Skip to main content

Lyme Disease: Reservoir-Targeted Vaccines

  • Chapter
  • First Online:
Molecular Vaccines
  • 1166 Accesses

Abstract

In many parts of the world, microbial diseases have been controlled by a combination of improved hygiene practices, surveillance, diagnosis, treatments, effective vaccines, as well as greater public education and awareness of risk factors. Control strategies are especially challenging for diseases caused by pathogens that persist in a mammalian wildlife reservoir and use vectors such as insects to cycle through that species. In this group, the most relevant illnesses that pose a direct human health risk are rabies, sylvatic plague, and Lyme disease [1].

Reservoir-targeted vaccines have been developed as vaccination strategies that target the host reservoir or the transmitting vector both for rabies and for Lyme disease. An example of a successful application is the oral vaccine (RaboralTM) currently used by local governments in the United States to create barriers between infected wildlife and highly populated areas to prevent transmission of rabies.

In this chapter I will discuss the development of an oral reservoir-targeted vaccine to curb transmission of Borrelia burgdorferi within wildlife and its projected impact on reduction of the incidence of Lyme disease in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cross, M.L., Buddle, B.M., Aldwell, F.E.: The potential of oral vaccines for disease control in wildlife species. Vet. J. 174, 472–480 (2007). doi:10.1016/j.tvjl.2006.10.005

    Article  PubMed  CAS  Google Scholar 

  2. Radolf, J.D., Caimano, M.J., Stevenson, B., Hu, L.T.: Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87–99 (2012). doi:10.1038/nrmicro2714

    PubMed  CAS  Google Scholar 

  3. Stanek, G., Wormser, G.P., Gray, J., Strle, F.: Lyme borreliosis. Lancet 379, 461–473 (2012). doi:10.1016/S0140-6736(11)60103-7

    Article  PubMed  Google Scholar 

  4. Kurtenbach, K., et al.: Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 4, 660–669 (2006). doi:10.1038/nrmicro1475

    Google Scholar 

  5. O’Connell, S., Granstrom, M., Gray, J.S., Stanek, G.: Epidemiology of European Lyme borreliosis. Zentralbl. Bakteriol. 287, 229–240 (1998)

    Article  PubMed  Google Scholar 

  6. Ribeiro, J.M., Mather, T.N., Piesman, J., Spielman, A.: Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: Ixodidae). J. Med. Entomol. 24, 201–205 (1987)

    PubMed  CAS  Google Scholar 

  7. Piesman, J., Mather, T.N., Sinsky, R.J., Spielman, A.: Duration of tick attachment and Borrelia burgdorferi transmission. J. Clin. Microbiol. 25, 557–558 (1987)

    PubMed  CAS  Google Scholar 

  8. Fraser, C.M., et al.: Genomic sequence of a Lyme disease spirochaete Borrelia burgdorferi. Nature 390, 580–586 (1997). doi:10.1038/37551

    Article  PubMed  CAS  Google Scholar 

  9. Weis, J.J., Bockenstedt, L.K.: In: Samuels, D.S., Radolf, J.D. (eds.) Lyme Disease in Humans. Borrelia: Molecular Biology, Host Interaction, and Pathogenesis, pp. 413–441. Caister Academic, Norfolk (2010)

    Google Scholar 

  10. Cerar, D., Cerar, T., Ruzic-Sabljic, E., Wormser, G.P., Strle, F.: Subjective symptoms after treatment of early Lyme disease. Am. J. Med. 123, 79–86 (2010). doi:10.1016/j.amjmed.2009.05.011

    Article  PubMed  Google Scholar 

  11. Radolf, J.D., Salazar, J.C., Dattwyler, R.J.: Lyme Disease in Humans. In: Samuels, D.S., Radolf, J.D. (eds.) Borrelia: Molecular Biology, Host Interaction, and Pathogenesis, pp. 487–533. Caister Academic, Norfolk (2010)

    Google Scholar 

  12. Bacon, R.M., Kugeler, K.J., Mead, P.S.: Surveillance for Lyme disease–United States, 1992–2006. MMWR Surveill. Summ. 57, 1–9 (2008)

    PubMed  Google Scholar 

  13. Wormser, G.P., et al.: Brief communication: hematogenous dissemination in early Lyme disease. Ann. Intern. Med. 142, 751–755 (2005)

    Article  PubMed  Google Scholar 

  14. Stanek, G., Strle, F.: Lyme disease: European perspective. Infect. Dis. Clin. North Am. 22, 327–339, vii (2008). doi:10.1016/j.idc.2008.01.001

    Article  PubMed  Google Scholar 

  15. Wormser, G.P., et al.: The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 43, 1089–1134 (2006). doi:10.1086/508667

    Article  PubMed  Google Scholar 

  16. Stanek, G., et al.: Lyme borreliosis: clinical case definitions for diagnosis and management in Europe. Clin. Microbiol. Infect. 17, 69–79 (2011). doi:10.1111/j.1469-0691.2010.03175.x

    Article  PubMed  CAS  Google Scholar 

  17. Halperin, J.J.: Nervous system Lyme disease. Infect. Dis. Clin. North Am. 22, 261–274, vi (2008). doi:10.1016/j.idc.2007.12.009(2008)

    Article  PubMed  Google Scholar 

  18. Rizzoli, A. et al.: Lyme borreliosis in Europe. Euro Surveill. 16(27) (2011) p. 8, pii: 19906

    Google Scholar 

  19. Dennis, D.T., Hayes, E.B.: Epidemiology of lyme borreliosis. In: Gray, J.S., Kahl, O., Lane, R.S., Stanek, G. (eds.) Lyme Borreliosis: Biology, Epidemiology and Control, 1st edn, pp. 251–280. Cabi Publishing, New York (2002)

    Chapter  Google Scholar 

  20. Gray, J.S., Kahl, O., Janetzki, C., Stein, J., Guy, E.: The spatial distribution of Borrelia burgdorferi-infected Ixodes ricinus in the Connemara region of county Galway Ireland. Exp. Appl. Acarol. 19, 163– 172 (1995)

    Article  PubMed  CAS  Google Scholar 

  21. des Vignes, F., et al.: Effect of tick removal on transmission of Borrelia burgdorferi and Ehrlichia phagocytophila by Ixodes scapularis nymphs. J. Infect. Dis. 183, 773–778 (2001). doi:10.1086/318818

    Article  PubMed  Google Scholar 

  22. Peavey, C.A., Lane, R.S.: Transmission of Borrelia burgdorferi by Ixodes pacificus nymphs and reservoir competence of deer mice (Peromyscus maniculatus) infected by tick-bite. J. Parasitol. 81, 175–178 (1995)

    Article  PubMed  CAS  Google Scholar 

  23. Einsen, L., Lane, R.S.: Vectors of Borrelia burgdorferi sensu lato. In: Gray, J.S., Kahl, O., Lane, R.S., Stanek, G. (eds.) Lyme Borreliosis: Biology, Epidemiology and Control, 1st edn, pp. 91–115. Cabi Publishing, New York (2002)

    Chapter  Google Scholar 

  24. Kahl, O., et al.: Risk of infection with Borrelia burgdorferi sensu lato for a host in relation to the duration of nymphal Ixodes ricinus feeding and the method of tick removal. Zentralbl Bakteriol 287, 41–52 (1998)

    Article  PubMed  CAS  Google Scholar 

  25. Ogden, N.H., Nuttall, P.A., Randolph, S.E.: Natural Lyme disease cycles maintained via sheep by co-feeding ticks. Parasitology 115(Pt 6), 591–599 (1997)

    Article  PubMed  Google Scholar 

  26. Matuschka, F.R., et al.: Diversionary role of hoofed game in the transmission of Lyme disease spirochetes. Am. J. Trop. Med. Hyg. 48, 693–699 (1993)

    PubMed  CAS  Google Scholar 

  27. Bykowski, T., et al.: Borrelia burgdorferi complement regulator-acquiring surface proteins (BbCRASPs): expression patterns during the mammal-tick infection cycle. Int. J. Med. Microbiol. 298(Suppl 1), 249–256 (2008). doi:10.1016/j.ijmm.2007.10.002

    Article  PubMed  Google Scholar 

  28. EUCALB: European Union Concerted Action on Lyme Borreliosis. An information resource of the ESCMID study group, ESGBOR. Accessed Aug 22, 2013. www.eucalb.com

  29. Brisson, D., Dykhuizen, D.E.: OspC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics 168, 713–722 (2004). doi:10.1534/genetics.104.028738

    Article  PubMed  CAS  Google Scholar 

  30. LoGiudice, K., Ostfeld, R.S., Schmidt, K.A., Keesing, F.: The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc. Natl. Acad. Sci. U.S.A. 100, 567–571 (2003). doi:10.1073/pnas.0233733100

    Article  PubMed  CAS  Google Scholar 

  31. De Boer, R., Hovius, K.E., Nohlmans, M.K., Gray, J.S.: The woodmouse (Apodemus sylvaticus) as a reservoir of tick-transmitted spirochetes (Borrelia burgdorferi) in the Netherlands. Zentralbl. Bakteriol. 279, 404–416 (1993)

    Article  PubMed  Google Scholar 

  32. Dykhuizen, D.E., et al.: The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am. J. Trop. Med. Hyg. 78, 806–810 (2008)

    PubMed  Google Scholar 

  33. Mannelli, A., Bertolotti, L., Gern, L., Gray, J.: Ecology of Borrelia burgdorferi sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiol. Rev. 36, 837–861 (2012). doi:10.1111/j.1574-6976.2011.00312.x

    Article  PubMed  CAS  Google Scholar 

  34. Dsouli, N., et al.: Reservoir role of lizard Psammodromus algirus in transmission cycle of Borrelia burgdorferi sensu lato (Spirochaetaceae) in Tunisia. J. Med. Entomol. 43, 737–742 (2006)

    Article  PubMed  Google Scholar 

  35. Gray, J.S., Kahl, O., Janetzki, C., Stein, J.: Studies on the ecology of Lyme disease in a deer forest in county Galway Ireland. J. Med. Entomol. 29, 915–920 (1992)

    PubMed  CAS  Google Scholar 

  36. Kimura, K., et al.: Prevalence of antibodies against Borrelia species in patients with unclassified uveitis in regions in which Lyme disease is endemic and nonendemic. Clin. Diagn. Lab. Immunol. 2, 53–56 (1995)

    PubMed  CAS  Google Scholar 

  37. Pichon, B., Rogers, M., Egan, D., Gray, J.: Blood-meal analysis for the identification of reservoir hosts of tick-borne pathogens in Ireland. Vector Borne Zoonotic Dis. 5, 172–180 (2005). doi:10.1089/vbz.2005.5.172

    Article  PubMed  Google Scholar 

  38. Jaenson, T.G., Talleklint, L.: Lyme borreliosis spirochetes in Ixodes ricinus (Acari:Ixodidae) and the varying hare on isolated islands in the Baltic Sea. J. Med. Entomol. 33, 339–343 (1996)

    PubMed  CAS  Google Scholar 

  39. Gern, L., Rouvinez, E., Toutoungi, L.N., Godfroid, E.: Transmission cycles of Borrelia burgdorferi sensu lato involving Ixodes ricinus and/or I. Hexagonus ticks and the European hedgehog, Erinaceus europaeus, in suburban and urban areas in Switzerland. Folia Parasitol. 44, 309–314 (1997)

    PubMed  CAS  Google Scholar 

  40. Wormser, G.P., et al.: Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J. Infect. Dis. 198, 1358–1364 (2008). doi:10.1086/592279

    Article  PubMed  Google Scholar 

  41. Fish, A.E., Pride, Y.B., Pinto, D.S.: Lyme carditis. Infect. Dis. Clin. North Am. 22, 275–288, vi (2008). doi:10.1016/j.idc.2007.12.008

    Article  PubMed  Google Scholar 

  42. Marques, A.: Chronic Lyme disease: a review. Infect. Dis. Clin. North Am. 22, 341–360, vii-viii (2008). doi:10.1016/j.idc.2007.12.011

    Article  PubMed  Google Scholar 

  43. Cerar, T., et al.: Validation of cultivation and PCR methods for diagnosis of Lyme neuroborreliosis. J. Clin. Microbiol. 46, 3375–3379 (2008). doi:10.1128/JCM.00410-08

    Article  PubMed  CAS  Google Scholar 

  44. Aguero-Rosenfeld, M.E., Wang, G., Schwartz, I., Wormser, G.P.: Diagnosis of lyme borreliosis. Clin. Microbiol. Rev. 18, 484–509 (2005). doi:10.1128/CMR.18.3.484-509.2005

    Article  PubMed  CAS  Google Scholar 

  45. Wilske, B., Fingerle, V., Schulte-Spechtel, U.: Microbiological and serological diagnosis of Lyme borreliosis. FEMS Immunol. Med. Microbiol. 49, 13–21 (2007). doi:10.1111/j.1574-695X.2006.00139.x

    Article  PubMed  CAS  Google Scholar 

  46. CDC. Lyme disease diagnosis and treatment. http://www.cdc.gov/lyme/diagnosistreatment/index.html (2012)

  47. Hunfeld, K.P., Ruzic-Sabljic, E., Norris, D.E., Kraiczy, P., Strle, F.: In vitro susceptibility testing of Borrelia burgdorferi sensu lato isolates cultured from patients with erythema migrans before and after antimicrobial chemotherapy. Antimicrob. Agents Chemother. 49, 1294–1301 (2005). doi:10.1128/AAC.49.4.1294-1301.2005

    Article  PubMed  CAS  Google Scholar 

  48. Morgenstern, K., et al.: In vitro susceptibility of Borrelia spielmanii to antimicrobial agents commonly used for treatment of Lyme disease. Antimicrob. Agents Chemother. 53, 1281–1284 (2009). doi:10.1128/AAC.01247-08

    Article  PubMed  CAS  Google Scholar 

  49. Stafford, K.I., Kitron, U.: Environmental management of Lyme borreliosis control. In: Gray, J.S., Kahl, O., Lane, R.S., Stanek, G. (eds.) Lyme Borreliosis: Biology, Epidemiology and Control, pp. 301–334. CABI Publishing, New York (2002)

    Chapter  Google Scholar 

  50. Connally, N.P., et al.: Peridomestic Lyme disease prevention: results of a population-based case-control study. Am. J. Prev. Med. 37, 201–206 (2009). doi:10.1016/j.amepre.2009.04.026

    Article  PubMed  Google Scholar 

  51. Warshafsky, S., et al.: Efficacy of antibiotic prophylaxis for the prevention of Lyme disease: an updated systematic review and meta-analysis. J. Antimicrob. Chemother. 65, 1137–1144 (2010). doi:10.1093/jac/dkq097

    Article  PubMed  CAS  Google Scholar 

  52. Piesman, J.: Lyme borreliosis in North America. In: Gray, J.S., Kahl, O., Lane, R.S., Stanek, G. (eds.) Lyme Borreliosis: Biology, Epidemiology and Control, pp. 223–249. CABI Publishing, New York (2002)

    Chapter  Google Scholar 

  53. Gern, L., Humair, P.F.: Lyme borreliosis in Europe. In: Gray, J.S., Kahl, O., Lane, R.S., Stanek, G. (eds.) Lyme Borreliosis: Biology, Epidemiology and Control, pp. 149–174. CABI Publishing, New York (2002)

    Chapter  Google Scholar 

  54. Korenberg, E.I., Horakova, M., Kovalevsky, J.V., Hubalek, Z., Karavanov, A.S.: Probability models of the rate of infection with tick-borne encephalitis virus in Ixodes persulcatus ticks. Folia Parasitol. 39, 85–92 (1992)

    PubMed  CAS  Google Scholar 

  55. Clark, R.P., Hu, L.T.: Prevention of Lyme disease and other tick-borne infections. Infect. Dis. Clin. North Am. 22, 381–396, vii (2008). doi:10.1016/j.idc.2008.03.007

    Article  PubMed  Google Scholar 

  56. Anderson, J.F., Johnson, R.C., Magnarelli, L.A.: Seasonal prevalence of Borrelia burgdorferi in natural populations of white-footed mice, Peromyscus leucopus. J. Clin. Microbiol. 25, 1564–1566 (1987)

    PubMed  CAS  Google Scholar 

  57. Anderson, J.F.: Ecology of Lyme disease. Conn. Med. 53, 343–346 (1989)

    PubMed  CAS  Google Scholar 

  58. Comstedt, P., et al.: Migratory passerine birds as reservoirs of Lyme borreliosis in Europe. Emerg. Infect. Dis. 12, 1087–1095 (2006)

    Article  PubMed  Google Scholar 

  59. Tsao, J.I., et al.: An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proc. Natl. Acad. Sci. U.S.A. 101, 18159–18164 (2004). doi:10.1073/pnas.0405763102

    Article  PubMed  CAS  Google Scholar 

  60. Gomes-Solecki, M.J., Brisson, D.R., Dattwyler, R.J.: Oral vaccine that breaks the transmission cycle of the Lyme disease spirochete can be delivered via bait. Vaccine 24, 4440–4449 (2006). doi:10.1016/j.vaccine.2005.08.089

    Article  PubMed  CAS  Google Scholar 

  61. Scheckelhoff, M.R., Telford, S.R., Hu, L.T.: Protective efficacy of an oral vaccine to reduce carriage of Borrelia burgdorferi (strain N40) in mouse and tick reservoirs. Vaccine 24, 1949–1957 (2006). doi:10.1016/j.vaccine.2005.10.044

    Article  PubMed  CAS  Google Scholar 

  62. Piesman, J.: Strategies for reducing the risk of Lyme borreliosis in North America. Int. J. Med. Microbiol. 296(Suppl 40), 17–22 (2006). doi:10.1016/j.ijmm.2005.11.007

    Article  PubMed  Google Scholar 

  63. Pastoret, P.P., et al.: First field trial of fox vaccination against rabies using a vaccinia-rabies recombinant virus. Vet. Rec. 123, 481–483 (1988)

    Article  PubMed  CAS  Google Scholar 

  64. Estrada, R., Vos, A., De Leon, R., Mueller, T.: Field trial with oral vaccination of dogs against rabies in the Philippines. BMC Infect. Dis. 1, 23 (2001)

    Article  PubMed  CAS  Google Scholar 

  65. Knobel, D.L., du Toit, J.T., Bingham, J.: Development of a bait and baiting system for delivery of oral rabies vaccine to free-ranging African wild dogs (Lycaon pictus). J. Wildl. Dis. 38, 352–362 (2002)

    Article  PubMed  CAS  Google Scholar 

  66. Creekmore, T.E., Rocke, T.E., Hurley, J.: A baiting system for delivery of an oral plague vaccine to black-tailed prairie dogs. J. Wildl. Dis. 38, 32–39 (2002)

    Article  PubMed  Google Scholar 

  67. Daniels, T.J., et al.: Acaricidal treatment of white-tailed deer to control Ixodes scapularis (Acari: Ixodidae) in a New York Lyme disease-endemic community. Vector Borne Zoonotic Dis. 9, 381–387 (2009). doi:10.1089/vbz.2008.0197

    Article  PubMed  Google Scholar 

  68. Fish, D., Childs, J.E.: Community-based prevention of Lyme disease and other tick-borne diseases through topical application of acaricide to white-tailed deer: background and rationale. Vector Borne Zoonotic Dis. 9, 357–364 (2009). doi:10.1089/vbz.2009.0022

    Article  PubMed  Google Scholar 

  69. Hoen, A.G., et al.: Effects of tick control by acaricide self-treatment of white-tailed deer on host-seeking tick infection prevalence and entomologic risk for Ixodes scapularis-borne pathogens. Vector Borne Zoonotic Dis. 9, 431–438 (2009). doi:10.1089/vbz.2008.0155

    Article  PubMed  Google Scholar 

  70. Stafford 3rd, K.C., Denicola, A.J., Pound, J.M., Miller, J.A., George, J.E.: Topical treatment of white-tailed deer with an acaricide for the control of Ixodes scapularis (Acari: Ixodidae) in a Connecticut Lyme borreliosis hyperendemic community. Vector Borne Zoonotic Dis. 9, 371–379 (2009). doi:10.1089/vbz.2008.0161

    Article  PubMed  Google Scholar 

  71. Dolan, M.C., et al.: Control of immature Ixodes scapularis (Acari: Ixodidae) on rodent reservoirs of Borrelia burgdorferi in a residential community of southeastern Connecticut. J. Med. Entomol. 41, 1043–1054 (2004)

    Article  PubMed  CAS  Google Scholar 

  72. Dolan, M.C., et al.: A doxycycline hyclate rodent bait formulation for prophylaxis and treatment of tick-transmitted Borrelia burgdorferi. Am. J. Trop. Med. Hyg. 78, 803–805 (2008)

    PubMed  Google Scholar 

  73. Zeidner, N.S., et al.: A sustained-release formulation of doxycycline hyclate (Atridox) prevents simultaneous infection of Anaplasma phagocytophilum and Borrelia burgdorferi transmitted by tick bite. J. Med. Microbiol. 57, 463–468 (2008). doi:10.1099/jmm.0.47535-0

    Article  PubMed  CAS  Google Scholar 

  74. Oliver Jr., J.H., et al.: An enzootic transmission cycle of Lyme borreliosis spirochetes in the southeastern United States. Proc. Natl. Acad. Sci. U.S.A. 100, 11642–11645 (2003). doi:10.1073/pnas.1434553100

    Article  PubMed  CAS  Google Scholar 

  75. Embers ME., Hasenkampf NR., Jacobs MB., Philipp MT.: Dynamic longitudinal antibody responses during Borrelia burgdorferi infection and antibiotic treatment of rhesus macaques. Clin Vaccine Immunol. 19(8), 1218–1226 (2012). doi: 10.1128/CVI.00228-12. Epub 2012 Jun 20. PMID: 22718128

    Google Scholar 

  76. Meirelles Richer, L., Aroso, M., Contente-Cuomo, T., Ivanova, L., Gomes-Solecki, M.: Reservoir targeted vaccine for lyme borreliosis induces a yearlong, neutralizing antibody response to OspA in white-footed mice. Clin. Vaccine Immunol. 18, 1809–1816 (2011). doi: 10.1128/CVI.05226-11

    Article  PubMed  Google Scholar 

  77. Fikrig, E., Barthold, S.W., Kantor, F.S., Flavell, R.A.: Long-term protection of mice from Lyme disease by vaccination with OspA. Infect. Immun. 60, 773–777 (1992)

    PubMed  CAS  Google Scholar 

  78. de Silva, A.M., Telford 3rd, S.R., Brunet, L.R., Barthold, S.W., Fikrig, E.: Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J. Exp. Med. 183, 271–275 (1996)

    Article  PubMed  Google Scholar 

  79. Steere, A.C., et al.: Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein a with adjuvant. Lyme Disease Vaccine Study Group. N. Engl. J. Med. 339, 209–215 (1998). doi:10.1056/NEJM199807233390401

    Article  PubMed  CAS  Google Scholar 

  80. Alexopoulou, L., et al.: Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat. Med. 8, 878–884 (2002). doi:10.1038/nm732

    PubMed  CAS  Google Scholar 

  81. Schuijt, T.J., Hovius, J.W., van der Poll, T., van Dam, A.P., Fikrig, E.: Lyme borreliosis vaccination: the facts, the challenge, the future. Trends Parasitol. 27, 40–47 (2011). doi:10.1016/j.pt.2010.06.006

    Article  PubMed  CAS  Google Scholar 

  82. Bhattacharya, D., et al.: Development of a baited oral vaccine for use in reservoir-targeted strategies against Lyme disease. Vaccine 29, 7818–7825 (2011). doi:10.1016/j.vaccine.2011.07.100

    Article  PubMed  CAS  Google Scholar 

  83. Reed, J.L., Scott, D.E., Bray, M.: Eczema vaccinatum. Clin. Infect. Dis. 54, 832–840 (2012). doi:10.1093/cid/cir952

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gomes-Solecki DVM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Gomes-Solecki, M. (2013). Lyme Disease: Reservoir-Targeted Vaccines. In: Giese, M. (eds) Molecular Vaccines. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1419-3_16

Download citation

Publish with us

Policies and ethics