Skip to main content

Non-typhoidal Salmonellosis

  • Chapter
  • First Online:
Molecular Vaccines

Abstract

Salmonella is a ubiquitous Gram-negative bacterium belonging to the Enterobacteriaceae family that can infect animals and humans, with gastroenteric and systemic symptomatology from moderate to severe. Animals can act as asymptomatic carriers that excrete Salmonella spp. intermittently in faeces and contaminate carcasses. At present, poultry and swine are recognised as the main sources of infection for humans. Control of human salmonellosis is based on sustainable biosafety and hygienic measures “from farm to folk” but efficient vaccines would contribute to avoid animal infections. Since no commercial vaccines are available, a wide variety of experimental work is carried out to test both non-living and live attenuated vaccines in animal models, using either subcellular components of Salmonella administered with adjuvants or live genetically modified bacteria lacking structural elements, essential metabolites or virulence genes. A special effort should be conducted to design effective vaccines antigenically tagged to allow distinguishing between infected and vaccinated animals.

Abstract

Salmonella is a Gram-negative, facultative anaerobic, motile, non-lactose fermenting bacterium that belongs to the Enterobacteriaceae family. This microorganism is frequently excreted in animal and human faeces, being thus ubiquitous and frequently found in sewage, farm effluents and any material subjected to faecal contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tindall, B.J., Grimont, P.A., Garrity, G.M., Euzeby, J.P.: Nomenclature and taxonomy of the genus Salmonella. Int. J. Syst. Evol. Microbiol. 55, 521–524 (2005). doi:10.1099/ijs.0.63580-0

    Article  PubMed  CAS  Google Scholar 

  2. Grimont, P.A., Weill, F.X.: Antigenic formulae of the Salmonella serovars, WHO., I.P.a., ed. (Institute Pasteur and World Health Organization. Collaboration Centre for Reference Research on Salmonella), 9th edition. (2007)

    Google Scholar 

  3. Guibourdenche, M., et al.: Supplement 2003–2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Res. Microbiol. 161, 26–29 (2010)

    Article  PubMed  Google Scholar 

  4. EFSA-ECDC: The European Union Summary report on trends and sources of Zoonoses, Zoonotic Agents and food-borne outbreaks in 2010. EFSA J. 10, 2597 (2012). doi:10.2903/j.efsa.2012.2597

    Google Scholar 

  5. CDC: In National Center for Emerging and Zoonotic Infectious Diseases 2. CDC: http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html (2012)

  6. EFSA: Scientific Opinion on a quantitative estimation of the public health impact of setting a new target for the reduction of Salmonella in broilers. EFSA J. 9, 2106 (2011). doi:10.2903/j.efsa.2011.2106

    Google Scholar 

  7. Stevens, M.P., Humphrey, T.J., Maskell, D.J.: Molecular insights into farm animal and zoonotic Salmonella infections. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2709–2723 (2009). doi:10.1098/rstb.2009.0094

    Article  PubMed  CAS  Google Scholar 

  8. Nielsen, L.R.: Review of pathogenesis and diagnostic methods of immediate relevance for epidemiology and control of Salmonella Dublin in cattle. Vet. Microbiol. (2012). doi:10.1016/j.vetmic.2012.08.003

    Google Scholar 

  9. Hald, T., Vose, D., Wegener, H.C., Koupeev, T.: A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal. 24, 255–269 (2004). doi:10.1111/j.0272-4332.2004.00427.x

    Article  PubMed  Google Scholar 

  10. Hald, T., Wingstrand, A., Brondsted, T., Lo Fo Wong, D.M.: Human health impact of Salmonella contamination in imported soybean products: a semiquantitative risk assessment. Foodborne Pathog. Dis. 3, 422–431 (2006). doi:10.1089/fpd.2006.3.422

    Article  PubMed  CAS  Google Scholar 

  11. Pires, S.M., de Knegt, L., Hald, T.: Estimation of the relative contribution of different food and animal sources to human Salmonella infections in the European Union. Scientific/technical report submitted to EFSA. http://www.efsa.europa.eu/en/supporting/doc/184e.pdf (2011)

  12. Hernandez, E. et al.: Salmonella Paratyphi B var Java infections associated with exposure to turtles in Bizkaia, Spain, September 2010 to October 2011. Euro Surveill. 17, 25 (2012) [pii: 20201]

    Google Scholar 

  13. Lowther, S.A., et al.: Foodborne outbreak of Salmonella subspecies IV infections associated with contamination from bearded dragons. Zoonoses Public Health 58, 560–566 (2011). doi:10.1111/j.1863-2378.2011.01403.x

    Article  PubMed  CAS  Google Scholar 

  14. Nollet, N., et al.: Salmonella in sows: a longitudinal study in farrow-to-finish pig herds. Vet. Res. 36, 645–656 (2005). doi:10.1051/vetres:2005022

    Article  PubMed  Google Scholar 

  15. Merialdi, G., et al.: Longitudinal study of Salmonella infection in Italian farrow-to-finish swine herds. Zoonoses Public Health 55, 222–226 (2008). doi:10.1111/j.1863-2378.2008.01111.x

    Article  PubMed  CAS  Google Scholar 

  16. Mousing, J., et al.: Nation-wide Salmonella enterica surveillance and control in Danish slaughter swine herds. Prev. Vet. Med. 29, 247–261 (1997), S0167587796010823 [pii]

    Article  PubMed  CAS  Google Scholar 

  17. EFSA: Report of the Task Force on Zoonoses data collection on the analysis of the baseline survey on the prevalence of Salmonella in slaughter pigs. Part A. EFSA J. 135, 1–111 (2008)

    Google Scholar 

  18. EFSA: Analysis of the baseline survey on the prevalence of Salmonella in holdings with breeding pigs in the EU, 2008. Part A: Salmonella prevalence estimates. EFSA J. 7, 1–93 (2009)

    Google Scholar 

  19. Carter, P.B., Collins, F.M.: The route of enteric infection in normal mice. J. Exp. Med. 139, 1189–1203 (1974)

    Article  PubMed  CAS  Google Scholar 

  20. Stebbins, C.E., Galan, J.E.: Priming virulence factors for delivery into the host. Nat. Rev. Mol. Cell Biol. 4, 738–743 (2003). doi:10.1038/nrm1201

    Article  PubMed  CAS  Google Scholar 

  21. Galan, J.E.: Molecular genetic bases of Salmonella entry into host cells. Mol. Microbiol. 20, 263–271 (1996)

    Article  PubMed  CAS  Google Scholar 

  22. Miller, S.I., Ernst, R.K., Bader, M.W.: LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 3, 36–46 (2005). doi:10.1038/nrmicro1068

    Article  PubMed  CAS  Google Scholar 

  23. Bearson, B.L., Wilson, L., Foster, J.W.: A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J. Bacteriol. 180, 2409–2417 (1998)

    PubMed  CAS  Google Scholar 

  24. Wagner, C., Hensel, M.: Adhesive mechanisms of Salmonella enterica. Adv. Exp. Med. Biol. 715, 17–34 (2011). doi:10.1007/978-94-007-0940-9_2

    Article  PubMed  CAS  Google Scholar 

  25. Winter, S.E., et al.: Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010). doi:10.1038/nature09415

    Article  PubMed  CAS  Google Scholar 

  26. Hohmann, E.L.: Nontyphoidal salmonellosis. Clin. Infect. Dis. 32, 263–269 (2001). doi:10.1086/318457

    Article  PubMed  CAS  Google Scholar 

  27. Inohara, N., Chamaillard, M., McDonald, C., Nunez, G.: NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355–383 (2005). doi:10.1146/annurev.biochem.74.082803.133347

    Article  PubMed  CAS  Google Scholar 

  28. Prost, L.R., Sanowar, S., Miller, S.I.: Salmonella sensing of anti-microbial mechanisms to promote survival within macrophages. Immunol. Rev. 219, 55–65 (2007). doi:10.1111/j.1600-065X.2007.00557.x

    Article  PubMed  CAS  Google Scholar 

  29. Mastroeni, P., Chabalgoity, J.A., Dunstan, S.J., Maskell, D.J., Dougan, G.: Salmonella: immune responses and vaccines. Vet. J. 161, 132–164 (2001). doi:10.1053/tvjl.2000.0502

    Article  PubMed  CAS  Google Scholar 

  30. EC: Reglamento (CE) no 2073/2005 de la Commission regulation (EC) No 2073/2005 of 15 November on 2005 microbiological criteria for foodstuffs. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:338:0001:0026:EN:PDF (2005)

  31. DOUE: Commission regulation (EU) No 1086/2011 of 27 October 2011 amending Annex II to Regulation (EC) No 2160/2003 of the European Parliament and of the Council and Annex I to Commission Regulation (EC) No 2073/2005 as regards salmonella in fresh poultry meat. Official Journal of the European Union. L 281/7. (2006)

    Google Scholar 

  32. DOUE: Commission regulation (EU) No 1086/2011 of 27 October 2011 amending Annex II to Regulation (EC) No 2160/2003 of the European Parliament and of the Council and Annex I to Commission Regulation (EC) No 2073/2005 as regards salmonella in fresh poultry meat. Official Journal of the European Union. L 281/7. (2011)

    Google Scholar 

  33. ISO. International Organisation for Standardisation.: ISO 6579:2002/DAM 1:2007. Microbiology of food and animal feeding stuffs. Horizontal method for the detection of Salmonella spp. Annex D: detection of Salmonella spp. in animal faeces and in samples from the primary production stage. Geneva, Switzerland (2007)

    Google Scholar 

  34. De Lappe, N., Doran, G., O’Connor, J., O’Hare, C., Cormican, M.: Characterization of bacteriophages used in the Salmonella enterica serovar Enteritidis phage-typing scheme. J. Med. Microbiol. 58, 86–93 (2009). doi:10.1099/jmm.0.000034-0

    Article  PubMed  Google Scholar 

  35. Baggesen, D.L., Wegener, H.C.: Phage types of Salmonella enterica ssp. enterica serovar Typhimurium isolated from production animals and humans in Denmark. Acta Vet. Scand. 35, 349–354 (1994)

    PubMed  CAS  Google Scholar 

  36. Herrera-Leon, S., et al.: Blind comparison of traditional serotyping with three multiplex PCRs for the identification of Salmonella serotypes. Res. Microbiol. 158, 122–127 (2007). doi:10.1016/j.resmic.2006.09.009

    Article  PubMed  CAS  Google Scholar 

  37. McQuiston, J.R., Waters, R.J., Dinsmore, B.A., Mikoleit, M.L., Fields, P.I.: Molecular determination of H antigens of Salmonella by use of a microsphere-based liquid array. J. Clin. Microbiol. 49, 565–573 (2011). doi:10.1128/JCM.01323-10

    Article  PubMed  CAS  Google Scholar 

  38. Arrach, N., et al.: Salmonella serovar identification using PCR-based detection of gene presence and absence. J. Clin. Microbiol. 46, 2581–2589 (2008). doi:10.1128/JCM.02147-07

    Article  PubMed  CAS  Google Scholar 

  39. Porwollik, S., et al.: Characterization of Salmonella enterica subspecies I genovars by use of microarrays. J. Bacteriol. 186, 5883–5898 (2004). doi:10.1128/JB.186.17.5883-5898.2004

    Article  PubMed  CAS  Google Scholar 

  40. Narayanappa, D., Sripathi, R., Jagdishkumar, K., Rajani, H.S.: Comparative study of dot enzyme immunoassay (Typhidot-M) and Widal test in the diagnosis of typhoid fever. Indian Pediatr. 47, 331– 333 (2010)

    Article  PubMed  CAS  Google Scholar 

  41. Kuhn, K.G., et al.: Detecting non-typhoid Salmonella in humans by ELISAs: a literature review. J. Med. Microbiol. 61, 1–7 (2012). doi:10.1099/jmm.0.034447-0

    Article  PubMed  CAS  Google Scholar 

  42. Vico, J.P., Engel, B., Buist, W.G., Mainar-Jaime, R.C.: Evaluation of three commercial enzyme-linked immunosorbent assays for the detection of antibodies against Salmonella spp. in meat juice from finishing pigs in Spain. Zoonoses Public Health 57(Suppl 1), 107–114 (2010)

    Article  PubMed  CAS  Google Scholar 

  43. EFSA-ECDC: European Union Summary Report Antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in the European Union in 2010. EFSA J. 10, 233 (2012)

    Google Scholar 

  44. Molbak, K.: Human health consequences of antimicrobial drug-resistant Salmonella and other foodborne pathogens. Clin. Infect. Dis. 41, 1613–1620 (2005). doi:10.1086/497599

    Article  PubMed  Google Scholar 

  45. Nelson, J.D., Kusmiesz, H., Jackson, L.H., Woodman, E.: Treatment of Salmonella gastroenteritis with ampicillin, amoxicillin, or placebo. Pediatrics 65, 1125–1130 (1980)

    PubMed  CAS  Google Scholar 

  46. Tello, A., Austin, B., Telfer, T.C.: Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ. Health Perspect. 120, 1100–1106 (2012). doi:10.1289/ehp.1104650

    Article  PubMed  Google Scholar 

  47. van der Wolf, P.J., et al.: A longitudinal study of Salmonella enterica infections in high-and low-seroprevalence finishing swine herds in The Netherlands. Vet. Q. 23, 116–121 (2001). doi:10.1080/01652176.2001.9695096

    Article  PubMed  Google Scholar 

  48. Office international of epizooties (OIE) manual of diagnostic tests and vaccines for terrestrial animals, 7th ed. World health organization (WHO) – OIE, Paris, France (2012). http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.09.09_SALMONELLOSIS.pdf

  49. Threlfall, E.J.: Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiol. Rev. 26, 141–148 (2002)

    Article  PubMed  CAS  Google Scholar 

  50. Besser, T.E., Goldoft, M., Pritchett, L.C., Khakhria, R., Hancock, D.D., Rice, D.H., Gay, J.M., Johnson, W., Gay, C.C.: Multiresistant Salmonella Typhimurium DT104 infections of humans and domestic animals in the Pacific Northwest of the United States. Epidemiol. Infect. 124, 193–200 (2000)

    Article  PubMed  CAS  Google Scholar 

  51. Helms, M., Ethelberg, S., Molbak, K.: International Salmonella Typhimurium DT104 infections, 1992–2001. Emerg. Infect. Dis. 11, 859–867 (2005)

    Article  PubMed  Google Scholar 

  52. Rodríguez, I., et al.: Extended-spectrum beta-lactamases and AmpC beta-lactamases in ceftiofur-resistant Salmonella enterica isolates from food and livestock obtained in Germany during 2003–07. J. Antimicrob. Chemother. 64, 301–309 (2009). doi:10.1093/jac/dkp195

    Article  PubMed  Google Scholar 

  53. DOUE: Commission Decision of 12 June 2007 on a Harmonised monitoring of antimicrobial resistance in Salmonella in poultry and pigs. 2007/407/EC. Official Journal of the European Union. OJ L 153 26–29 (2007)

    Google Scholar 

  54. Sonnenburg, J.L., Chen, C.T., Gordon, J.I.: Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol. 4, e413 (2006). doi:10.1371/journal.pbio.0040413

    Article  PubMed  Google Scholar 

  55. OIE: Manual of Diagnostic Tests & Vaccines for Terrestrial Animals. (2008)

    Google Scholar 

  56. Costa, L.F., Paixao, T.A., Tsolis, R.M., Baumler, A.J., Santos, R.L.: Salmonellosis in cattle: advantages of being an experimental model. Res. Vet. Sci. 93, 1–6 (2012). doi:10.1016/j.rvsc.2012.03.002

    Article  PubMed  Google Scholar 

  57. Kaiser, P., Diard, M., Stecher, B., Hardt, W.D.: The streptomycin mouse model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response. Immunol. Rev. 245, 56–83 (2012). doi:10.1111/j.1600-065X.2011.01070.x

    Article  PubMed  CAS  Google Scholar 

  58. Santos, R.L., et al.: Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect. 3, 1335–1344 (2001)

    Article  PubMed  CAS  Google Scholar 

  59. Ochoa, J., et al.: Protective immunity of biodegradable nanoparticle-based vaccine against an experimental challenge with Salmonella Enteritidis in mice. Vaccine 25, 4410–4419 (2007). doi:10.1016/j.vaccine.2007.03.025

    Article  PubMed  CAS  Google Scholar 

  60. Estevan, M., Irache, J.M., Grillo, M.J., Blasco, J.M., Gamazo, C.: Encapsulation of antigenic extracts of Salmonella enterica serovar. Abortusovis into polymeric systems and efficacy as vaccines in mice. Vet. Microbiol. 118, 124–132 (2006)

    Article  PubMed  CAS  Google Scholar 

  61. San Román, B., et al.: The extradomain a of fibronectin enhances the efficacy of lipopolysaccharide defective Salmonella bacterins as vaccines in mice. Vet. Res. 43, 31 (2012). doi:10.1186/1297-9716-43-31

    Article  Google Scholar 

  62. Collins, F.M.: Vaccines and cell-mediated immunity. Bacteriol. Rev. 38, 371–402 (1974)

    PubMed  CAS  Google Scholar 

  63. Thatte, J., Rath, S., Bal, V.: Immunization with live versus killed Salmonella typhimurium leads to the generation of an IFN-gamma-dominant versus an IL-4-dominant immune response. Int. Immunol. 5, 1431–1436 (1993)

    Article  PubMed  CAS  Google Scholar 

  64. Watson, D.C., Robbins, J.B., Szu, S.C.: Protection of mice against Salmonella typhimurium with an O-specific polysaccharide-protein conjugate vaccine. Infect. Immun. 60, 4679–4686 (1992)

    PubMed  CAS  Google Scholar 

  65. Simon, R., Tennant, S.M., Galen, J.E., Levine, M.M.: Mouse models to assess the efficacy of non-typhoidal Salmonella vaccines: revisiting the role of host innate susceptibility and routes of challenge. Vaccine 29, 5094–5106 (2011). doi:10.1016/j.vaccine.2011.05.022

    Article  PubMed  CAS  Google Scholar 

  66. Smith, H.W.: The use of live vaccines in experimental Salmonella gallinarum infection in chickens with observations on their interference effect. J. Hygiene 54, 419–432 (1956)

    Article  CAS  Google Scholar 

  67. Gherardi, M.M., Garcia, V.E., Brizzio, V., Sordelli, D.O., Cerquetti, M.C.: Differential persistence, immunogenicity and protective capacity of temperature-sensitive mutants of Salmonella Enteritidis after oral or intragastric administration to mice. FEMS Immunol. Med. Microbiol. 7, 161–168 (1993)

    Article  PubMed  CAS  Google Scholar 

  68. Mitov, I., Denchev, V., Linde, K.: Humoral and cell-mediated immunity in mice after immunization with live oral vaccines of Salmonella Typhimurium: auxotrophic mutants with two attenuating markers. Vaccine 10, 61–66 (1992)

    Article  PubMed  CAS  Google Scholar 

  69. Lantier, F., Pardon, P., Marly, J.: Vaccinal properties of Salmonella Abortusovis mutants for streptomycin: screening with a murine model. Infect. Immun. 34, 492–497 (1981)

    PubMed  CAS  Google Scholar 

  70. Tang, I.K., et al.: Characterization of a highly attenuated Salmonella enterica serovar Typhimurium mutant strain. J. Microbiol. Immunol. Infect. 35, 229–235 (2002)

    PubMed  Google Scholar 

  71. Hormaeche, C.E., Pettifor, R.A., Brock, J.: The fate of temperature-sensitive salmonella mutants in vivo in naturally resistant and susceptible mice. Immunology 42, 569–576 (1981)

    PubMed  CAS  Google Scholar 

  72. Germanier, R.: Immunity in experimental salmonellosis I. Protection induced by rough mutants of Salmonella Typhimurium. Infect. Immun. 2, 309–315 (1970)

    PubMed  CAS  Google Scholar 

  73. Nagy, G., et al.: Down-regulation of key virulence factors makes the Salmonella enterica serovar Typhimurium rfaH mutant a promising live-attenuated vaccine candidate. Infect. Immun. 74, 5914–5925 (2006). doi:10.1128/IAI.00619-06

    Article  PubMed  CAS  Google Scholar 

  74. Nagy, G., et al.: “Gently rough”: the vaccine potential of a Salmonella enterica regulatory lipopolysaccharide mutant. J. Infect. Dis. 198, 1699–1706 (2008). doi:10.1086/593069

    Article  PubMed  CAS  Google Scholar 

  75. Wray, C., Sojka, W.J., Pritchard, D.G., Morris, J.A.: Immunization of animals with gal E mutants of “Salmonella Typhimurium”. Dev. Biol. Stand. 53, 41–46 (1983)

    PubMed  CAS  Google Scholar 

  76. Clarke, R.C., Gyles, C.L.: Galactose epimeraseless mutants of Salmonella Typhimurium as live vaccines for calves. Can. J. Vet. Res. 50, 165–173 (1986)

    PubMed  CAS  Google Scholar 

  77. Hone, D.M., et al.: A galE via (Vi antigen-negative) mutant of Salmonella typhi Ty2 retains virulence in humans. Infect. Immun. 56, 1326–1333 (1988)

    PubMed  CAS  Google Scholar 

  78. Karasova, D., et al.: Comparative analysis of Salmonella enterica serovar Enteritidis mutants with a vaccine potential. Vaccine 27, 5265–5270 (2009). doi:10.1016/j.vaccine.2009.06.060

    Article  PubMed  CAS  Google Scholar 

  79. Dorman, C.J., Chatfield, S., Higgins, C.F., Hayward, C., Dougan, G.: Characterization of porin and ompR mutants of a virulent strain of Salmonella Typhimurium: ompR mutants are attenuated in vivo. Infect. Immun. 57, 2136–2140 (1989)

    PubMed  CAS  Google Scholar 

  80. Robertsson, J.A., Lindberg, A.A., Hoiseth, S., Stocker, B.A.: Salmonella Typhimurium infection in calves: protection and survival of virulent challenge bacteria after immunization with live or inactivated vaccines. Infect. Immun. 41, 742–750 (1983)

    PubMed  CAS  Google Scholar 

  81. Segall, T., Lindberg, A.A.: Oral vaccination of calves with an aromatic-dependent Salmonella Dublin (O9,12) hybrid expressing O4,12 protects against Poner cursiva. Dublin (O9,12) but not against Salmonella Typhimurium (O4,5,12). Infect. Immun. 61, 1222–1231 (1993)

    PubMed  CAS  Google Scholar 

  82. Tacket, C.O., et al.: Comparison of the safety and immunogenicity of delta aroC delta aroD and delta cya delta crp Salmonella Typhi strains in adult volunteers. Infect. Immun. 60, 536–541 (1992)

    PubMed  CAS  Google Scholar 

  83. Sigwart, D.F., Stocker, B.A., Clements, J.D.: Effect of a purA mutation on efficacy of Salmonella live-vaccine vectors. Infect. Immun. 57, 1858–1861 (1989)

    PubMed  CAS  Google Scholar 

  84. McFarland, W.C., Stocker, B.A.: Effect of different purine auxotrophic mutations on mouse-virulence of a Vi-positive strain of Salmonella Dublin and of two strains of Salmonella Typhimurium. Microb. Pathog. 3, 129–141 (1987)

    CAS  Google Scholar 

  85. Curtiss 3rd, R., Kelly, S.M.: Salmonella Typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect. Immun. 55, 3035–3043 (1987)

    PubMed  CAS  Google Scholar 

  86. Kennedy, M.J., et al.: Attenuation and immunogenicity of ∆cya ∆crp derivatives of Salmonella Choleraesuis in pigs. Infect. Immun. 67, 4628–4636 (1999)

    PubMed  CAS  Google Scholar 

  87. Galan, J.E., Curtiss 3rd, R.: Distribution of the invA, -B, -C, and -D genes of Salmonella Typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells. Infect. Immun. 59, 2901–2908 (1991)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Contract of B. San Román was financed by CSIC (Programme JAE-Doc) and that of V. Garrido by Gobierno de Navarra (project IIQ14064.RI1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María-Jesús Grilló PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Román, B.S., Garrido, V., Grilló, MJ. (2013). Non-typhoidal Salmonellosis. In: Giese, M. (eds) Molecular Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1419-3_19

Download citation

Publish with us

Policies and ethics