Skip to main content

Dendritic Cells Pulsed with Viral Oncolysate

  • Chapter
  • First Online:
Book cover Molecular Vaccines

Abstract

Glioblastoma multiforme (GBM) is an aggressive malignant tumour of the central neural system (CNS). Despite an improved surgical management and treatment by radiotherapy and adjuvant chemotherapy with temozolomide (TMZ), this form of cancer shows a poor prognosis with a median survival of less than 15 months. The use of dendritic cell (DC)-based active vaccination to bolster the otherwise impaired antitumour immune responses in glioma patients has received increasing attention. Early clinical trials demonstrated the safety and immunogenicity of autologous DCs loaded exogenously with various antigens. However, such DC vaccines have unfortunately rarely translated into strong clinical effects. The main reasons appear to be limitations in the induction of strong cellular antitumour immune responses able to counteract glioma-induced immunosuppression.

This may be due (1) to the immature/intermediate state of the used DCs that may induce tolerance and (2) to the lack of danger signals and type 1 polarisation signals, which create the proper context, in which tumour antigens should be presented by DCs to T cells. In this chapter, we introduce a new DC vaccine with reduced tolerogenic and enhanced immunogenic potential. The improved vaccine (NDV-DC) combines DCs with autologous tumour cells and danger signals provided by infection with an oncolytic strain of Newcastle Disease Virus (NDV). The uniqueness of this approach is associated with three important properties of NDV as bird paramyxovirus: tumour-selective replication, oncolytic potential and immune stimulatory capacity. Glioblastoma patients will be vaccinated post-operatively by intradermal applications of the NDV-DC vaccine, which is composed of ex vivo cultured patient-derived DCs loaded with viral oncolysate from NDV-infected autologous tumour cells.

When such tumour antigen-presenting DCs are applied to patients, their tumour antigen-specific T cells will receive several activation signals: (1) The tumour antigens will provide the T-cell activation signal 1, and (2) simultaneously, NDV-DC will provide so-called danger signals of importance for the induction of signal 2 (T-cell costimulation) and signal 3 (T-cell polarisation towards Th1). Compared to classical DC vaccines, NDV-DC presents improved T-cell activation signals required for induction of CD4+ and CD8+ T-cell-mediated immune responses resulting in the stimulation of strong and systemic tumoricidal T-cell immunity.

Through its capacity to induce interferon (IFN)-α and interferon (IFN)-ß, NDV also provides a link between the innate and the adaptive immunity system, thus further strengthening the anticancer immune response. NDV-induced molecular danger signals (viral RNA and HN protein) drive DCs to become Th1-directed immunogenic antigen-presenting cells able to overcome immunosuppression and tolerance mechanisms. Such a combination of oncolytic NDV with patient’s tumour cells and autologous DCs will be evaluated initially against glioblastoma but it is applicable against virtually all types of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/ucm210012.htm (2010)

  2. Hovden, A.O., Appel, S.: The first dendritic cell-based therapeutic cancer vaccine is approved by the FDA. Scand. J. Immunol. 72, 554 (2010)

    Article  PubMed  Google Scholar 

  3. Kantoff, P.W., et al.: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010)

    Article  PubMed  CAS  Google Scholar 

  4. Okada, H., et al.: Immunotherapeutic approaches for glioma. Crit. Rev. Immunol. 29, 1–42 (2009)

    Article  PubMed  CAS  Google Scholar 

  5. Walker, P.R., Calzascia, T., de Tribolet, N., Dietrich, P.Y.: T-cell immune responses in the brain and their relevance for cerebral malignancies. Brain Res. Rev. 42, 97–122 (2003)

    Article  PubMed  CAS  Google Scholar 

  6. Central Brain Tumor Registry of the United States (CBTRUS), www.cbtrus.org

  7. Buckner, J.C., et al.: Central nervous system tumors. Mayo Clin. Proc. 82, 1271–1286 (2007)

    Article  PubMed  Google Scholar 

  8. Dolecek, T.A., Propp, J.M., Stroup, N.E., Kruchko, C.: CBTRUS Statistical Report: Primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncol 14, 1–49 (2012)

    Article  Google Scholar 

  9. Porter, K.R., McCarthy, B.J., Freels, S., Kim, Y., Davis, F.G.: Prevalence estimates for primary brain tumors in the United States by Age, Gender, Behavior, and Histology. Neuro-Oncology, 12, 520–527 (2010)

    Article  PubMed  Google Scholar 

  10. Ohgaki, H., Kleihues, P.: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol. 6, 479–489 (2005)

    Google Scholar 

  11. Kleihues, P., et al.: The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol. 61, 215–229 (2002)

    PubMed  Google Scholar 

  12. Louis, D.N., et al.: The 2007 WHO classification of tumors of the central nervous system. Acta Neuropathol. 114, 97–109 (2007)

    Article  PubMed  Google Scholar 

  13. Wrensch, M., Minn, Y., Chew, T., Bondy, M., Berger, M.S.: Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol. 4, 278–299 (2002)

    PubMed  Google Scholar 

  14. Swanson, K.R., Alvord Jr., E.C., Murray, J.D.: Virtual brain tumors (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. Br. J. Cancer 86, 14–18 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. Singh, S.K., et al.: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003)

    PubMed  CAS  Google Scholar 

  16. Singh, S.K., et al.: Identification of human brain tumor initiating cells. Nature 432, 396–401 (2004)

    Article  PubMed  CAS  Google Scholar 

  17. Sanai, N., Alvarez-Buylla, A., Berger, M.S.: Neural stem cells and the origin of gliomas. N. Engl. J. Med. 353, 811–822 (2005)

    Article  PubMed  CAS  Google Scholar 

  18. Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., Dimeco, F., Vescovi, A.: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004)

    Article  PubMed  CAS  Google Scholar 

  19. Bao, S., et al.: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006)

    Article  PubMed  CAS  Google Scholar 

  20. Eramo, A., et al.: Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 13, 1238–1241 (2006)

    Article  PubMed  CAS  Google Scholar 

  21. Tehrani, M., Friedman, T.M., Olson, J.J., Brat, D.J.: Intravascular thrombosis in central nervous system malignancies: a potential role in astrocytoma progression to glioblastoma. Brain Pathol. 18, 164–171 (2008)

    Article  PubMed  Google Scholar 

  22. Stupp, R., European Organisation for Research and Treatment of Cancer Brain Tumor and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group, et al.: Efficacy of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomized phase III study: 5-analysis of the EORTC–NCIC trial. Lancet Oncol. 10, 459–466 (2009)

    Article  PubMed  CAS  Google Scholar 

  23. Abbott, N.J., Rönnbäck, L., Hansson, E.: Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53 (2006)

    Article  PubMed  CAS  Google Scholar 

  24. Medawar, P.B.: Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948)

    PubMed  CAS  Google Scholar 

  25. Ransohoff, R.M., Kivisakk, P., Kidd, G.: Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol. 3, 569–581 (2003)

    Article  PubMed  CAS  Google Scholar 

  26. Fabry, Z., Raine, C.S., Hart, M.N.: Nervous tissue as an immune compartment: the dialect of the immune response in the CNS. Immunol. Today 15, 218–224 (1994)

    Article  PubMed  CAS  Google Scholar 

  27. Parney, I.F., Hao, C., Petruk, K.C.: Glioma immunology and immunotherapy. Neurosurgery 46, 778–792 (2000)

    PubMed  CAS  Google Scholar 

  28. Cserr, H.F., Knopf, P.M.: Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol. Today 13, 507–512 (1992)

    Article  PubMed  CAS  Google Scholar 

  29. Cserr, H.F., Harling-Berg, C.J., Knopf, P.M.: Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 2, 269–276 (1992)

    Article  PubMed  CAS  Google Scholar 

  30. Harling-Berg, C.J., Park, T.J., Knopf, P.M.: Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. J. Neuroimmunol. 101, 111–127 (1999)

    Article  PubMed  CAS  Google Scholar 

  31. Weller, R.O., Engelhardt, B., Phillips, M.J.: Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol. 6, 275–288 (1996)

    Article  PubMed  CAS  Google Scholar 

  32. Perrin, G., et al.: Astrocytoma infiltrating lymphocytes include major T cell clonal expansions confined to the CD8 subset. Int. Immunol. 11, 1337–1349 (1999)

    Article  PubMed  CAS  Google Scholar 

  33. Walker, P.R., et al.: The brain parenchyma is permissive for full antitumor CTL effector function, even in the absence of CD4 T cells. J. Immunol. 165, 3128–3135 (2000)

    PubMed  CAS  Google Scholar 

  34. Gehrmann, J., Banati, R.B., Wiessner, C., Hossmann, K.A., Kreutzberg, G.W.: Reactive microglia in cerebral ischaemia: an early mediator of tissue damage? Neuropathol. Appl. Neurobiol. 21, 277–289 (1995)

    Article  PubMed  CAS  Google Scholar 

  35. Lowe, J., MacLennan, K.A., Powe, D.G., Pound, J.D., Palmer, J.B.: Microglial cells in human brain have phenotypic characteristics related to possible function as dendritic antigen presenting cells. J. Pathol. 159, 143–149 (1989)

    Article  PubMed  CAS  Google Scholar 

  36. Ulvestad, E., et al.: Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J. Leukoc. Biol. 56, 732–740 (1994)

    PubMed  CAS  Google Scholar 

  37. Gehrmann, J., Banati, R.B., Kreutzberg, G.W.: Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J. Neuroimmunol. 48, 189–198 (1993)

    Article  PubMed  CAS  Google Scholar 

  38. Williams Jr., K., Ulvestad, E., Cragg, L., Blain, M., Antel, J.P.: Induction of primary T cell responses by human glial cells. J. Neurosci. Res. 36, 382–390 (1993)

    Article  PubMed  Google Scholar 

  39. Hickey, W.F., Kimura, H.: Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988)

    Article  PubMed  CAS  Google Scholar 

  40. Serot, J.M., Foliguet, B., Bene, M.C., Faure, G.C.: Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. Neuroreport 8, 1995–1998 (1997)

    Article  PubMed  CAS  Google Scholar 

  41. McMenamin, P.G., Forrester, J.V.: Dendritic cells in the central nervous system and eye and their associated supporting tissues. In: Dendritic cells: biology and clinical applications, pp. 205–248. Academic Press, New York (1999)

    Google Scholar 

  42. Harling-Berg, C.J., Hallett, J.J., Park, J.T., Knopf, P.M.: Hierarchy of immune responses to antigen in the normal brain. Curr. Top. Microbiol. Immunol. 265, 1–22 (2002)

    Article  PubMed  CAS  Google Scholar 

  43. Mosmann, T.R., Coffman, R.L.: TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989)

    Article  PubMed  CAS  Google Scholar 

  44. Pardoll, D.: Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 21, 807–839 (2003)

    Article  PubMed  CAS  Google Scholar 

  45. Hussain, S.F., Heimberger, A.B.: Immunotherapy for human glioma: innovative approaches and recent results. Expert Rev. Anticancer Ther. 5, 777–790 (2005)

    Article  PubMed  CAS  Google Scholar 

  46. Bodey, B., Bodey Jr., B., Siegel, S.E., Kaiser, H.E.: Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res. 20, 2665–2676 (2000)

    PubMed  CAS  Google Scholar 

  47. Pawelec, G., Engel, A., Adibzadeh, M.: Prerequisites for the immunotherapy of cancer. Cancer Immunol. Immunother. 48, 214–217 (1999)

    Article  PubMed  CAS  Google Scholar 

  48. Roszman, T., Elliott, L., Brooks, W.: Modulation of T-cell function by gliomas. Immunol. Today 12, 370–374 (1991)

    Article  PubMed  CAS  Google Scholar 

  49. Vauleon, E., Avril, T., Collet, B., Mosser, J., Quillien, V.: Overview of cellular immunotherapy for patients with glioblastoma. Clin. Dev. Immunol. 2010, (2010)

    PubMed  Google Scholar 

  50. Yamasaki, T., Moritake, K., Klein, G.: Experimental appraisal of the lack of antitumor natural killer cell mediated immunosurveillance in response to lymphomas growing in the mouse brain. J. Neurosurg. 98, 599–606 (2003)

    Article  PubMed  CAS  Google Scholar 

  51. Platten, M., et al.: Transforming growth factors beta(1) (TGF beta(1)) and TGF beta(2) promote glioma cell migration via upregulation of alpha(V)beta(3) integrin expression. Biochem. Biophys. Res. Commun. 268, 607–611 (2000)

    Article  PubMed  CAS  Google Scholar 

  52. Weller, M., Fontana, A.: The failure of current immunotherapy for malignant glioma. Tumor derived TGF beta, T cell apoptosis, and the immune privilege of the brain. Brain Res. Rev. 21, 128–151 (1995)

    Article  PubMed  CAS  Google Scholar 

  53. Albesiano, E., Han, J.E., Lim, M.: Mechanisms of local immunoresistance in glioma. Neurosurg. Clin. N. Am. 21, 17–29 (2010)

    Article  PubMed  Google Scholar 

  54. Gregori, S., Goudy, K.S., Roncarolo, M.G.: The cellular and molecular mechanisms of immuno-suppression by human type 1 regulatory T cells. Front. Immunol. 3, 30 (2012)

    Article  PubMed  CAS  Google Scholar 

  55. Roncarolo, M.G., Bacchetta, R., Bordignon, C., Narula, S., Levings, M.K.: Type 1 T regulatory cells. Immunol. Rev. 182, 68–79 (2001)

    Article  PubMed  CAS  Google Scholar 

  56. Fujita, M., et al.: Effective immunotherapy against murine gliomas using type 1 polarizing dendritic cells-significant roles of CXCL10. Cancer Res. 69, 1587–1595 (2009)

    Article  PubMed  CAS  Google Scholar 

  57. Kuwashima, N., et al.: Delivery of dendritic cells engineered to secrete IFN-α into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J. Immunol. 175, 2730–2740 (2005)

    PubMed  CAS  Google Scholar 

  58. Okada, N., et al.: Augmentation of the migratory ability of DC-based vaccine into regional lymph nodes by efficient CCR7 gene transduction. Gene Ther. 12, 129–139 (2005)

    Article  PubMed  CAS  Google Scholar 

  59. Gabrilovich, D.I., Corak, J., Ciernik, I.F., Kavanaugh, D., Carbone, D.P.: Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin. Cancer Res. 3, 90–97 (1997)

    Google Scholar 

  60. Satthaporn, S., et al.: Dendritic cells are dysfunctional in patients with operable breast cancer. Cancer Immunol. Immunother. 53, 510–518 (2004)

    Article  PubMed  Google Scholar 

  61. Banchereau, J., Steinman, R.M.: Dendritic cells and the control of immunity. Nature 392, 245–252 (1998)

    Article  PubMed  CAS  Google Scholar 

  62. Schuler, G., Schuler-Thurner, B., Steinman, R.M.: The use of dendritic cells in cancer immunotherapy. Curr. Opin. Immunol. 15, 138–147 (2003)

    Article  PubMed  CAS  Google Scholar 

  63. Schuler, G., Steinman, R.M.: Dendritic cells as adjuvants for immune-mediated resistance to tumors. J. Exp. Med. 186, 1183–1187 (1997)

    Article  PubMed  CAS  Google Scholar 

  64. Kalinski, P., Hilkens, C.M., Wierenga, E.A., Kapsenberg, M.L.: T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561–567 (1999)

    Article  PubMed  CAS  Google Scholar 

  65. Markowicz, S., Engleman, E.G.: Granulocyte-macrophage colony stimulating factor promotes differentiation and survival of human peripheral blood dendritic cells in vitro. J. Clin. Invest. 85, 955–961 (1990)

    Article  PubMed  CAS  Google Scholar 

  66. Gilboa, E.: The makings of a tumor rejection antigen. Immunity 11, 263–270 (1999)

    Article  PubMed  CAS  Google Scholar 

  67. Parmiani, G., De Filippo, A., Novellino, L., Castelli, C.: Unique human tumor antigens: immunobiology and use in clinical trials. J. Immunol. 178, 1975–1979 (2007)

    PubMed  CAS  Google Scholar 

  68. Sabatier, R., et al.: Kinome expression profiling and prognosis of basal breast cancers. Mol. Cancer 10, 86 (2011)

    Article  PubMed  Google Scholar 

  69. Horvath, J.C., et al.: Cancer vaccines with emphasis on a viral oncolysate melanoma vaccine. Acta Microbiol. Immunol. Hung. 46, 1–20 (1999)

    Article  PubMed  CAS  Google Scholar 

  70. Fournier, P., Schirrmacher, V.: Randomized clinical studies of antitumor vaccination: state of the art in 2008. Expert Rev. Vaccines 8, 51–66 (2009)

    Article  PubMed  Google Scholar 

  71. Ferreira, L., Villar, E., Muñoz-Barroso, I.: Gangliosides and N-glycoproteins function as Newcastle disease virus receptors. Int. J. Biochem. Cell Biol. 36, 2344–2356 (2004)

    Article  PubMed  CAS  Google Scholar 

  72. Fiola, C., et al.: Tumor-selective replication of Newcastle disease virus: association with defects of tumor cells defence. Int. J. Cancer 119, 328–338 (2006)

    Article  PubMed  CAS  Google Scholar 

  73. Wilden, H., Fournier, P., Zawatzky, R., Schirrmacher, V.: Expression of RIG-I, IRF3, IFN-beta and IRF7 determines resistance or susceptibility of cells to infection by Newcastle disease virus. Int. J. Oncol. 34, 971–982 (2009)

    PubMed  CAS  Google Scholar 

  74. Critchley-Thorne, R.J., et al.: Impaired interferon signaling is a common immune defect in human cancer. Proc. Natl. Acad. Sci. U.S.A. 106, 9010–9015 (2009)

    Article  PubMed  CAS  Google Scholar 

  75. Fournier, P., Bian, H., Szeberényi, J., Schirrmacher, V.: Analysis of three properties of Newcastle disease virus for fighting cancer: tumor-selective replication, antitumor cytotoxicity, and immunostimulation. Methods Mol. Biol. 797, 177–204 (2012)

    Article  PubMed  CAS  Google Scholar 

  76. Jarahian, M., et al.: Activation of natural killer cells by Newcastle disease virus hemagglutinin-neuraminidase. J. Virol. 83, 8108–8121 (2009)

    Article  PubMed  CAS  Google Scholar 

  77. Washburn, B., et al.: TNF-related apoptosis-inducing ligand mediates tumoricidal activity of human monocytes stimulated by Newcastle disease virus. J. Immunol. 170, 1814–1821 (2003)

    PubMed  CAS  Google Scholar 

  78. Janke, M., et al.: Recombinant Newcastle disease virus (NDV) with inserted gene coding for GM-CSF as a new vector for cancer immunogene therapy. Gene Ther. 14, 1639–1649 (2007)

    Article  PubMed  CAS  Google Scholar 

  79. Schirrmacher, V., et al.: Newcastle disease virus activates macrophages for antitumor activity. Int. J. Oncol. 16, 363–373 (2000)

    PubMed  CAS  Google Scholar 

  80. Gerosa, F., et al.: Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002)

    Article  PubMed  CAS  Google Scholar 

  81. Zeng, J., Fournier, P., Schirrmacher, V.: Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus. Virology 297, 19–30 (2002)

    Article  PubMed  CAS  Google Scholar 

  82. Zeng, J., Fournier, P., Schirrmacher, V.: Stimulation of human natural interferon-alpha response via paramyxovirus hemagglutinin lectin-cell interaction. J. Mol. Med. 80, 443–451 (2002)

    Article  PubMed  CAS  Google Scholar 

  83. von Hoegen, P., Zawatzky, R., Schirrmacher, V.: Modification of tumor cells by a low dose of Newcastle disease virus. III. Potentiation of tumor-specific cytolytic T cell activity via induction of interferon-α/β. Cell. Immunol. 126, 80–90 (1990)

    Article  Google Scholar 

  84. Rogge, L., et al.: Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 185, 825–831 (1997)

    Article  PubMed  CAS  Google Scholar 

  85. Washburn, B., Schirrmacher, V.: Human tumor cell infection by Newcastle disease virus leads to up-regulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. Int. J. Oncol. 21, 85–93 (2002)

    PubMed  CAS  Google Scholar 

  86. Fournier, P., Arnold, A., Schirrmacher, V.: Polarization of human monocyte-derived dendritic cells to DC1 by in vitro stimulation with Newcastle disease virus. J. BUON 14, 111–122 (2009)

    Google Scholar 

  87. Alexopoulou, L., Holt, A.C., Medzhitov, R., Flavell, R.A.: Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001)

    Article  PubMed  CAS  Google Scholar 

  88. Kato, H., et al.: Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19–28 (2005)

    Article  PubMed  CAS  Google Scholar 

  89. Schirrmacher, V., et al.: Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther. 6, 63–73 (1999)

    Article  PubMed  CAS  Google Scholar 

  90. Schirrmacher, V., et al.: Immunization with virus-modified tumor cells. Semin. Oncol. 25, 677–696 (1998)

    PubMed  CAS  Google Scholar 

  91. Ertel, C., Millar, N.S., Emmerson, P.T., Schirrmacher, V., von Hoegen, P.: Viral hemagglutinin augments peptide-specific cytotoxic T cell responses. Eur. J. Immunol. 23, 2592–2596 (1993)

    Article  PubMed  CAS  Google Scholar 

  92. Termeer, C.C., Schirrmacher, V., Bröcker, E.B., Becker, J.C.: Newcastle-disease-virus infection induces a B7-1/ B7-2 independent T cell-co-stimulatory activity in human melanoma cells. Cancer Gene Ther. 7, 316–323 (2000)

    Article  PubMed  CAS  Google Scholar 

  93. Fournier, P., Zeng, J., Schirrmacher, V.: Two ways to induce innate immune responses in human PBMCs: paracrine stimulation of IFN-α responses by viral protein or dsRNA. Int. J. Oncol. 23, 673–680 (2003)

    PubMed  CAS  Google Scholar 

  94. Bai, L., Koopmann, J., Fiola, C., Fournier, P., Schirrmacher, V.: Dendritic cells pulsed with viral oncolysates potently stimulate autologous T cells from cancer patients. Int. J. Oncol. 21, 685–694 (2002)

    PubMed  CAS  Google Scholar 

  95. Schild, H., von Hoegen, P., Schirrmacher, V.: Modification of tumor cells by a low dose of Newcastle disease virus. II. Augmented tumor-specific T cell response as a result of CD4+ and CD8+ immune T cell cooperation. Cancer Immunol. Immunother. 28, 22–28 (1989)

    Article  PubMed  CAS  Google Scholar 

  96. Schirrmacher, V.: Antitumor immune memory and its activation for control of residual tumor cells and improvement of patient survival. In: Sinkovics, J., Horvath, J. (eds.) Virus therapy of human cancers, pp. 481–574. Marcel Decker, New York (2005)

    Google Scholar 

  97. Antony, P.A., et al.: CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol. 174, 2591–2601 (2005)

    PubMed  CAS  Google Scholar 

  98. Corthay, A., et al.: Primary antitumor immune response mediated by CD4+ T cells. Immunity 22, 371–383 (2005)

    Article  PubMed  CAS  Google Scholar 

  99. Quezada, S.A., et al.: Tumor-reactive CD4(+) T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207, 637–650 (2010)

    Article  PubMed  CAS  Google Scholar 

  100. Yang, M.Y., Zetler, P.M., Prins, R.M., Khan-Farooqi, H., Liau, L.M.: Immunotherapy for patients with malignant glioma: from theoretical principles to clinical applications. Expert Rev. Neurother. 6, 1481–1494 (2006)

    Article  PubMed  CAS  Google Scholar 

  101. Steiner, H.H., et al.: Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J. Clin. Oncol. 22, 4272–4281 (2004)

    Article  PubMed  Google Scholar 

  102. Schirrmacher, V., Fournier, P.: Danger signals in tumor cells: a risk factor for autoimmune disease? Expert Rev. Vaccines 9, 347–350 (2010)

    Article  PubMed  Google Scholar 

  103. Moschella, F., Proietti, E., Capone, I., Belardelli, F.: Combination strategies for enhancing the efficacy of immunotherapy in cancer patients. Ann. N. Y. Acad. Sci. 1194, 169–178 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

The authors declared that no competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schirrmacher PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Fournier, P., Schirrmacher, V. (2013). Dendritic Cells Pulsed with Viral Oncolysate. In: Giese, M. (eds) Molecular Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1419-3_26

Download citation

Publish with us

Policies and ethics