells offers novel strategies to inhibit tumor angiogenesis and growth. Cancer Res 70(18):7273–7282

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Nurrish SJ, Treisman R (1995) DNA-binding specificity determinants in mads-box transcription factors. Mol Cell Biol 15(8):4076–4085

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Vialou V et al (2012) Serum response factor and camp response element binding protein are both required for cocaine induction of delta FosB. J Neurosci 32(22):7577–7584

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Lee SM, Vasishtha M, Prywes R (2010) Activation and repression of cellular immediate early genes by serum response factor cofactors. J Biol Chem 285(29):22036–22049

    CAS  PubMed  Google Scholar 

  94. Chai J, Jones MK, Tarnawski AS (2004) Serum response factor is a critical requirement for VEGF signaling in endothelial cells and VEGF-induced angiogenesis. FASEB J 18(11):1264–1266

    CAS  PubMed  Google Scholar 

  95. Franco CA et al (2008) Serum response factor is required for sprouting angiogenesis and vascular integrity. Dev Cell 15(3):448–461

    CAS  PubMed  Google Scholar 

  96. Schratt G et al (2001) Serum response factor is required for immediate-early gene activation yet is dispensable for proliferation of embryonic stem cells. Mol Cell Biol 21(8):2933–2943

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Qiao Y et al (2011) MiR-483-5p controls angiogenesis in vitro and targets serum response factor. FEBS Lett 585(19):3095–3100

    CAS  PubMed  Google Scholar 

  98. Chang LH et al (2012) Role of macrophage CCAAT/enhancer binding protein delta in the pathogenesis of rheumatoid arthritis in collagen-induced arthritic mice. PLoS One 7(9):e45378

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Min Y et al (2011) C/EBP-delta regulates VEGF-C autocrine signaling in lymphangiogenesis and metastasis of lung cancer through HIF-1alpha. Oncogene 30(49):4901–4909

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Gabay C (2006) Interleukin-6 and chronic inflammation. Arthritis Res Ther 8:S3

    PubMed Central  PubMed  Google Scholar 

  101. Li W et al (2001) Global changes in interleukin-6-dependent gene expression patterns in mouse livers after partial hepatectomy. Hepatology 33(6):1377–1386

    CAS  PubMed  Google Scholar 

  102. Cohen T et al (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271(2):736–741

    CAS  PubMed  Google Scholar 

  103. Huang SP et al (2004) Interleukin-6 increases vascular endothelial growth factor and angiogenesis in gastric carcinoma. J Biomed Sci 11(4):517–527

    CAS  PubMed  Google Scholar 

  104. Koch AE et al (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258(5089):1798–1801

    CAS  PubMed  Google Scholar 

  105. Bancroft CC et al (2001) Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and IKK-NF-kappaB signal pathways. Clin Cancer Res 7(2):435–442

    CAS  PubMed  Google Scholar 

  106. Huang S et al (2002) Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 161(1):125–134

    CAS  PubMed  Google Scholar 

  107. Florczyk U et al (2011) Opposite effects of HIF-1alpha and HIF-2alpha on the regulation of IL-8 expression in endothelial cells. Free Radic Biol Med 51(10):1882–1892

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Nishida T et al (2007) CCN2 (connective tissue growth factor) is essential for extracellular matrix production and integrin signaling in chondrocytes. J Cell Commun Signal 1(1):45–58

    PubMed Central  PubMed  Google Scholar 

  109. Hall-Glenn F et al (2012) CCN2/connective tissue growth factor is essential for pericyte adhesion and endothelial basement membrane formation during angiogenesis. PLoS One 7(2):e30562

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Markiewicz M et al (2011) Connective tissue growth factor (CTGF/CCN2) mediates angiogenic effect of S1P in human dermal microvascular endothelial cells. Microcirculation 18(1):1–11

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Brigstock DR (2002) Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61). Angiogenesis 5(3):153–165

    CAS  PubMed  Google Scholar 

  112. Suzuma K et al (2000) Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. J Biol Chem 275(52):40725–40731

    CAS  PubMed  Google Scholar 

  113. Inoki I et al (2002) Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 16(2):219–221

    CAS  PubMed  Google Scholar 

  114. Hashimoto G et al (2002) Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 277(39):36288–36295

    CAS  PubMed  Google Scholar 

  115. Kondo S et al (2002) Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 23(5):769–776

    CAS  PubMed  Google Scholar 

  116. Aikawa T et al (2006) Connective tissue growth factor-specific antibody attenuates tumor growth, metastasis, and angiogenesis in an orthotopic mouse model of pancreatic cancer. Mol Cancer Ther 5(5):1108–1116

    CAS  PubMed  Google Scholar 

  117. Nantel F et al (1999) Distribution and regulation of cyclooxygenase-2 in carrageenan-induced inflammation. Br J Pharmacol 128(4):853–859

    CAS  PubMed  Google Scholar 

  118. Tsujii M et al (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93(5):705–716

    CAS  PubMed  Google Scholar 

  119. Gately S (2000) The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 19(1–2):19–27

    CAS  PubMed  Google Scholar 

  120. Iniguez MA et al (2003) Cyclooxygenase-2: a therapeutic target in angiogenesis. Trends Mol Med 9(2):73–78

    CAS  PubMed  Google Scholar 

  121. Taylor DM et al (2013) MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington’s disease via additive effects of JNK and p38 inhibition. J Neurosci 33(6):2313–2325

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Denkert C et al (2002) Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. Int J Cancer 102(5):507–513

    CAS  PubMed  Google Scholar 

  123. Kinney CM et al (2008) VEGF and thrombin induce MKP-1 through distinct signaling pathways: role for MKP-1 in endothelial cell migration. Am J Physiol Cell Physiol 294(1):C241–C250

    CAS  PubMed  Google Scholar 

  124. Moncho-Amor V et al (2011) DUSP1/MKP1 promotes angiogenesis, invasion and metastasis in non-small-cell lung cancer. Oncogene 30(6):668–678

    CAS  PubMed  Google Scholar 

  125. Song HY, Rothe M, Goeddel DV (1996) The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci USA 93(13):6721–6725

    CAS  PubMed  Google Scholar 

  126. Opipari AW, Boguski MS, Dixit VM (1990) The A20 cDNA induced by tumor necrosis factor-alpha encodes a novel type of zinc finger protein. J Biol Chem 265(25):14705–14708

    CAS  PubMed  Google Scholar 

  127. Elsby LM et al (2010) Functional evaluation of TNFAIP3 (A20) in rheumatoid arthritis. Clin Exp Rheumatol 28(5):708–714

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Chng HW et al (2006) A new role for the anti-apoptotic gene A20 in angiogenesis. Exp Cell Res 312(15):2897–2907

    CAS  PubMed  Google Scholar 

  129. Daniel S et al (2004) A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood 104(8):2376–2384

    CAS  PubMed  Google Scholar 

  130. Balsara RD, Castellino FJ, Ploplis VA (2006) A novel function of plasminogen activator inhibitor-1 in modulation of the AKT pathway in wild-type and plasminogen activator inhibitor-1-deficient endothelial cells. J Biol Chem 281(32):22527–22536

    CAS  PubMed  Google Scholar 

  131. Lakka SS et al (2005) Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas. J Biol Chem 280(23):21882–21892

    CAS  PubMed  Google Scholar 

  132. Soncin F et al (2003) VE-statin, an endothelial repressor of smooth muscle cell migration. EMBO J 22(21):5700–5711

    CAS  PubMed  Google Scholar 

  133. Nichol D et al (2010) Impaired angiogenesis and altered Notch signaling in mice overexpressing endothelial Egfl7. Blood 116(26):6133–6143

    CAS  PubMed  Google Scholar 

  134. Campagnolo L et al (2005) EGFL7 is a chemoattractant for endothelial cells and is up-regulated in angiogenesis and arterial injury. Am J Pathol 167(1):275–284

    CAS  PubMed  Google Scholar 

  135. Parker LH et al (2004) The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 428(6984):754–758

    CAS  PubMed  Google Scholar 

  136. Babic AM et al (1998) CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci USA 95(11):6355–6360

    CAS  PubMed  Google Scholar 

  137. Fataccioli V et al (2002) Stimulation of angiogenesis by Cyr61 gene: a new therapeutic candidate. Hum Gene Ther 13(12):1461–1470

    CAS  PubMed  Google Scholar 

  138. Mo FE et al (2002) CYR61 (CCN1) is essential for placental development and vascular integrity. Mol Cell Biol 22(24):8709–8720

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Mo FE, Lau LF (2006) The matricellular protein CCN1 is essential for cardiac development. Circ Res 99(9):961–969

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Airley RE, Mobasheri A (2007) Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53(4):233–256

    CAS  PubMed  Google Scholar 

  141. Tsukioka M et al (2007) Expression of glucose transporters in epithelial ovarian carcinoma: correlation with clinical characteristics and tumor angiogenesis. Oncol Rep 18(2):361–367

    CAS  PubMed  Google Scholar 

  142. Mimura I et al (2012) Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol 32(15):3018–3032

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Regard JB et al (2004) Verge: a novel vascular early response gene. J Neurosci 24(16):4092–4103

    CAS  PubMed  Google Scholar 

  144. Maallem S et al (2008) Gene expression profiling in brain following acute systemic hypertonicity: novel genes possibly involved in osmoadaptation. J Neurochem 105(4):1198–1211

    CAS  PubMed  Google Scholar 

  145. Liu F et al (2012) Loss of vascular early response gene reduces edema formation after experimental stroke. Exp Transl Stroke Med 4(1):12

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Sun HL et al (2009) EPOX inhibits angiogenesis by degradation of Mcl-1 through ERK inactivation. Clin Cancer Res 15(15):4904–4914

    CAS  PubMed  Google Scholar 

  147. Abbott A (2002) On the offensive. Nature 416(6880):470–474

    CAS  PubMed  Google Scholar 

  148. Gibbs JB (2000) Mechanism-based target identification and drug discovery in cancer research. Science 287(5460):1969–1973

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levon M. Khachigian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Prado-Lourenço, L., Alhendi, A.M.N., Khachigian, L.M. (2013). Insights into Roles of Immediate-Early Genes in Angiogenesis. In: Dulak, J., Józkowicz, A., Łoboda, A. (eds) Angiogenesis and Vascularisation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1428-5_7

Download citation

Publish with us

Policies and ethics