Skip to main content

Pediatric Immunology and Vaccinology

  • Chapter
  • First Online:
Molecular Vaccines

Abstract

Induction of protective immunity in infants has the potential to reduce morbidity and mortality in childhood infections but it has long been known that long-lasting protective immunity is difficult to induce in the neonate. This chapter describe the basis of the neonatal adaptive immune system. It also gives an update on current childhood immunisation programmes on a global level as well as the known side effects to vaccines in children and young adults. Finally, it also provides data on how to improve childhood vaccinations and future much needed vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wood, N., Siegrist, C.A.: Neonatal immunization: where do we stand? Curr. Opin. Infect. Dis. 24, 190–195 (2011). doi:10.1097/QCO.0b013e328345d563

    Article  PubMed  Google Scholar 

  2. Adkins, B., Leclerc, C., Marshall-Clarke, S.: Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 4, 553–564 (2004). doi:10.1038/nri1394

    Article  PubMed  CAS  Google Scholar 

  3. Ygberg, S., Nilsson, A.: The developing immune system - from foetus to toddler. Acta Paediatr. 101, 120–127 (2012). doi:10.1111/j.1651-2227.2011.02494.x

    Article  PubMed  CAS  Google Scholar 

  4. Siegrist, C.A.: Neonatal and early life vaccinology. Vaccine 19, 3331–3346 (2001)

    Article  PubMed  CAS  Google Scholar 

  5. Hodgins, D.C., Shewen, P.E.: Vaccination of neonates: problem and issues. Vaccine 30, 1541–1559 (2012). doi:10.1016/j.vaccine.2011.12.047

    Article  PubMed  CAS  Google Scholar 

  6. Ueno, H., et al.: Dendritic cell subsets in health and disease. Immunol. Rev. 219, 118–142 (2007). doi:10.1111/j.1600-065X.2007.00551.x

    Article  PubMed  CAS  Google Scholar 

  7. Teig, N., Moses, D., Gieseler, S., Schauer, U.: Age-related changes in human blood dendritic cell subpopulations. Scand. J. Immunol. 55, 453–457 (2002)

    Article  PubMed  CAS  Google Scholar 

  8. Sorg, R.V., Kogler, G., Wernet, P.: Identification of cord blood dendritic cells as an immature CD11c- population. Blood 93, 2302–2307 (1999)

    PubMed  CAS  Google Scholar 

  9. Jones, C.A., Holloway, J.A., Warner, J.O.: Fetal immune responsiveness and routes of allergic sensitization. Pediatr. Allergy Immunol. 13(Suppl 15), 19–22 (2002)

    Article  PubMed  Google Scholar 

  10. Liu, E., Tu, W., Law, H.K., Lau, Y.L.: Decreased yield, phenotypic expression and function of immature monocyte-derived dendritic cells in cord blood. Br. J. Haematol. 113, 240–246 (2001)

    Article  PubMed  CAS  Google Scholar 

  11. Langrish, C.L., Buddle, J.C., Thrasher, A.J., Goldblatt, D.: Neonatal dendritic cells are intrinsically biased against Th-1 immune responses. Clin. Exp. Immunol. 128, 118–123 (2002)

    Article  PubMed  CAS  Google Scholar 

  12. De Wit, D., et al.: Impaired responses to toll-like receptor 4 and toll-like receptor 3 ligands in human cord blood. J. Autoimmun. 21, 277–281 (2003)

    Article  PubMed  Google Scholar 

  13. De Wit, D., et al.: Blood plasmacytoid dendritic cell responses to CpG oligodeoxynucleotides are impaired in human newborns. Blood 103, 1030–1032 (2004). doi:10.1182/blood-2003-04-1216

    Article  PubMed  Google Scholar 

  14. Levy, O., et al.: Selective impairment of TLR-mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-alpha induction by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves the response to R-848. J. Immunol. 173, 4627–4634 (2004)

    PubMed  CAS  Google Scholar 

  15. Burl, S., et al.: Age-dependent maturation of Toll-like receptor-mediated cytokine responses in Gambian infants. PLoS One 6, e18185 (2011). doi:10.1371/journal.pone.0018185

    Article  PubMed  CAS  Google Scholar 

  16. Nguyen, M., et al.: Acquisition of adult-like TLR4 and TLR9 responses during the first year of life. PLoS One 5, e10407 (2010). doi:10.1371/journal.pone.0010407

    Article  PubMed  Google Scholar 

  17. Belderbos, M.E., et al.: Skewed pattern of Toll-like receptor 4-mediated cytokine production in human neonatal blood: low LPS-induced IL-12p70 and high IL-10 persist throughout the first month of life. Clin. Immunol. 133, 228–237 (2009). doi:10.1016/j.clim.2009.07.003

    Article  PubMed  CAS  Google Scholar 

  18. de Vries, E., et al.: Longitudinal survey of lymphocyte subpopulations in the first year of life. Pediatr. Res. 47, 528–537 (2000)

    Article  PubMed  Google Scholar 

  19. Schatorje, E.J., et al.: Pediatric reference values for the peripheral T-cell compartment. Scand. J. Immunol. (2011). doi:10.1111/j.1365-3083.2011.02671.x

    Google Scholar 

  20. Schaerli, P., et al.: CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000)

    Article  PubMed  CAS  Google Scholar 

  21. Wing, K., et al.: CD4+ CD25+ FOXP3+ regulatory T cells from human thymus and cord blood suppress antigen-specific T cell responses. Immunology 115, 516–525 (2005). doi:10.1111/j.1365-2567.2005.02186.x

    Article  PubMed  CAS  Google Scholar 

  22. Rabe, H., et al.: Higher proportions of circulating FOXP3+ and CTLA-4+ regulatory T cells are associated with lower fractions of memory CD4+ T cells in infants. J. Leukoc. Biol. 90, 1133–1140 (2011). doi:10.1189/jlb.0511244

    Article  PubMed  CAS  Google Scholar 

  23. Jullien, P., et al.: Decreased CD154 expression by neonatal CD4+ T cells is due to limitations in both proximal and distal events of T cell activation. Int. Immunol. 15, 1461–1472 (2003)

    Article  PubMed  CAS  Google Scholar 

  24. Fadel, S., Sarzotti, M.: Cellular immune responses in neonates. Int. Rev. Immunol. 19, 173–193 (2000)

    Article  PubMed  CAS  Google Scholar 

  25. Capolunghi, F., et al.: CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J. Immunol. 180, 800–808 (2008)

    PubMed  CAS  Google Scholar 

  26. Morbach, H., Eichhorn, E.M., Liese, J.G., Girschick, H.J.: Reference values for B cell subpopulations from infancy to adulthood. Clin. Exp. Immunol. 162, 271–279 (2010). doi:10.1111/j.1365-2249.2010.04206.x

    Article  PubMed  CAS  Google Scholar 

  27. Smet, J., Mascart, F., Schandene, L.: Are the reference values of B cell subpopulations used in adults for classification of common variable immunodeficiencies appropriate for children? Clin. Immunol. 138, 266–273 (2011). doi:10.1016/j.clim.2010.12.001

    Article  PubMed  CAS  Google Scholar 

  28. Huck, K., et al.: Memory B-cells in healthy and antibody-deficient children. Clin. Immunol. 131, 50–59 (2009). doi:10.1016/j.clim.2008.11.008

    Article  PubMed  CAS  Google Scholar 

  29. Kruschinski, C., Zidan, M., Debertin, A.S., von Horsten, S., Pabst, R.: Age-dependent development of the splenic marginal zone in human infants is associated with different causes of death. Hum. Pathol. 35, 113–121 (2004)

    Article  PubMed  Google Scholar 

  30. Lundell, A.C., et al.: Infant B cell memory differentiation and early gut bacterial colonization. J. Immunol. 188, 4315–4322 (2012). doi:10.4049/jimmunol.1103223

    Article  PubMed  CAS  Google Scholar 

  31. Weller, S., et al.: Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 104, 3647–3654 (2004). doi:10.1182/blood-2004-01-0346

    Article  PubMed  CAS  Google Scholar 

  32. Kruetzmann, S., et al.: Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J. Exp. Med. 197, 939–945 (2003). doi:10.1084/jem.20022020

    Article  PubMed  CAS  Google Scholar 

  33. Nilsson, A., et al.: Current chemotherapy protocols for childhood acute lymphoblastic leukemia induce loss of humoral immunity to viral vaccination antigens. Pediatrics 109, e91 (2002)

    Article  PubMed  Google Scholar 

  34. Pihlgren, M., et al.: Reduced ability of neonatal and early-life bone marrow stromal cells to support plasmablast survival. J. Immunol. 176, 165–172 (2006)

    PubMed  CAS  Google Scholar 

  35. Press, J.L.: Neonatal immunity and somatic mutation. Int. Rev. Immunol. 19, 265–287 (2000)

    Article  PubMed  CAS  Google Scholar 

  36. Siegrist, C.A.: The challenges of vaccine responses in early life: selected examples. J. Comp. Pathol. 137(Suppl 1), S4–S9 (2007). doi:10.1016/j.jcpa.2007.04.004

    Article  PubMed  CAS  Google Scholar 

  37. Tasker, L., Marshall-Clarke, S.: Immature B cells from neonatal mice show a selective inability to up-regulate MHC class II expression in response to antigen receptor ligation. Int. Immunol. 9, 475–484 (1997)

    Article  PubMed  CAS  Google Scholar 

  38. Chang, T.L., Capraro, G., Kleinman, R.E., Abbas, A.K.: Anergy in immature B lymphocytes. Differential responses to receptor-mediated stimulation and T helper cells. J. Immunol. 147, 750–756 (1991)

    PubMed  CAS  Google Scholar 

  39. Marshall-Clarke, S., Reen, D., Tasker, L., Hassan, J.: Neonatal immunity: how well has it grown up? Immunol. Today 21, 35–41 (2000)

    Article  PubMed  CAS  Google Scholar 

  40. McHeyzer-Williams, L.J., McHeyzer-Williams, M.G.: Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005). doi:10.1146/annurev.immunol.23.021704.115732

    Article  PubMed  CAS  Google Scholar 

  41. Pan-Hammarstrom, Q., Zhao, Y., Hammarstrom, L.: Class switch recombination: a comparison between mouse and human. Adv. Immunol. 93, 1–61 (2007). doi:10.1016/S0065-2776(06)93001-6

    Article  PubMed  Google Scholar 

  42. Mortari, F., Wang, J.Y., Schroeder Jr., H.W.: Human cord blood antibody repertoire. Mixed population of VH gene segments and CDR3 distribution in the expressed C alpha and C gamma repertoires. J. Immunol. 150, 1348–1357 (1993)

    PubMed  CAS  Google Scholar 

  43. Ridings, J., et al.: Somatic hypermutation of immunoglobulin genes in human neonates. Clin. Exp. Immunol. 108, 366–374 (1997)

    Article  PubMed  CAS  Google Scholar 

  44. Ridings, J., Dinan, L., Williams, R., Roberton, D., Zola, H.: Somatic mutation of immunoglobulin V(H)6 genes in human infants. Clin. Exp. Immunol. 114, 33–39 (1998)

    Article  PubMed  CAS  Google Scholar 

  45. McGreal, E.P., Hearne, K., Spiller, O.B.: Off to a slow start: under-development of the complement system in term newborns is more substantial following premature birth. Immunobiology 217, 176–186 (2012). doi:10.1016/j.imbio.2011.07.027

    Article  PubMed  CAS  Google Scholar 

  46. Davis, C.A., Vallota, E.H., Forristal, J.: Serum complement levels in infancy: age related changes. Pediatr. Res. 13, 1043–1046 (1979)

    Article  PubMed  CAS  Google Scholar 

  47. Levy, O., et al.: The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. J. Immunol. 177, 1956–1966 (2006)

    PubMed  CAS  Google Scholar 

  48. Belderbos, M.E., et al.: Neonatal plasma polarizes TLR4-mediated cytokine responses towards low IL-12p70 and high IL-10 production via distinct factors. PLoS One 7, e33419 (2012). doi:10.1371/journal.pone.0033419

    Article  PubMed  CAS  Google Scholar 

  49. Siegrist, C.A.: Mechanisms by which maternal antibodies influence infant vaccine responses: review of hypotheses and definition of main determinants. Vaccine 21, 3406–3412 (2003)

    Article  PubMed  CAS  Google Scholar 

  50. Gruber, C., Nilsson, L., Bjorksten, B.: Do early childhood immunizations influence the development of atopy and do they cause allergic reactions? Pediatr. Allergy Immunol. 12, 296–311 (2001)

    Article  PubMed  CAS  Google Scholar 

  51. Klein, N.P., et al.: Measles-mumps-rubella-varicella combination vaccine and the risk of febrile seizures. Pediatrics 126, e1–e8 (2010). doi:10.1542/peds.2010-0665

    Article  PubMed  Google Scholar 

  52. O’Leary, S.T., et al.: The risk of immune thrombocytopenic purpura after vaccination in children and adolescents. Pediatrics 129, 248–255 (2012). doi:10.1542/peds.2011-1111

    Article  PubMed  Google Scholar 

  53. Partinen, M., et al.: Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One 7, e33723 (2012). doi:10.1371/journal.pone.0033723

    Article  PubMed  CAS  Google Scholar 

  54. McIntosh, A.M., et al.: Effects of vaccination on onset and outcome of Dravet syndrome: a retrospective study. Lancet Neurol. 9, 592–598 (2010). doi:10.1016/S1474-4422(10)70107-1

    Article  PubMed  Google Scholar 

  55. Uno, Y., Uchiyama, T., Kurosawa, M., Aleksic, B., Ozaki, N.: The combined measles, mumps, and rubella vaccines and the total number of vaccines are not associated with development of autism spectrum disorder: the first case–control study in Asia. Vaccine 30, 4292–4298 (2012). doi:10.1016/j.vaccine.2012.01.093

    Article  PubMed  Google Scholar 

  56. Demicheli, V., Rivetti, A., Debalini, M.G., Di Pietrantonj, C.: Vaccines for measles, mumps and rubella in children. Cochrane Database Syst. Rev. 2, CD004407 (2012). doi:10.1002/14651858.CD004407.pub3

    PubMed  Google Scholar 

  57. Bardage, C., et al.: Neurological and autoimmune disorders after vaccination against pandemic influenza A (H1N1) with a monovalent adjuvanted vaccine: population based cohort study in Stockholm, Sweden. BMJ 343, d5956 (2011). doi:10.1136/bmj.d5956

    Article  PubMed  Google Scholar 

  58. Klein, N.P., et al.: Measles-containing vaccines and febrile seizures in children age 4 to 6 years. Pediatrics 129, 809–814 (2012). doi:10.1542/peds.2011-3198

    Article  PubMed  Google Scholar 

  59. Oppermann, M., et al.: A(H1N1)v2009: a controlled observational prospective cohort study on vaccine safety in pregnancy. Vaccine 30, 4445–4452 (2012). doi:10.1016/j.vaccine.2012.04.081

    Article  PubMed  Google Scholar 

  60. Fortner, K.B., Kuller, J.A., Rhee, E.J., Edwards, K.M.: Influenza and tetanus, diphtheria, and acellular pertussis vaccinations during pregnancy. Obstet. Gynecol. Surv. 67, 251–257 (2012). doi:10.1097/OGX.0b013e3182524cee

    Article  PubMed  Google Scholar 

  61. Eick, A.A., et al.: Maternal influenza vaccination and effect on influenza virus infection in young infants. Arch. Pediatr. Adolesc. Med. 165, 104–111 (2011). doi:10.1001/archpediatrics.2010.192

    Article  PubMed  Google Scholar 

  62. Quiambao, B.P., et al.: Immunogenicity and reactogenicity of 23-valent pneumococcal polysaccharide vaccine among pregnant Filipino women and placental transfer of antibodies. Vaccine 25, 4470–4477 (2007). doi:10.1016/j.vaccine.2007.03.021

    Article  PubMed  CAS  Google Scholar 

  63. Groneck, L., et al.: Oligoclonal CD4+ T cells promote host memory immune responses to Zwitterionic polysaccharide of Streptococcus pneumoniae. Infect. Immun. 77, 3705–3712 (2009). doi:10.1128/IAI.01492-08

    Article  PubMed  CAS  Google Scholar 

  64. Holmlund, E., Nohynek, H., Quiambao, B., Ollgren, J., Kayhty, H.: Mother-infant vaccination with pneumococcal polysaccharide vaccine: persistence of maternal antibodies and responses of infants to vaccination. Vaccine 29, 4565–4575 (2011). doi:10.1016/j.vaccine.2011.04.068

    Article  PubMed  CAS  Google Scholar 

  65. Lopes, C.R., et al.: Ineffectiveness for infants of immunization of mothers with pneumococcal capsular polysaccharide vaccine during pregnancy. Braz. J. Infect. Dis. 13, 104–106 (2009)

    Article  PubMed  Google Scholar 

  66. Gans, H., et al.: Measles and mumps vaccination as a model to investigate the developing immune system: passive and active immunity during the first year of life. Vaccine 21, 3398–3405 (2003)

    Article  PubMed  CAS  Google Scholar 

  67. Leuridan, E., Goeyvaerts, N., Hens, N., Hutse, V., Van Damme, P.: Maternal mumps antibodies in a cohort of children up to the age of 1 year. Eur. J. Pediatr. 171, 1167–1173 (2012). doi:10.1007/s00431-012-1691-y

    Article  PubMed  CAS  Google Scholar 

  68. Shahid, N.S., et al.: Serum, breast milk, and infant antibody after maternal immunisation with pneumococcal vaccine. Lancet 346, 1252–1257 (1995)

    Article  PubMed  CAS  Google Scholar 

  69. Redd, S.C., et al.: Comparison of vaccination with measles-mumps-rubella vaccine at 9, 12, and 15 months of age. J. Infect. Dis. 189(Suppl 1), S116–S122 (2004). doi:10.1086/378691

    Article  PubMed  Google Scholar 

  70. Goldacker, S., et al.: Active vaccination in patients with common variable immunodeficiency (CVID). Clin. Immunol. 124, 294–303 (2007). doi:10.1016/j.clim.2007.04.011

    Article  PubMed  CAS  Google Scholar 

  71. Rezaei, N., et al.: Serum bactericidal antibody response to serogroup C polysaccharide meningococcal vaccination in children with primary antibody deficiencies. Vaccine 25, 5308–5314 (2007). doi:10.1016/j.vaccine.2007.05.021

    Article  PubMed  CAS  Google Scholar 

  72. Chovancova, Z., Vlkova, M., Litzman, J., Lokaj, J., Thon, V.: Antibody forming cells and plasmablasts in peripheral blood in CVID patients after vaccination. Vaccine 29, 4142–4150 (2011). doi:10.1016/j.vaccine.2011.03.087

    Article  PubMed  CAS  Google Scholar 

  73. Cagigi, A., Nilsson, A., Pensieroso, S., Chiodi, F.: Dysfunctional B-cell responses during HIV-1 infection: implication for influenza vaccination and highly active antiretroviral therapy. Lancet Infect. Dis. 10, 499–503 (2010). doi:10.1016/S1473-3099(10)70117-1

    Article  PubMed  Google Scholar 

  74. Sutcliffe, C.G., Moss, W.J.: Do children infected with HIV receiving HAART need to be revaccinated? Lancet Infect. Dis. 10, 630–642 (2010). doi:10.1016/S1473-3099(10)70116-X

    Article  PubMed  Google Scholar 

  75. Menson, E. N., et al.: Guidance on vaccination of HIV-infected children in Europe. HIV Med. 13, 333–336; e331–e314 (2012). doi:10.1111/j.1468-1293.2011.00982.x

  76. Patel, S. R., Chisholm, J. C., Heath, P. T.: Vaccinations in children treated with standard-dose cancer therapy or hematopoietic stem cell transplantation. Pediatr. Clin. North. Am. 55, 169–186, xi (2008). doi:10.1016/j.pcl.2007.10.012

  77. Brodtman, D.H., Rosenthal, D.W., Redner, A., Lanzkowsky, P., Bonagura, V.R.: Immunodeficiency in children with acute lymphoblastic leukemia after completion of modern aggressive chemotherapeutic regimens. J. Pediatr. 146, 654–661 (2005). doi:10.1016/j.jpeds.2004.12.043

    Article  PubMed  Google Scholar 

  78. Lehrnbecher, T., et al.: Revaccination of children after completion of standard chemotherapy for acute lymphoblastic leukaemia: a pilot study comparing different schedules. Br. J. Haematol. 152, 754–757 (2011). doi:10.1111/j.1365-2141.2010.08522.x

    Article  PubMed  Google Scholar 

  79. Graham, B.S.: Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol. Rev. 239, 149–166 (2011). doi:10.1111/j.1600-065X.2010.00972.x

    Article  PubMed  CAS  Google Scholar 

  80. Lindell, D.M., et al.: A novel inactivated intranasal respiratory syncytial virus vaccine promotes viral clearance without Th2 associated vaccine-enhanced disease. PLoS One 6, e21823 (2011). doi:10.1371/journal.pone.0021823

    Article  PubMed  CAS  Google Scholar 

  81. Mastelic, B., et al.: Mode of action of adjuvants: implications for vaccine safety and design. Biologicals 38, 594–601 (2010). doi:10.1016/j.biologicals.2010.06.002

    Article  PubMed  CAS  Google Scholar 

  82. Garcon, N., Segal, L., Tavares, F., Van Mechelen, M.: The safety evaluation of adjuvants during vaccine development: the AS04 experience. Vaccine 29, 4453–4459 (2011). doi:10.1016/j.vaccine.2011.04.046

    Article  PubMed  CAS  Google Scholar 

  83. Giannini, S.L., et al.: Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 24, 5937–5949 (2006). doi:10.1016/j.vaccine.2006.06.005

    Article  PubMed  CAS  Google Scholar 

  84. Sacarlal, J., et al.: Long-term safety and efficacy of the RTS, S/AS02A malaria vaccine in Mozambican children. J. Infect. Dis. 200, 329–336 (2009). doi:10.1086/600119

    Article  PubMed  Google Scholar 

  85. Bjarnarson, S.P., Adarna, B.C., Benonisson, H., Del Giudice, G., Jonsdottir, I.: The adjuvant LT-K63 can restore delayed maturation of follicular dendritic cells and poor persistence of both protein- and polysaccharide-specific antibody-secreting cells in neonatal mice. J. Immunol. 189, 1265–1273 (2012). doi:10.4049/jimmunol.1200761

    Article  PubMed  CAS  Google Scholar 

  86. da Hora, V.P., Conceicao, F.R., Dellagostin, O.A., Doolan, D.L.: Non-toxic derivatives of LT as potent adjuvants. Vaccine 29, 1538–1544 (2011). doi:10.1016/j.vaccine.2010.11.091

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Nilsson MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Ygberg, S., Nilsson, A. (2013). Pediatric Immunology and Vaccinology. In: Giese, M. (eds) Molecular Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1419-3_4

Download citation

Publish with us

Policies and ethics