Skip to main content

Vascular-Resident Endothelial Side Population Cells

  • Chapter
  • First Online:
Angiogenesis and Vascularisation

Abstract

Postnatal neovascular formation was originally thought to be mediated by angiogenesis, which is defined as the formation of new blood vessels from pre-existing endothelial cells (ECs). However, over the last decade, it has been proposed that vasculogenesis, that is, de novo blood vessel generation from endothelial progenitor cells (EPCs) derived from bone marrow, may persist into adult life. Nonetheless, it is still a matter of debate as to what extent the EPCs contribute to new vessel formation in the adult.

In the peripheral blood vessels, the presence of different stem and progenitor cell types residing in the media and adventitia of the vascular wall has been suggested. These stem/progenitor cells were reported to have the ability to differentiate into ECs in culture and form capillary-like microvessels in ex vivo assays. However, the precise roles of these cells during angiogenic growth are not well defined. We recently isolated a novel endothelial stem/progenitor-like cells from the intima of adult murine blood vessels using the Hoechst method in which stem cell populations are identified as side populations. This vascular endothelial side population cell possesses colony-forming ability, generates large numbers of ECs, and when transplanted into ischemic lesions, these cells contribute to the newly formed long-term surviving blood vessels and restore blood flow completely. Our discovery of vascular endothelial side population cells that have features of endothelial stem/progenitor cells may lead to the identification of new targets for vascular regeneration therapy as well as vascular disrupting therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BM:

Bone marrow

ECs:

Endothelial cells

EPCs:

Endothelial progenitor cells

FACS:

Fluorescence-activated cell sorting

HAECs:

Human aortic endothelial cells

HC:

Hematopoietic cell

HSC:

Hematopoietic stem cell

HUVECs:

Human umbilical vein endothelial cells

KSL:

c-Kit+ Sca-1+, and Lineage

MP:

Main population

SMCs:

Smooth muscle cells

SP:

Side population

References

  1. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  PubMed  Google Scholar 

  2. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132(4):598–611

    Article  CAS  PubMed  Google Scholar 

  3. Mimeault M, Batra SK (2008) Recent progress on tissue-resident adult stem cell biology and their therapeutic implications. Stem Cell Rev 4(1):27–49

    Article  PubMed  Google Scholar 

  4. Lin KK, Goodell MA (2011) Detection of hematopoietic stem cells by flow cytometry. Methods Cell Biol 103:21–30

    Article  CAS  PubMed  Google Scholar 

  5. Okada S, Nakauchi H, Nagayoshi K, Nishikawa S, Miura Y, Suda T (1992) In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80(12):3044–3050

    CAS  PubMed  Google Scholar 

  6. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241(4861):58–62

    Article  CAS  PubMed  Google Scholar 

  7. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    Article  CAS  PubMed  Google Scholar 

  8. Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T (2000) A role for hematopoietic stem cells in promoting angiogenesis. Cell 102(2):199–209

    Article  CAS  PubMed  Google Scholar 

  9. Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98(25):14541–14546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273(5272):242–245

    Article  CAS  PubMed  Google Scholar 

  11. Pallavicini MG, Summers LJ, Dean PN, Gray JW (1985) Enrichment of murine hemopoietic clonogenic cells by multivariate analyses and sorting. Exp Hematol 13(11):1173–1181

    CAS  PubMed  Google Scholar 

  12. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806

    Article  CAS  PubMed  Google Scholar 

  13. Chaudhary PM, Roninson IB (1991) Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 66(1):85–94

    Article  CAS  PubMed  Google Scholar 

  14. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034

    Article  CAS  PubMed  Google Scholar 

  15. Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159(1):123–134

    Article  CAS  PubMed  Google Scholar 

  16. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA (2002) Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 245(1):42–56

    Article  CAS  PubMed  Google Scholar 

  17. Shimano K, Satake M, Okaya A, Kitanaka J, Kitanaka N, Takemura M, Sakagami M, Terada N, Tsujimura T (2003) Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. Am J Pathol 163(1):3–9

    Article  CAS  PubMed  Google Scholar 

  18. Summer R, Kotton DN, Sun X, Ma B, Fitzsimmons K, Fine A (2003) Side population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol 285(1):L97–L104

    CAS  PubMed  Google Scholar 

  19. Lassalle B, Bastos H, Louis JP, Riou L, Testart J, Dutrillaux B, Fouchet P, Allemand I (2004) ‘Side Population’ cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development 131(2):479–487

    Article  CAS  PubMed  Google Scholar 

  20. Redvers RP, Li A, Kaur P (2006) Side population in adult murine epidermis exhibits phenotypic and functional characteristics of keratinocyte stem cells. Proc Natl Acad Sci U S A 103(35):13168–13173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Oyama T, Nagai T, Wada H, Naito AT, Matsuura K, Iwanaga K, Takahashi T, Goto M, Mikami Y, Yasuda N, Akazawa H, Uezumi A, Takeda S, Komuro I (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176(3):329–341

    Article  CAS  PubMed  Google Scholar 

  22. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci U S A 101(3):781–786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 101(39):14228–14233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Croop JM, Raymond M, Haber D, Devault A, Arceci RJ, Gros P, Housman DE (1989) The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol Cell Biol 9(3):1346–1350

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Huls M, van den Heuvel JJ, Dijkman HB, Russel FG, Masereeuw R (2006) ABC transporter expression profiling after ischemic reperfusion injury in mouse kidney. Kidney Int 69(12):2186–2193

    Article  CAS  PubMed  Google Scholar 

  26. Miller DS (2010) Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol Sci 31(6):246–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Golebiewska A, Brons NH, Bjerkvig R, Niclou SP (2011) Critical appraisal of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8(2):136–147

    Article  CAS  PubMed  Google Scholar 

  28. Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530(1–3):239–243

    Article  CAS  PubMed  Google Scholar 

  29. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100(21):12313–12318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC, Gallardo TD, Garry DJ (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265(1):262–275

    Article  CAS  PubMed  Google Scholar 

  31. Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R (2005) CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97(1):52–61

    Article  CAS  PubMed  Google Scholar 

  32. Mouquet F, Pfister O, Jain M, Oikonomopoulos A, Ngoy S, Summer R, Fine A, Liao R (2005) Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 97(11):1090–1092

    Article  CAS  PubMed  Google Scholar 

  33. Griffioen AW, Molema G (2000) Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev 52(2):237–268

    CAS  PubMed  Google Scholar 

  34. Torsney E, Xu Q (2011) Resident vascular progenitor cells. J Mol Cell Cardiol 50(2):304–311

    Article  CAS  PubMed  Google Scholar 

  35. Majesky MW, Dong XR, Regan JN, Hoglund VJ (2011) Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 108(3):365–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105(7):2783–2786

    Article  CAS  PubMed  Google Scholar 

  37. Naito H, Kidoya H, Sakimoto S, Wakabayashi T, Takakura N (2012) Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels. EMBO J 31(4):842–855

    Article  CAS  PubMed  Google Scholar 

  38. Sainz J, Al Haj Zen A, Caligiuri G, Demerens C, Urbain D, Lemitre M, Lafont A (2006) Isolation of “side population” progenitor cells from healthy arteries of adult mice. Arterioscler Thromb Vasc Biol 26(2):281–286

    Article  CAS  PubMed  Google Scholar 

  39. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN (1996) Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 93(12):2178–2187

    Article  CAS  PubMed  Google Scholar 

  40. Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 113(9):1258–1265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergun S (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133(8):1543–1551

    Article  CAS  PubMed  Google Scholar 

  42. Passman JN, Dong XR, Wu SP, Maguire CT, Hogan KA, Bautch VL, Majesky MW (2008) A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci U S A 105(27):9349–9354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Pasquinelli G, Tazzari PL, Vaselli C, Foroni L, Buzzi M, Storci G, Alviano F, Ricci F, Bonafe M, Orrico C, Bagnara GP, Stella A, Conte R (2007) Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells 25(7):1627–1634

    Article  CAS  PubMed  Google Scholar 

  44. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  PubMed  Google Scholar 

  45. Asahara T, Kawamoto A, Masuda H (2011) Concise review: circulating endothelial progenitor cells for vascular medicine. Stem Cells 29(11):1650–1655

    Article  CAS  PubMed  Google Scholar 

  46. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7(11):1194–1201

    Article  CAS  PubMed  Google Scholar 

  47. De Palma M, Venneri MA, Roca C, Naldini L (2003) Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med 9(6):789–795

    Article  PubMed  Google Scholar 

  48. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226

    Article  PubMed  Google Scholar 

  49. Gothert JR, Gustin SE, van Eekelen JA, Schmidt U, Hall MA, Jane SM, Green AR, Gottgens B, Izon DJ, Begley CG (2004) Genetically tagging endothelial cells in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 104(6):1769–1777

    Article  PubMed  Google Scholar 

  50. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94(2):230–238

    Article  CAS  PubMed  Google Scholar 

  51. Shinde Patil VR, Friedrich EB, Wolley AE, Gerszten RE, Allport JR, Weissleder R (2005) Bone marrow-derived lin(−)c-kit(+)Sca-1+ stem cells do not contribute to vasculogenesis in Lewis lung carcinoma. Neoplasia 7(3):234–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Purhonen S, Palm J, Rossi D, Kaskenpaa N, Rajantie I, Yla-Herttuala S, Alitalo K, Weissman IL, Salven P (2008) Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci U S A 105(18):6620–6625

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Okuno Y, Nakamura-Ishizu A, Kishi K, Suda T, Kubota Y (2011) Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 117(19):5264–5272

    Article  CAS  PubMed  Google Scholar 

  54. Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL (2011) Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476(7361):409–413

    Article  CAS  PubMed  Google Scholar 

  55. Folkman J, Haudenschild CC, Zetter BR (1979) Long-term culture of capillary endothelial cells. Proc Natl Acad Sci U S A 76(10):5217–5221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Wu Z, Hofman FM, Zlokovic BV (2003) A simple method for isolation and characterization of mouse brain microvascular endothelial cells. J Neurosci Methods 130(1):53–63

    Article  CAS  PubMed  Google Scholar 

  57. Ewing P, Wilke A, Brockhoff G, Andreesen R, Eissner G, Holler E, Gerbitz A (2003) Isolation and transplantation of allogeneic pulmonary endothelium derived from GFP transgenic mice. J Immunol Methods 283(1–2):307–315

    Article  CAS  PubMed  Google Scholar 

  58. van Beijnum JR, Rousch M, Castermans K, van der Linden E, Griffioen AW (2008) Isolation of endothelial cells from fresh tissues. Nat Protoc 3(6):1085–1091

    Article  PubMed  Google Scholar 

  59. Asakura A, Rudnicki MA (2002) Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp Hematol 30(11):1339–1345

    Article  PubMed  Google Scholar 

  60. Jonker JW, Freeman J, Bolscher E, Musters S, Alvi AJ, Titley I, Schinkel AH, Dale TC (2005) Contribution of the ABC transporters Bcrp1 and Mdr1a/1b to the side population phenotype in mammary gland and bone marrow of mice. Stem Cells 23(8):1059–1065

    Article  CAS  PubMed  Google Scholar 

  61. Pietras EM, Warr MR, Passegue E (2011) Cell cycle regulation in hematopoietic stem cells. J Cell Biol 195(5):709–720

    Article  CAS  PubMed  Google Scholar 

  62. Bruscia EM, Ziegler EC, Price JE, Weiner S, Egan ME, Krause DS (2006) Engraftment of donor-derived epithelial cells in multiple organs following bone marrow transplantation into newborn mice. Stem Cells 24(10):2299–2308

    Article  CAS  PubMed  Google Scholar 

  63. Simons BD, Clevers H (2011) Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145(6):851–862

    Article  CAS  PubMed  Google Scholar 

  64. McNiece IK, Stewart FM, Deacon DM, Temeles DS, Zsebo KM, Clark SC, Quesenberry PJ (1989) Detection of a human CFC with a high proliferative potential. Blood 74(2):609–612

    CAS  PubMed  Google Scholar 

  65. Takakura N, Huang XL, Naruse T, Hamaguchi I, Dumont DJ, Yancopoulos GD, Suda T (1998) Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity 9(5):677–686

    Article  CAS  PubMed  Google Scholar 

  66. Rajagopalan S, Mohler ER III, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, Blebea J, Macko J, Kessler PD, Rasmussen HS, Annex BH (2003) Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomized, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108(16):1933–1938

    Article  CAS  PubMed  Google Scholar 

  67. Nikol S, Baumgartner I, Van Belle E, Diehm C, Visona A, Capogrossi MC, Ferreira-Maldent N, Gallino A, Wyatt MG, Wijesinghe LD, Fusari M, Stephan D, Emmerich J, Pompilio G, Vermassen F, Pham E, Grek V, Coleman M, Meyer F (2008) Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther 16(5):972–978

    Article  CAS  PubMed  Google Scholar 

  68. Powell RJ, Simons M, Mendelsohn FO, Daniel G, Henry TD, Koga M, Morishita R, Annex BH (2008) Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 118(1):58–65

    Article  CAS  PubMed  Google Scholar 

  69. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360(9331):427–435

    Article  PubMed  Google Scholar 

  70. Minamino T, Toko H, Tateno K, Nagai T, Komuro I (2002) Peripheral-blood or bone-marrow mononuclear cells for therapeutic angiogenesis? Lancet 360(9350):2083–2084

    Article  PubMed  Google Scholar 

  71. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974

    Article  CAS  PubMed  Google Scholar 

  72. Kim JY, Song SH, Kim KL, Ko JJ, Im JE, Yie SW, Ahn YK, Kim DK, Suh W (2010) Human cord blood-derived endothelial progenitor cells and their conditioned media exhibit therapeutic equivalence for diabetic wound healing. Cell Transplant 19(12):1635–1644

    Article  PubMed  Google Scholar 

  73. Yamada Y, Takakura N (2006) Physiological pathway of differentiation of hematopoietic stem cell population into mural cells. J Exp Med 203(4):1055–1065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Biteau B, Hochmuth CE, Jasper H (2011) Maintaining tissue homeostasis: dynamic control of somatic stem cell activity. Cell Stem Cell 9(5):402–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400

    Article  CAS  PubMed  Google Scholar 

  76. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  CAS  PubMed  Google Scholar 

  78. Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B, Tian YM, Lanahan AA, Pollard P, Ruiz de Almodovar C, De Smet F, Vinckier S, Aragones J, Debackere K, Luttun A, Wyns S, Jordan B, Pisacane A, Gallez B, Lampugnani MG, Dejana E, Simons M, Ratcliffe P, Maxwell P, Carmeliet P (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851

    Article  CAS  PubMed  Google Scholar 

  79. Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887

    Article  CAS  PubMed  Google Scholar 

  80. Chappell JC, Taylor SM, Ferrara N, Bautch VL (2009) Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev Cell 17(3):377–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology and Japan Society for the Promotion of Science of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisamichi Naito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Naito, H., Takakura, N. (2013). Vascular-Resident Endothelial Side Population Cells. In: Dulak, J., Józkowicz, A., Łoboda, A. (eds) Angiogenesis and Vascularisation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1428-5_3

Download citation

Publish with us

Policies and ethics